## AUTONOMOUS SYSTEMS IN THE PLANE: PHASE PLANE ANALYSIS

MATANIA BEN-ARTZI

May 2011

## Notation

- The scalar product in $\mathbb{R}^{m}$ is denoted by $(\cdot, \cdot)$.
- Euclidean norm $|x|^{2}=\sum_{i=1}^{m} x_{i}^{2}$ in $\mathbb{R}^{m}$.
- For every $A \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ we denote by $\|A\|$ its (operator) norm with respect to $|\cdot|$.
- Notation: $B(x, r)$ for the OPEN ball of radius $r$ center $x$. The CLOSED ball is denoted by $\bar{B}(x, r)$.
- (a) If $D \subseteq \mathbb{R}^{n}$ we denote by $C\left(D, \mathbb{R}^{m}\right)$ the set of continuous (vector) functions on $D$ into $\mathbb{R}^{m}$.
(b) We denote by $C_{b}\left(D, \mathbb{R}^{m}\right) \subseteq C\left(D, \mathbb{R}^{m}\right)$ the set of BOUNDED continuous functions on $D$.
(c) We denote by $C^{k}\left(D, \mathbb{R}^{m}\right)$ the subset of functions in $C\left(D, \mathbb{R}^{m}\right)$ which are continuously differentiable up to (including) order $k$.
(d) If $m=1$ we simplify to $C(D), \quad C_{b}(D), \quad C^{k}(D)$.

THE CASE $y^{\prime}=A y$, WHERE $A \in \operatorname{Hom}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ IS REAL, NONSINGULAR, CONSTANT MATRIX
**************************************************************************
All solutions can be classified as nodes, spirals, saddle points or centers (with respect to the origin-the only critical point).

READ: Coddington-Levinson, Ch. 15, Sec. 1, or Boyce-DiPrima, Ch. 9, Secs. 1-3.

## - BASIC DEFINITIONS AND FACTS

- $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
- DEFINITION (AN AUTONOMOUS SYSTEM): Given a continuous function $f(y) \in C\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, the system

$$
\begin{equation*}
y^{\prime}(t)=f(y(t)), \quad t \in I \subseteq \mathbb{R}, \tag{A}
\end{equation*}
$$

is called autonomous.

- REMARKS: (a) In general we do not assume $f$ to be Lipschitz, so there is no guarantee of uniqueness of the solutions.
(b) For simplicity we assume $f$ to be defined in all of $\mathbb{R}^{m}$. If it is defined in an open set $U \subseteq \mathbb{R}^{m}$ then the solution $y(t)$ exists as long as $y(t) \in U$.
(c) Even if $f$ is "nice" the solutions are not necessarily defined for all $t \in \mathbb{R}$ (think of $m=1$ and $f(y)=y^{2}$ ).
(d) The role of the $t$ parameter: If $y(t), \quad t \in I$ is a solution then for every "shift" $t_{0}$ also $\tilde{y}(t)=y\left(t-t_{0}\right), \quad t-t_{0} \in I$ is a solution of (A).
- IN THIS SUMMARY WE DISCUSS THE CASE $m=$ 2.
- THIS CONTAINS THE SECOND ORDER SCALAR EQUATION.
- A NONLINEAR PENDULUM

$$
L z^{\prime \prime}(t)=-g \sin z(t)
$$

where $z(t)$ is the angle of deviation from (the vertical) equilibrium, $L>0$ is the length of the pendulum and $g>0$ is the gravitation constant.

- Multiply by $z^{\prime}(t)$ and integrate to obtain

$$
\frac{L}{2}\left(\frac{d z}{d t}\right)^{2}=g(\cos z(t)-1)+E,
$$

where $E \geq 0$ is the energy (=nonnegative constant). The zero level of the potential (gravitational) energy is set to zero at the lowest (vertical) position $z=0$.

- If $E=0$ we have only the trivial solution $z(t) \equiv 0$.
- The case $0<E<2 g$.

Then we must have $|z(t)| \leq z^{\max }=\arccos \left(1-\frac{E}{g}\right)$ if $z(t) \in$ $(-\pi, \pi)$.

