
ANALYSIS 1 - SOLUTION FOR EXERCISE 12

Question 1: Given ϕ ∈ S(R),

iξT̂H(ϕ) =
d̂

dx
TH(ϕ) =

d

dx
TH(ϕ̂) = −TH(

d

dx
ϕ̂)

= −
ˆ ∞
0

d

dx
ϕ̂ dx = ϕ̂(0) =

1√
2π

ˆ
ϕ(x) dx =

1√
2π
T1(ϕ),

which shows iξT̂H = 1√
2π
T1.

Question 2, part (a): Since

ˆ 2π

0

∞∑
j=−∞

|f(t+ 2πj)| dt =
∞∑

j=−∞

ˆ 2π

0

|f(t+ 2πj)| dt

=

∞∑
j=−∞

ˆ 2π(j+1)

2πj

|f(t)| dt =
ˆ ∞
−∞
|f | dt <∞,

it follows g is well de�ned and g ∈ L1(0, 2π).

Part (b): For n ∈ Z

ĝ(n) =
1

2π

ˆ 2π

0

g(t)e−int dt =
1

2π

∞∑
j=−∞

ˆ 2π

0

f(t+ 2πj)e−int dt

=
1

2π

∞∑
j=−∞

ˆ 2π(j+1)

2πj

f(t)e−in(t−2πj) dt .

From this and since e−in(t−2πj) = e−int for every t ∈ R and j ∈ Z,

ĝ(n) =
1

2π

ˆ ∞
−∞

f(t)e−int dt =
1√
2π
f̂(n) .

Part (c): Claim: If f ∈ S(R) then the sum

g(t) =

∞∑
j=−∞

f(t+ 2πj)

converges uniformly (with all derivatives) to a smooth 2π-periodic function.

Proof: Note that, for any integer l,

sup
t∈[0,2π]

∑
|j|>J

|f(t+ 2πj)| ≤ ClJ−l,

1



with a similar estimate for the series of derivatives (of any order). Thus the con-

vergence is uniform and the Claim follows from the general following calculus pro-

position:

Proposition: Let I ⊂ R be a �nite open interval and {φk(t), t ∈ I}∞k=1 ⊂ C∞(I)

a sequence of smooth functions such that: (a) φk
k→ φ uniformly on I, (b) for every

j ∈ N the derivatives of order j, {φ(j)k (t), t ∈ I}∞k=1 converge (uniformly in t ∈ I)
to a function ψj(t). Then φ ∈ C∞(I) and ψj(t) = ( ddt )

jφ, j = 1, 2, ....

The proof of the proposition is immediate. Pick t0 ∈ I and note that

φ(t)− φ(t0) = lim
k→∞

(φk(t)− φk(t0)) = lim
k→∞

ˆ t

t0

φ′k(s) ds =

ˆ t

t0

ψ1(s) ds,

all limits uniform in t ∈ I. It follows that φ′(t) ≡ ψ1(t). This can be continued to

all orders, namely, ψ′1(t) = ψ2(t)...

Part (d): Assume f ∈ S(R), then from part (c) we get g ∈ C∞(R). From this and

since g is 2π-periodic it follows
∑∞
n=−∞ ĝ(n) = g(0). Now since ĝ(n) = 1√

2π
f̂(n)

for n ∈ Z,
1√
2π

∞∑
n=−∞

f̂(n) = g(0) =

∞∑
n=−∞

f(2πn),

which is what we wanted to prove.

Question 3, part (a): For x ∈ R set P (x) = x2, then since δ̂0 = T1√
2π

d̂2

dx2
δ0 = −P · δ̂0 = − P√

2π
.

It follows that for each ϕ ∈ S(R2)

d̂2

dx2
δ0(ϕ) = −

1√
2π

ˆ
ξ2 · ϕ(ξ) dξ .

Part (b): Given ϕ ∈ S(R2)

∂

∂x
Tχ(ϕ) = −Tχ(

∂ϕ

∂x
) = −

ˆ 1

−1

ˆ 1

−1

∂ϕ

∂x
(x, y) dx dy =

ˆ 1

−1
ϕ(−1, y)− ϕ(1, y) dy,

and similarly
∂

∂y
Tχ(ϕ) =

ˆ 1

−1
ϕ(x,−1)− ϕ(x, 1) dx .

Question 4: Lemma: If ψ ∈ S(R) satis�es
´
R ψ(x)dx = 0, then ψ(x) = φ′(x) for

some φ ∈ S(R).

Proof of the Lemma: De�ne φ(x) =
´ x
−∞ ψ(t)dt. Clearly the function is well-

de�ned (because of the decay of ψ) and in�nitely di�erentiable. Furthermore, for



any integer l ∈ N, the decay |ψ(t)| ≤ Cl|t|−(l+1), t < −1, implies by integration

|φ(x)| ≤ Cl|x|−l, x < −1.

Since φ′(x) = ψ(x), the rapid decay of derivatives follows from that of ψ (and its

derivatives).

Now, to obtain a similar decay of φ(x) as x→∞, use the vanishing of the integral

(over the line) of ψ to get

φ(x) = −
ˆ ∞
x

ψ(t)dt,

and repeat the above argument.

Part (a): Let ω ∈ S(R) be with
´
ω dx = 1 and set c = v(ω). Fix some ψ ∈ S(R)

and set a =
´
ψ dx. Since

ˆ ∞
−∞

ψ(y)− a · ω(y) dy = 0,

it follows from the lemma above that there exists ϕ ∈ S(R) with ϕ′ = ψ − a · ω. It
now holds that

0 =
d

dx
v(ϕ) = −v( d

dx
ϕ) = −v(ψ − aω) = −v(ψ) + c

ˆ
ψ dx,

and so v(ψ) = c
´
ψ dx. This shows v = Tc, which is what we wanted to prove.

Part (b): For k ≥ 0 and x ∈ R set Pk(x) = xk. Let u ∈ S ′(R) be with d2

dx2u = Tx2 ,

then d
dx (

d
dxu−

P3

3 ) = 0, and so from part (a) we get d
dxu = P3

3 +Tc1 for some c1 ∈ C.
In the same manner since d

dx (u−
P4

12 − c1P1) = 0 it follows u = P4

12 + c1P1 + Tc2 for

some c2 ∈ C. We have thus found all solutions for the equation d2

dx2u = Tx2 .


