LINEAR EQUATIONS

MATANIA BEN-ARTZI

December 2018

Notation

- The scalar product in \mathbb{R}^{m} is denoted by (\cdot, \cdot).
- Euclidean norm $|x|^{2}=\sum_{i=1}^{m} x_{i}^{2}$ in \mathbb{R}^{m}.
- For every $A \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ we denote by $\|A\|$ its (operator) norm with respect to $|\cdot|$.
- Notation: $B(x, r)$ for the OPEN ball of radius r center x. The CLOSED ball is denoted by $\bar{B}(x, r)$.
- (a) If $D \subseteq \mathbb{R}^{n}$ we denote by $C\left(D, \mathbb{R}^{m}\right)$ the set of continuous (vector) functions on D into \mathbb{R}^{m}.
(b) We denote by $C_{b}\left(D, \mathbb{R}^{m}\right) \subseteq C\left(D, \mathbb{R}^{m}\right)$ the set of BOUNDED continuous functions on D.
(c) We denote by $C^{k}\left(D, \mathbb{R}^{m}\right)$ the subset of functions in $C\left(D, \mathbb{R}^{m}\right)$ which are continuously differentiable up to (including) order k.
(d) If $m=1$ we simplify to $C(D), \quad C_{b}(D), \quad C^{k}(D)$.

- BASIC DEFINITIONS AND FACTS

- $* ~$
- We FIX $I=(\alpha, \beta) \subseteq \mathbb{R}$ to be an open (finite or infinite) interval.
- We denote $D=I \times \mathbb{R}^{m}$.
- DEFINITION: A matrix function $t \hookrightarrow A(t) \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right), t \in$ I, is continuous if all its entries $\left(a_{i, j}(t)\right), 1 \leq i, j \leq m$ are continuous.
- DEFINITION (A LINEAR DIFFERENTIAL EQUATION):

Given a continuous matrix function $A(t)$ on I and a vector function $b(t) \in C\left(I, \mathbb{R}^{m}\right)$, find a function $y(t) \in C^{1}\left(I, \mathbb{R}^{m}\right)$ such that:
(L)

$$
y^{\prime}(t)=A(t) y(t)+b(t), \quad t \in I .
$$

- The equation (L) refers to ALL POSSIBLE solutions .
- INITIAL VALUE PROBLEM: Suppose that $\left(t_{0}, y^{0}\right) \in D$.

Find a solution of (L), in some open interval $I \subseteq \mathbb{R}$, such that

$$
(I V) \quad t_{0} \in I, \quad y\left(t_{0}\right)=y^{0} .
$$

- REMARK: The unknown vector function $y(t)$ consists of m scalar functions (its components). Therefore, sometimes (L) is referred to as a LINEAR SYSTEM OF EQUATIONS.
- DEFINITION (m-th order scalar equation): Let $a_{0}(t), a_{1}(t), \ldots, a_{m-1}(t) \in$ $C(I)$. The equation

$$
z^{(m)}(t)+a_{m-1}(t) z^{(m-1)}(t)+\ldots+a_{1}(t) z^{\prime}(t)+a_{0}(t) z(t)=r(t), \quad t \in I,
$$

is called an m-th order scalar equation for the unknown function $z(t)$.

- When the initial conditions (at $t_{0} \in I$)

$$
(I V S C m) \quad z\left(t_{0}\right)=z_{0}, z^{\prime}\left(t_{0}\right)=z_{1}, \ldots, z^{(m-1)}\left(t_{0}\right)=z_{m-1},
$$

are added, we get the initial value problem for the equation.

- BASIC OBSERVATION: Defining a vector function

$$
y(t)=\left(z(t), z^{\prime}(t), \ldots, z^{(m-1)}(t)\right)^{T} \in C\left(I, \mathbb{R}^{m}\right)
$$

and $b(t)=(0,0, \ldots, 0, r(t))^{T} \in C\left(I, \mathbb{R}^{m}\right)$, we see that the m-th order scalar equation can be written as:

$$
y^{\prime}(t)=A(t) y(t)+b(t),
$$

$$
A(t)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & 1 \\
-a_{0}(t) & -a_{1}(t) & \ldots & -a_{m-2}(t) & -a_{m-1}(t)
\end{array}\right) .
$$

- The initial conditions can be written as:

$$
y^{0}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)^{T} .
$$

- Thus, theorems formulated for (L) (with initial condition (IV)) hold for (SCm) (with initial conditions (IVSCm)).

