ANALYSIS 1 - SOLUTION FOR EXERCISE 12

Question 1: Given $\varphi \in \mathcal{S}(\mathbb{R})$,

$$i\xi\widehat{T_H}(\varphi) = \widehat{\frac{d}{dx}T_H}(\varphi) = \frac{d}{dx}T_H(\hat{\varphi}) = -T_H(\frac{d}{dx}\hat{\varphi})$$
$$= -\int_0^\infty \frac{d}{dx}\hat{\varphi}\,dx = \hat{\varphi}(0) = \frac{1}{\sqrt{2\pi}}\int\varphi(x)\,dx = \frac{1}{\sqrt{2\pi}}T_1(\varphi),$$

which shows $i\xi \widehat{T_H} = \frac{1}{\sqrt{2\pi}}T_1$.

Question 2, part (a): Since

$$\int_{0}^{2\pi} \sum_{j=-\infty}^{\infty} |f(t+2\pi j)| \, dt = \sum_{j=-\infty}^{\infty} \int_{0}^{2\pi} |f(t+2\pi j)| \, dt$$
$$= \sum_{j=-\infty}^{\infty} \int_{2\pi j}^{2\pi (j+1)} |f(t)| \, dt = \int_{-\infty}^{\infty} |f| \, dt < \infty,$$

it follows g is well defined and $g \in L^1(0, 2\pi)$.

Part (b): For $n \in \mathbb{Z}$

$$\hat{g}(n) = \frac{1}{2\pi} \int_0^{2\pi} g(t) e^{-int} dt = \frac{1}{2\pi} \sum_{j=-\infty}^\infty \int_0^{2\pi} f(t+2\pi j) e^{-int} dt$$
$$= \frac{1}{2\pi} \sum_{j=-\infty}^\infty \int_{2\pi j}^{2\pi (j+1)} f(t) e^{-in(t-2\pi j)} dt.$$

From this and since $e^{-in(t-2\pi j)} = e^{-int}$ for every $t \in \mathbb{R}$ and $j \in \mathbb{Z}$,

$$\hat{g}(n) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-int} dt = \frac{1}{\sqrt{2\pi}} \hat{f}(n) .$$

Part (c): Claim: If $f \in \mathcal{S}(\mathbb{R})$ then the sum

$$g(t) = \sum_{j=-\infty}^{\infty} f(t + 2\pi j)$$

converges uniformly (with all derivatives) to a smooth 2π -periodic function.

Proof: Note that, for any integer l,

$$\sup_{t \in [0,2\pi]} \sum_{|j| > J} |f(t+2\pi j)| \le C_l J^{-l},$$

with a similar estimate for the series of derivatives (of any order). Thus the convergence is uniform and the Claim follows from the general following calculus proposition:

Proposition: Let $I \subset \mathbb{R}$ be a finite open interval and $\{\phi_k(t), t \in I\}_{k=1}^{\infty} \subset C^{\infty}(I)$ a sequence of smooth functions such that: (a) $\phi_k \xrightarrow{k} \phi$ uniformly on I, (b) for every $j \in \mathbb{N}$ the derivatives of order j, $\{\phi_k^{(j)}(t), t \in I\}_{k=1}^{\infty}$ converge (uniformly in $t \in I$) to a function $\psi_j(t)$. Then $\phi \in C^{\infty}(I)$ and $\psi_j(t) = (\frac{d}{dt})^j \phi$, j = 1, 2, ...

The proof of the proposition is immediate. Pick $t_0 \in I$ and note that

$$\phi(t) - \phi(t_0) = \lim_{k \to \infty} \left(\phi_k(t) - \phi_k(t_0) \right) = \lim_{k \to \infty} \int_{t_0}^t \phi'_k(s) \, ds = \int_{t_0}^t \psi_1(s) \, ds,$$

all limits uniform in $t \in I$. It follows that $\phi'(t) \equiv \psi_1(t)$. This can be continued to all orders, namely, $\psi'_1(t) = \psi_2(t)$...

Part (d): Assume $f \in \mathcal{S}(\mathbb{R})$, then from part (c) we get $g \in C^{\infty}(\mathbb{R})$. From this and since g is 2π -periodic it follows $\sum_{n=-\infty}^{\infty} \hat{g}(n) = g(0)$. Now since $\hat{g}(n) = \frac{1}{\sqrt{2\pi}} \hat{f}(n)$ for $n \in \mathbb{Z}$,

$$\frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}\hat{f}(n) = g(0) = \sum_{n=-\infty}^{\infty}f(2\pi n),$$

which is what we wanted to prove.