The trajectories in the phase plane $z, z^{\prime}$ diagram (for these values of $E$ ) are closed curves centered at the equilibrium (critical) points $\{(2 k \pi, 0), \quad k=0, \pm 1, \pm 2 \ldots\}$

CONCLUSION: In this case all trajectories are periodic.
COMPUTATION OF THE PERIOD:

$$
\frac{d t}{d z}=\sqrt{\frac{L}{2} \frac{1}{g(\cos z-1)+E}} .
$$

A quarter of a period is given by the time of motion from the bottom $z=0$ to the maximal angle $z^{\text {max }}$, so

$$
T=4 \sqrt{\frac{L}{2}} \int_{0}^{z^{\max }} \frac{d z}{\sqrt{g(\cos z-1)+E}}
$$

Note that $T$ depends on $E$. In fact, with the change of variable

$$
u=1-\frac{g}{E}(1-\cos z)
$$

we get

$$
T(E)=2 \sqrt{\frac{L}{g}} \int_{0}^{1} \frac{d u}{u^{\frac{1}{2}}(1-u)^{\frac{1}{2}}\left[1-\frac{E}{2 g}(1-u)\right]^{\frac{1}{2}}} .
$$

Note that

$$
T(0)=2 \sqrt{\frac{L}{g}} \int_{0}^{1} \frac{d u}{u^{\frac{1}{2}}(1-u)^{\frac{1}{2}}}=2 \pi \sqrt{\frac{L}{g}}
$$

that is, in the limit of "infinitesimal amplitude", the period is equal to that of the linear pendulum.

- The case $E=2 g$.

In this case we have the set of equilibria $\{(2 k+1 \pi, 0), \quad k=0, \pm 1, \pm 2 \ldots\}$ These are the unstable equilibria where the pendulum is at rest at the "top". The trajectories "connect" one such equilibrium to the next one ("full swing" of the pendulum, clockwise or counterclockwise).

QUESTION: The pendulum starts from its lowest position $z(0)=0$. It reaches the highest point $z\left(t_{0}\right)=\pi$ and then stops there?

ANSWER: Yes and No. In fact, it will approach the highest point only in infinite time!

To see this, write

$$
\frac{d t}{d z}=\sqrt{\frac{L}{2} \frac{1}{g(\cos z-1)+2 g}}
$$

then

$$
t_{0}=\int_{0}^{\pi} \sqrt{\frac{L}{2} \frac{1}{g(\cos z+1)}} d z=\infty
$$

- The case $E>2 g$.

In this case the derivative $z^{\prime}(t)$ of a trajectory never vanishes. The trajectories in the phase plane are continuous graphs over the $z$-axis, oscillating between minimal and maximal values of $z^{\prime}(t)$, both positive (or both negative). The actual motion of the pendulum is a continuous rotation (clockwise or counterclockwise).

## - FRICTION IS ADDED...

The equation is now

$$
L z^{\prime \prime}(t)+k z^{\prime}(t)=-g \sin z(t), \quad k>0
$$

The term $k z^{\prime}(t)$ is proportional to the (angular) velocity; when $z^{\prime}(t)>0$, i.e., the pendulum is moving away from equilibrium (at $z=0$ ) it serves to decrease the acceleration $z^{\prime \prime}(t)$, i.e., to slow down the motion.

- SOLUTION.
- Multiply by $z^{\prime}(t)$ and integrate to obtain

$$
\frac{L}{2}\left(\frac{d z}{d t}\right)^{2}+k \int_{t_{0}}^{t} z^{\prime}(s)^{2} d s=g(\cos z(t)-1)+E
$$

where we assume that $z\left(t_{0}\right)=0$ and $E=\frac{L}{2} z^{\prime}\left(t_{0}\right)^{2}$ is the initial energy.

- COROLLARY: The function $f(t)=\frac{L}{2}\left(\frac{d z}{d t}\right)^{2}+g(1-\cos z(t))$ is a decreasing function of $t$.

Since it is positive, it must converge to a limit

$$
f(t) \rightarrow \xi \geq 0, \quad \text { as } \quad t \rightarrow \infty
$$

From the equation

$$
f^{\prime}(t)=-k z^{\prime}(t)^{2} \leq-\frac{2 k}{L} f(t)
$$

so that

$$
f(t) \leq f\left(t_{0}\right) \exp \left(-\frac{2 k}{L}\left(t-t_{0}\right)\right)
$$

Thus $\xi=0$ and

$$
z^{\prime}(t) \rightarrow 0, \quad z(t) \rightarrow 2 \pi j, \quad j \in \mathbb{Z}, \quad \text { as } \quad t \rightarrow \infty
$$

Note that the pendulum always approaches a stable equilibrium (at the bottom position).
********************************************************************