- FUNDAMENTAL EXISTENCE AND UNIQUENESS THEOREM

Theorem. The initial value problem (L)-(IV) has a unique (continuously differentiable) solution in $I=(a, b)$. In particular, for any point $t_{0} \in I$ and initial vector $y^{0} \in \mathbb{R}^{m}$, the (unique) solution exists over the full interval I.

- Proof. (a) The equation certainly satisfies the local Lipschitz condition in D, so there exists a unique solution $y(t)$, satisfying the initial condition (IV), in some maximal interval $\left(t_{0}-\theta, t_{0}+\right.$ $\eta)$.
(b) Suppose $t_{0}+\eta<\beta$. Take the scalar product of (L) with $2 y(t)$ to get

$$
\frac{d}{d t}|y(t)|^{2}=2(A(t) y(t), y(t))+(b(t), y(t))
$$

Using $|(\xi, \zeta)| \leq \frac{1}{2}\left(|\xi|^{2}+|\zeta|^{2}\right)$, we get
$\frac{d}{d t}|y(t)|^{2} \leq(2\|A(t)\|+1)|y(t)|^{2}+|b(t)|^{2} \leq \gamma_{1}|y(t)|^{2}+\gamma_{2}$,
where $\gamma_{1}=\max _{\left[t_{0}, t_{0}+\eta\right]}(2\|A(t)\|+1), \quad \gamma_{2}=\max _{\left[t_{0}, t_{0}+\eta\right]}|b(t)|^{2}$. It follows that

$$
\frac{d}{d t}\left(e^{-\gamma_{1} t}|y(t)|^{2}\right) \leq e^{-\gamma_{1} t} \gamma_{2}, \quad t \in\left[t_{0}, t_{0}+\eta\right],
$$

so that $\sup _{\left[t_{0}, t_{0}+\eta\right]}|y(t)|<\infty$.
(c) The Maximal Interval Theorem now implies that the solution $y(t)$ can be extended beyond $t_{0}+\eta$, contradicting the assumption about the maximality of $\left(t_{0}-\theta, t_{0}+\eta\right)$. We conclude that $t_{0}+\eta=\beta$ and similarly $t_{0}-\theta=\alpha$. Note this argument holds also if $\beta=+\infty$ or $\alpha=-\infty$.

- THE SCALAR m-th ORDER EQUATION
- COROLLARY: The IVP for Equation (SCm), with initial conditions (IVSCm), has a unique solution in $C^{m}(I)$.
**

- COMPLEX VALUED SOLUTIONS

- We always assume that $A(t)=\left(a_{i, j}(t)\right)_{1 \leq i, j \leq m}, \quad t \in I$, is a real matrix. Similarly, the coefficients $a_{i}(t)$ in (SCm) are always real.
- (i) If $g(t), \quad t \in I$, is a complex valued function, its derivative is defined simply by

$$
\frac{d}{d t} g(t)=\frac{d}{d t} \Re g(t)+i \frac{d}{d t} \Im g(t),
$$

provided the real and imaginary parts $\Re g(t), \Im g(t)$ are differentiable (as real functions).
(ii) The same definition applies to any order of differentiation.
(iii) The same definition applies to vector functions whose components are complex valued-simply differentiate componentwise.

- NOTE: If $\lambda \in \mathbb{C}$ then $\frac{d}{d t}(\lambda g(t))=\lambda \frac{d}{d t} g(t)$.
- HENCEFORTH WE ASSUME THAT $y(t)$ IN (L) IS COMPLEX-VALUED, i.e $y(t) \in \mathbb{C}^{m}$.
**
- THE HOMOGENEOUS EQUATION, $b(t) \equiv 0$
$(L H) \quad y^{\prime}(t)=A(t) y(t), \quad t \in I, y(t) \in \mathbb{C}^{m}$.
- The initial data $y\left(t_{0}\right)=y^{0} \in \mathbb{C}^{m}, \quad t_{0} \in I$.
- OBSERVATION: The function $y(t)$ is a solution to (LH), with initial data y^{0}, if and only if $\Re y(t), \Im y(t)$ are solutions to (LH), with initial data $\Re y^{0}, \Im y^{0}$, respectively.
- Note that the fact that $A(t)$ is real is crucial in this case.
- COROLLARY (Existence and Uniqueness for Complex-Valued Solutions):