Question 3, part (a): For $x \in \mathbb{R}$ set $P(x) = x^2$, then since $\hat{\delta}_0 = \frac{T_1}{\sqrt{2\pi}}$

$$\widehat{\frac{d^2}{dx^2}\delta_0} = -P \cdot \widehat{\delta_0} = -\frac{P}{\sqrt{2\pi}} \,.$$

It follows that for each $\varphi \in \mathcal{S}(\mathbb{R}^2)$

$$\widehat{\frac{d^2}{dx^2}\delta_0}(\varphi) = -\frac{1}{\sqrt{2\pi}}\int \xi^2 \cdot \varphi(\xi) \, d\xi \, .$$

Part (b): Given $\varphi \in \mathcal{S}(\mathbb{R}^2)$

$$\frac{\partial}{\partial x}T_{\chi}(\varphi) = -T_{\chi}(\frac{\partial\varphi}{\partial x}) = -\int_{-1}^{1}\int_{-1}^{1}\frac{\partial\varphi}{\partial x}(x,y)\,dx\,dy = \int_{-1}^{1}\varphi(-1,y) - \varphi(1,y)\,dy,$$

and similarly

$$\frac{\partial}{\partial y}T_{\chi}(\varphi) = \int_{-1}^{1}\varphi(x,-1) - \varphi(x,1) \, dx \, .$$

Question 4: Lemma: If $\psi \in \mathcal{S}(\mathbb{R})$ satisfies $\int_{\mathbb{R}} \psi(x) dx = 0$, then $\psi(x) = \phi'(x)$ for some $\phi \in \mathcal{S}(\mathbb{R})$.

Proof of the Lemma: Define $\phi(x) = \int_{-\infty}^{x} \psi(t) dt$. Clearly the function is welldefined (because of the decay of ψ) and infinitely differentiable. Furthermore, for any integer $l \in \mathbb{N}$, the decay $|\psi(t)| \leq C_l |t|^{-(l+1)}$, t < -1, implies by integration

$$|\phi(x)| \le C_l |x|^{-l}, \quad x < -1.$$

Since $\phi'(x) = \psi(x)$, the rapid decay of derivatives follows from that of ψ (and its derivatives).

Now, to obtain a similar decay of $\phi(x)$ as $x \to \infty$, use the vanishing of the integral (over the line) of ψ to get

$$\phi(x) = -\int_x^\infty \psi(t)dt,$$

and repeat the above argument.

Part (a): Let $\omega \in \mathcal{S}(\mathbb{R})$ be with $\int \omega \, dx = 1$ and set $c = v(\omega)$. Fix some $\psi \in \mathcal{S}(\mathbb{R})$ and set $a = \int \psi \, dx$. Since

$$\int_{-\infty}^{\infty} \psi(y) - a \cdot \omega(y) \, dy = 0,$$

it follows from the lemma above that there exists $\varphi \in \mathcal{S}(\mathbb{R})$ with $\varphi' = \psi - a \cdot \omega$. It now holds that

$$0 = \frac{d}{dx}v(\varphi) = -v(\frac{d}{dx}\varphi) = -v(\psi - a\omega) = -v(\psi) + c\int\psi\,dx,$$

and so $v(\psi) = c \int \psi \, dx$. This shows $v = T_c$, which is what we wanted to prove. **Part** (b): For $k \ge 0$ and $x \in \mathbb{R}$ set $P_k(x) = x^k$. Let $u \in \mathcal{S}'(\mathbb{R})$ be with $\frac{d^2}{dx^2}u = T_{x^2}$, then $\frac{d}{dx}(\frac{d}{dx}u - \frac{P_3}{3}) = 0$, and so from part (a) we get $\frac{d}{dx}u = \frac{P_3}{3} + T_{c_1}$ for some $c_1 \in \mathbb{C}$. In the same manner since $\frac{d}{dx}(u - \frac{P_4}{12} - c_1P_1) = 0$ it follows $u = \frac{P_4}{12} + c_1P_1 + T_{c_2}$ for some $c_2 \in \mathbb{C}$. We have thus found all solutions for the equation $\frac{d^2}{dx^2}u = T_{x^2}$.