- The LOTKA-VOLTERRA EQUATION

$$
\binom{y_{1}^{\prime}(t)}{y_{2}^{\prime}(t)}=\binom{a y_{1}(t)-b y_{1}(t) y_{2}(t)}{-c y_{2}(t)+d y_{1}(t) y_{2}(t)}, \quad a, b, c, d>0 .
$$

- This is a model of "predator" $\left(y_{2}\right)$-"prey" $\left(y_{1}\right)$ interaction.
(i) The prey population grows at a rate proportional to its size but decreases in proportionality to the size of the predator population.
(ii) The opposite statement applies to the predator population.
- The critical (or equilibrium) point (other than $(0,0)$ ) is

$$
\bar{y}=\left(\frac{c}{d}, \frac{a}{b}\right) .
$$

- Take a trajectory $y(t)$ through a point $y(0)=y^{0}$, so that $y_{1}^{0}, y_{2}^{0}>0$.

$$
\begin{gathered}
d y_{1}^{\prime}(t)+b y_{2}^{\prime}(t)=a d y_{1}(t)-b c y_{2}(t) \\
c \frac{y_{1}^{\prime}(t)}{y_{1}(t)}+a \frac{y_{2}^{\prime}(t)}{y_{2}(t)}=a d y_{1}(t)-b c y_{2}(t) \\
c \frac{y_{1}^{\prime}(t)}{y_{1}(t)}+a \frac{y_{2}^{\prime}(t)}{y_{2}(t)}=d y_{1}^{\prime}(t)+b y_{2}^{\prime}(t)
\end{gathered}
$$

so that

$$
\begin{gathered}
c \log y_{1}(t)+b \log y_{2}(t)=d y_{1}(t)+b y_{2}(t)+\log K, \\
y_{1}(t)^{c} e^{-d y_{1}(t)} y_{2}(t)^{a} e^{-b y_{2}(t)}=K .
\end{gathered}
$$

Let

$$
F=\max _{0 \leq x<\infty} x^{c} e^{-d x}, \quad G=\max _{0 \leq x<\infty} x^{a} e^{-b x} .
$$

These maximal values are attained respectively at the critical coordinates $x=\bar{y}_{1}$ and $x=\bar{y}_{2}$.

A trajectory (in the first quadrant $y_{1}, y_{2}>0$ ) exists if and only if $0<K \leq F G$.

If $K=F G$ the solution is stationary, $y(t) \equiv \bar{y}$.
If $K<F G$ we have:

- CLAIM: If $0<K<F G$ the trajectory is closed, in other words, the solution is periodic in time.
PROOF: (i) Because $\lim _{x \rightarrow \infty}\left(x^{c} e^{-d x}+x^{a} e^{-b x}\right)=0$, every trajectory is bounded. Since it is a closed set, and never touches
the axes (why?), it is compact, hence by the general theory the solution exists for all $t \in \mathbb{R}$.
(ii) In the first quadrant of the $\left(y_{1}, y_{2}\right)$ plane $\left(y_{1}, y_{2}>0\right)$ consider the implicit equation

$$
g\left(y_{1}, y_{2}\right) \equiv y_{1}^{c} e^{-d y_{1}} y_{2}^{a} e^{-b y_{2}}=K
$$

Clearly on this set $\nabla_{y_{1}, y_{2}} g\left(y_{1}, y_{2}\right) \neq 0$, since the gradient vanishes only at $y^{c}$ and we assume $K<F G$.

By the Implicit Function Theorem it follows that the equation determines a closed curve $\Lambda$.

The solution $y(t)$ stays on $\Lambda$ (why?) and its tangent $y^{\prime}(t)$ does not vanish (why?) and is perpendicular to $\nabla_{y_{1}, y_{2}} g\left(y_{1}, y_{2}\right)$ at $y(t)$ (why?), hence tangent to $\Lambda$. It follows that indeed the solution "goes around" $\Lambda$, which completes the proof.
(iii)Here is also a geometric picture of the situation:

It is easy to see from the equation that if $y_{1}(t)>\frac{c}{d}=y_{1}^{c}$ then $y_{2}^{\prime}(t)>0$ so that $y_{2}(t)$ increases from a minimal value $y_{2, \text { min }}$ (satisfying $y_{2, \text { min }}^{a} e^{-b y_{2, \text { min }}} F=K$ ) till it reaches the maximal value $y_{2, \max }$, satisfying the same equation, where $y_{1}(t)=y_{1}^{c}$. At this point it begins to decrease, down to $y_{2, \text { min }}$.
Q.E.D.