The initial value problem for ($L H$) has a unique (continuously differentiable) solution in $I=(a, b)$. In particular, for any point $t_{0} \in I$ and initial vector $y^{0} \in \mathbb{C}^{m}$, the (unique) solution exists over the full interval I.

- THE SUPERPOSITION PRINCIPLE.

Theorem. The set of all solutions of $(L H)$ is an m-dimensional linear space over \mathbb{C}.

- COROLLARY: The set of all solutions of the scalar homogeneous equation

$$
(S C m H) z^{(m)}(t)+a_{m-1}(t) z^{(m-1)}(t)+\ldots+a_{1}(t) z^{\prime}(t)+a_{0}(t) z(t)=0, \quad t \in I,
$$

is an m-dimensional linear space over \mathbb{C}.

- DEFINITION (FUNDAMENTAL MATRIX): Let $\left\{y^{1}(t), \ldots, y^{m}(t)\right\}$ be a basis for the set of solutions of (LH). The matrix $\Phi(t) \in$ $\operatorname{HOM}\left(\mathbb{C}^{m}, \mathbb{C}^{m}\right)$, whose columns are $\left\{y^{1}(t), \ldots, y^{m}(t)\right\}$, is called a fundamental matrix for (LH).
- CLAIM: If $\Phi(t) \in H O M\left(\mathbb{C}^{m}, \mathbb{C}^{m}\right)$ is a fundamental matrix for (LH) then the set of all fundamental matrices of (LH) is given by

$$
\left\{\Phi(t) C, \quad C \in H O M\left(\mathbb{C}^{m}, \mathbb{C}^{m}\right), \quad \operatorname{det}(C) \neq 0\right\}
$$

- Let $\Phi(t)$ be a fundamental matrix for (LH) and let $\Phi^{\prime}(t)$ be the matrix obtained by differentiating all elements of Φ. Then:

$$
\Phi^{\prime}(t)=A(t) \Phi(t), \quad t \in I
$$

(consider separately each column).

- REMINDER: The trace of $A(t): \operatorname{tr}(A(t))=\sum_{i=1}^{m} a_{i, i}(t)$.
- LEMMA: Let $\Psi(t) \in H O M\left(\mathbb{C}^{m}, \mathbb{C}^{m}\right)$ be a continuously differentiable matrix function satisfying

$$
(*) \quad \Psi^{\prime}(t)=A(t) \Psi(t), \quad t \in I .
$$

Then:

$$
\frac{d}{d t} \operatorname{det}(\Psi(t))=\operatorname{tr}(A(t)) \operatorname{det}(\Psi(t))
$$

- COROLLARY:

$$
\text { (a) } \operatorname{det}(\Psi(t))=\operatorname{det}\left(\Psi\left(t_{0}\right)\right) e^{\int_{t_{0}}^{t}} \operatorname{tr}(A(s)) d s
$$

(b) Let $\Psi(t)$ be a matrix solution of $\left({ }^{*}\right)$.

Then a necessary and sufficient condition for Ψ to be a fundamental matrix is

$$
\operatorname{det}(\Psi(\tau)) \neq 0, \quad \text { for some } \quad \tau \in I
$$

- Part (b) can be proved by a direct argument as follows.
- CLAIM: If the columns $\left\{\Psi^{1}(t), \ldots, \Psi^{m}(t)\right\}$ are linearly dependent at some point in I, then there exist constants $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\} \subseteq$ \mathbb{C}, not all zero, such that

$$
\sum_{i=1}^{m} \lambda_{i} \Psi^{i}(t) \equiv 0, \quad t \in I
$$

Proof. Suppose that

$$
\sum_{i=1}^{m} \lambda_{i} \Psi^{i}\left(t_{0}\right) \equiv 0, \quad t_{0} \in I
$$

Then $y(t)=\sum_{i=1}^{m} \lambda_{i} \Psi^{i}(t)$ is a solution of (LH) with $y\left(t_{0}\right)=0$, so it must vanish identically by uniqueness (of the "trivial" zero solution).

