ANALYSIS 1 - SOLUTION FOR EXERCISE 11

Question 1: Let x € R, then from the inversion theorem and the definition of f
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we can use Fubini’s theorem on (0.1), and so
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Since for each a > 0

Now since for a > 0
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it follows that
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which is what we wanted.
Question 2, part (a): For every € R we have d%ap(x) =—x- e’%wZ, SO
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and so
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which is what we wanted.

Part (b): For x € R set P(z) = z%. From claims stated in class it follows

Py = —(;‘l—;@ and &, = —P¢. From this and part (a) we get
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i.e. ¢ also satisfies the differential equation given in part (a).

Part (c): For z € R set Q(x) = x, then
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where the last equality holds since z — z-e~2%" is an odd function. Let ¢ = ¢(0) >
0, then
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(e 3(0), ¢+ —9(0)) = (1,0) = (#(0), ——(0)) .
From this, since ¢ and ¢~! - ¢ both satisfy the differential equation given in (a),

and since this equation has order 2, it follows ¢ = cp. In addition we have ¢ = 1
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Question 3, part (a): For z € R set P(x) = 22 and let o be as in the previous
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question. From parts (c) and (a) of the last question we obtain
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Part (b): Let a > 0 and set b = /%, then
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Question 4, part (a): For x € R set Q(x) = z, then
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which is what we wanted.

Part (b): Since Fp = ¢ we have
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F(0) =2F(Qp) = 22’%}'(90) = 2i-—¢ = ~2iQp = ~if.

Part (c): We shall prove the claim by induction on k. For & = 1 the claim
follows from part (b). Let k& > 1 and assume there exists a real polynomial Hy
with deg Hy, = k and F(Hyyp) = (—i)*Hypp. Let Hy.y be the polynomial with
Hii10=(Q— d%)(Hkgo), then deg Hx 41 = k + 1 and from part (a)

F(Hiprp) = (=) ' Hy .

This completes the induction and the proof.