- THE FUNDAMENTAL MATRIX:

$$
\Phi(t)=\left(\begin{array}{ccccc}
z_{1}(t) & z_{2}(t) & z_{3}(t) & \ldots & z_{m}(t) \\
z_{1}^{\prime}(t) & z_{2}^{\prime}(t) & z_{3}^{\prime}(t) & \ldots & z_{m}^{\prime}(t) \\
z_{1}^{\prime \prime}(t) & z_{2}^{\prime \prime}(t) & z_{3}^{\prime \prime}(t) & \ldots & z_{m}^{\prime \prime}(t) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
z_{1}^{(m-1)}(t) & z_{2}^{(m-1)}(t) & z_{3}^{(m-1)}(t) & \ldots & z_{m}^{(m-1)}(t)
\end{array}\right)
$$

where $\left\{z_{1}(t), \ldots, z_{m}(t)\right\}$ are solutions of the homogeneous equation (SCmH).

- COROLLARY: $\Phi(t)$ is a fundamental matrix if and only if $\left\{z_{1}(t), \ldots, z_{m}(t)\right\}$ are linearly independent over \mathbb{C}.
Proof. In order for the columns of $\Phi(t)$ to satisfy

$$
\sum_{i=1}^{m} \lambda_{i} \Phi_{i}(t) \equiv 0, \quad t \in I
$$

it is necessary and sufficient that

$$
\sum_{i=1}^{m} \lambda_{i} z_{i}(t) \equiv 0, \quad t \in I
$$

- DEFINITION(BASIS FOR SOLUTIONS OF (SCmH)):

A set of solutions $\left\{z_{1}(t), \ldots, z_{m}(t)\right\}$ for which $\Phi(t)$ is nonsingular (i.e., which are linearly independent over \mathbb{C}) is called a basis for the solutions of (SCmH).

- In this case $\operatorname{tr}(A(t))=-a_{m-1}(t)$ so

$$
\frac{d}{d t} \operatorname{det}(\Phi(t))=-a_{m-1}(t) \operatorname{det}(\Phi(t))
$$

- We conclude:

$$
W(t)=W\left(t_{0}\right) e^{-\int_{t_{0}}^{t} a_{m-1}(s) d s},
$$

where $W(t)=\operatorname{det}(\Phi(t))$.

- DEFINITION (WRONSKIAN): $W(t)$ is called the Wronskian of the set $\left\{z_{1}(t), \ldots, z_{m}(t)\right\}$ (of solutions to (SCmH)).
- CONCLUSION: A necessary and sufficient condition for the linear independence of the set of solutions $\left\{z_{1}(t), \ldots, z_{m}(t)\right\}$ (to $(\mathrm{SCmH}))$ is that at some point $t_{0} \in I, \quad W\left(t_{0}\right) \neq 0$. It then follows that $W(t) \neq 0$ for all points $t \in I$.
**
- THE CONSTANT COEFFICIENT CASE- $A(t) \equiv A \in$ $\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, A CONSTANT MATRIX
- We still work with the HOMOGENEOUS EQUATION

$$
y^{\prime}=A y
$$

- OBSERVE: Every solution is extended to the whole line.
- REMINDER(EXPONENTIAL OF A MATRIX):

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

- CLAIM: $\frac{d}{d t} e^{t A}=A e^{t A}, \quad t \in \mathbb{R}$.

Thus, $e^{t A}$ is a fundamental matrix for $y^{\prime}=A y$.
Proof. The differentiation formula is obtained by differentiating the series.

Now, at $t=0$ the exponential is I, the identity matrix. Since it is regular at $t=0$, it is regular for all t.

- NOTE: The columns of $e^{t A}$ are the m solutions of $y^{\prime}=A y$ with initial data at $t=0$ equal to (respectively) the standard basis (of \mathbb{C}^{m}) vectors (over the complex numbers).
- COROLLARY: $e^{(t+s) A}=e^{t A} e^{s A}, \quad t, s \in \mathbb{R}$.

Proof. Fix s and consider $e^{(t+s) A}, e^{t A} e^{s A}$ as functions of t. Then they are both fundamental matrices for the equation $y^{\prime}=$ $A y$, with initial data $e^{s A}$ at $t=0$.

- COROLLARY: $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$.

Proof. Recall that by the differentiation formula for the determinant of a fundamental matrix

$$
\frac{d}{d t} \operatorname{det}\left(e^{t A}\right)=\operatorname{tr}(A) \operatorname{det}\left(e^{t A}\right),
$$

so that

$$
\operatorname{det}\left(e^{t A}\right)=e^{\operatorname{tr}(A) t}
$$

and take $t=1$.
**

- THE SCALAR m - th ORDER EQUATION—CONSTANT COEFFICIENTS
- OPERATOR NOTATION: For a function $z(t) \in C^{m}(\mathbb{R})$ we define

$$
L(D) z(t)=z^{(m)}+a_{m-1} z^{(m-1)}(t)+\ldots+a_{1} z^{\prime}(t)+a_{0} z(t), \quad t \in \mathbb{R} .
$$

The coefficients are now real constants.

- The homogeneous equation is $L(D) z=0$.
- A basis $\left\{z_{1}(t), \ldots, z_{m}(t)\right\}$ consists of m linearly independent solutions.
- "ALGEBRAIZATION" of the problem:

If $z(t)=e^{\lambda t}$, where $\lambda \in \mathbb{C}$, then

$$
L(D) z(t)=L(\lambda) z(t)
$$

where

$$
L(\lambda)=\lambda^{m}+a_{m-1} \lambda^{m-1}+\ldots+a_{1} \lambda+a_{0},
$$

is a polynomial with real coefficients (which is called the characteristic polynomial of the equation).

- DEFINITION: The (complex, in general) zeros of the characteristic polynomial $L(\lambda)$ are called the characteristic values of the equation.
- CLAIM: If $\mu \in \mathbb{C}$ is a characteristic value then $e^{\mu t}$ is a solution of the homogeneous equation.
- COROLLARY: If there are m different characteristic values (i.e., zeros of the characteristic polynomial) $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ then $\left\{z_{1}(t)=e^{\lambda_{1} t}, \ldots, z_{m}(t)=e^{\lambda_{m} t}\right\}$ is a basis for the homogeneous solutions.

PROOF: To show that it is a basis, consider the matrix

$$
\Phi(t)=\left(\begin{array}{ccccc}
z_{1}(t) & z_{2}(t) & z_{3}(t) & \ldots & z_{m}(t) \\
z_{1}^{\prime}(t) & z_{2}^{\prime}(t) & z_{3}^{\prime}(t) & \ldots & z_{m}^{\prime}(t) \\
z_{1}^{\prime \prime}(t) & z_{2}^{\prime \prime}(t) & z_{3}^{\prime \prime}(t) & \ldots & z_{m}^{\prime \prime}(t) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
z_{1}^{(m-1)}(t) & z_{2}^{(m-1)}(t) & z_{3}^{(m-1)}(t) & \ldots & z_{m}^{(m-1)}(t)
\end{array}\right),
$$

and note that at $t=0$ it is regular (think of the Vandermonde).

- AND WHAT IF THERE ARE ZEROS OF THE CHARACTERISTIC POLYNOMIAL WHICH ARE NOT SIMPLE?
- Use the operator formulation.

$$
L(D) \frac{\partial}{\partial \lambda} e^{\lambda t}=\frac{\partial}{\partial \lambda} L(D) e^{\lambda t}=\frac{\partial}{\partial \lambda}\left(L(\lambda) e^{\lambda t}\right)=\left(\lambda L(\lambda)+L^{\prime}(\lambda)\right) e^{\lambda t} .
$$

- CONCLUSION: If μ is a double root of $L(\lambda)=0$ then $e^{\mu t}$ and $t e^{\mu t}$ are both solutions of the homogeneous differential equation.
- THE GENERAL CASE.

Theorem. Let $\left\{\lambda_{1}, \ldots, \lambda_{J}\right\}$ be all the (complex) zeros of $L(\lambda)=$ 0 , with (respective) multiplicities $\left\{k_{1}, \ldots, k_{J}\right\}$ (so that $k_{1}+\ldots+$ $\left.k_{J}=m\right)$. Then the set of functions

$$
t^{l} e^{\lambda_{j} t}, \quad 0 \leq l \leq k_{j}-1,1 \leq j \leq J,
$$

is a basis for the solutions of the homogeneous differential equation.

```
    **********************************************************************
```

- THE NONHOMOGENEOUS EQUATION (L)-(IV)
**
- DEFINITION(A Particular Solution): A solution to (L), not necessarily satisfying the initial condition (IV), is called a particular solution.
- CLAIM: The difference of any two particular solutions of (L) is a solution of the HOMOGENEOUS equation (LH).
- COROLLARY: Let $y^{\text {part }}(t)$ be a particular solution to (L). Then the set of ALL solutions to (L) is given by

$$
y(t)=y^{\text {part }}(t)+\Phi(t) c, \quad c \in \mathbb{C}^{m}
$$

where $\Phi(t)$ is a fundamental matrix of (LH) and c is any arbitrary (column) vector in \mathbb{C}^{m}.

In particular, the (unique!) solution of (L)-(IV) is obtained by taking:

$$
c=\Phi\left(t_{0}\right)^{-1}\left(y^{0}-y^{\text {part }}\left(t_{0}\right)\right) .
$$

- A GENERAL METHOD FOR FINDING THE SOLUTION TO (L)-(IV)
- VARIATION OF THE PARAMETERS
- LEMMA: Let $\Phi(t)$ be a fundamental matrix of (LH). Then the unique solution to (L)-(IV) is given by:

$$
(V P) \quad y(t)=\Phi(t) \Phi\left(t_{0}\right)^{-1} y^{0}+\Phi(t) \int_{t_{0}}^{t} \Phi(s)^{-1} b(s) d s
$$

This formula is also known as DUHAMEL'S PRINCIPLE.
PROOF: Define $y(t)$ as in the lemma. Using the equality $\Phi^{\prime}(t)=A(t) \Phi(t)$ we obtain by simple differentiation (and the fundamental theorem of calculus):

$$
y^{\prime}(t)=A(t) \Phi(t) \Phi\left(t_{0}\right)^{-1} y^{0}+A(t) \Phi(t) \int_{t_{0}}^{t} \Phi(s)^{-1} b(s) d s+b(t),
$$

so indeed $y^{\prime}(t)=A(t) y(t)+b(t)$. Thus it satisfies (L) and from the definition it is clear that $y\left(t_{0}\right)=y^{0}$.

- WHY IS IT CALLED "VARIATION OF THE PARAMETERS"?
- ANSWER Consider the second term in the right-hand side of (VP), namely

$$
\Phi(t) \int_{t_{0}}^{t} \Phi(s)^{-1} b(s) d s
$$

It is a particular solution (with initial value 0 at t_{0}). Denoting by $c(t)$ the column vector

$$
c(t)=\int_{t_{0}}^{t} \Phi(s)^{-1} b(s) d s
$$

It can be written as

$$
\Phi(t) \int_{t_{0}}^{t} \Phi(s)^{-1} b(s) d s=\sum_{j=1}^{m} c_{j}(t) \Phi_{j}(t),
$$

where $\Phi_{j}(t)$ is the j-th column of $\Phi(t)$.
Note that if $c_{j}(t)$ were constants the sum would be a solution of the homogeneous equation. By "varying" these constants ("parameters") we get $c(t)$, that is determined by the fact that

$$
\Phi(t) c^{\prime}(t)=b(t), \quad c\left(t_{0}\right)=0
$$

- THE CONSTANT COEFFICIENT CASE, $A(t) \equiv A$.

We have $A(t)=e^{t A}$, so

$$
y(t)=e^{\left(t-t_{0}\right) A} y^{0}+\int_{t_{0}}^{t} e^{(t-s) A} b(s) d s
$$

Institute of Mathematics, Hebrew University, Jerusalem 91904, IsRAEL

E-mail address: mbartzi@math.huji.ac.il