- THE PERIOD AND THE EQUILIBRIUM.

The above claim gives that, for some $T>0$, possibly depending on the trajectory (i.e., on $K$ ), such that $y(t+T)=y(t), t \in$ $\mathbb{R}$. It is interesting to note the following:

- CLAIM: The equilibrium value $\bar{y}$ is the average over a period of the populations.

PROOF: Integrate $\frac{y_{1}^{\prime}(t)}{y_{1}(t)}=a-b y_{2}(t)$ to get

$$
0=a T-b \int_{t_{0}}^{t_{0}+T} y_{2}(t) d t
$$

for any fixed $t_{0} \in \mathbb{R}$. Hence indeed

$$
\frac{a}{b}=\bar{y}_{2}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} y_{2}(t) d t
$$

and similarly,

$$
\frac{c}{d}=\bar{y}_{1}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} y_{1}(t) d t
$$

Q.E.D.
********************************************************************

- DEFINITIONS IN THE GENERAL CASE OF $\mathbb{R}^{m}$.
- We consider the autonomous system

$$
\begin{equation*}
y^{\prime}(t)=f(y(t)), \quad t \in I \subseteq \mathbb{R}, \tag{A}
\end{equation*}
$$

where now we assume that $f(y) \in C^{1}\left(D, \mathbb{R}^{m}\right)$ where $D \subseteq \mathbb{R}^{m}$ is an open set.

- DEFINITION (critical point): A point $Q \in D$ is said to be critical (for (A)) if $f(Q)=0$.
- NOTATION: For every $P \in D$ we denote by $y(t ; P)$ the (unique) solution of $(\mathrm{A})$ such that $y(0 ; P)=P$.
- DEFINITION (periodic solution): A solution $y(t ; P)$ is called periodic if for some $T>0$ we have $y(T ; P)=y(0 ; P)=P$.
- REMARK: Such a periodic solution exists for all $t \in \mathbb{R}$ and satisfies $y(t ; P)=y(t+T ; P)$ for all $t \in \mathbb{R}$.
- The POINCARÉ-BENDIXSON THEOREM
- It is a theorem in the plane $-m=2$.

Theorem. Let $K \subseteq D \subseteq \mathbb{R}^{2}$ be compact. Assume that:
(i) There are no critical points in $K$.
(ii) For some $\bar{P} \in K$ the solution $y(t ; \bar{P})$ exists for all $t \geq 0$ and is contained in $K$. Then either
(a) $y(t ; \bar{P})$ is periodic,
or
(b) The set

$$
\omega^{+}=\left\{z \in K, \quad z=\lim _{n \rightarrow \infty} y\left(t_{n} ; \bar{P}\right), \quad t_{n} \uparrow \infty\right\},
$$

is a periodic solution.
Below is an outline of the proof. For the full proof, see
E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Ch. 16.

- REMARK: In the case of the Lotka-Volterra system considered above, the theorem implies that ALL trajectories in the quarterplane $y_{1}>0, y_{2}>0$, are periodic (except for the one at the critical point).
- Outline of the proof.
(a) Suppose $y(t ; \bar{P})$ is not periodic.
(b) A line segment $l \subseteq D$ is called transversal if for every $y \in l$ the vector $f(y)$ is not parallel to $l$.

Note: If $Q \in K$ then it is a center of a transversal segment (because $f(Q) \neq 0$ ).
(c) LEMMA: Let $Q \in K$ and let $l$ be a transversal segment centered at $Q$. Then for every $\varepsilon>0$ there exists a $\delta>0$ such that if $P \in B(Q, \delta)$ then the trajectory $y(t ; P)$ intersects $l$ for some $|t|<\varepsilon$.
Proof: Use the implicit function theorem.
(d)CLAIM (heart of the proof): Let $y(t ; P)$ be a trajectory defined for $t \in I \subseteq \mathbb{R}$. Let $l \subseteq D$ be transversal. Then, if $[a, b] \subseteq I$, there is at most a finite number of values $a \leq t_{1}<$ $t_{2}<\ldots<t_{n} \leq b$, such that $y\left(t_{j} ; P\right) \in l$.

Furthermore, the points $S_{1}=y\left(t_{1} ; P\right), \ldots, S_{n}=y\left(t_{n} ; P\right)$ are monotonically ordered on $l$.

## Proof: Using the Jordan curve theorem.

(e)COROLLARY: The set of intersection points of the trajectory $y(t ; P)$ with $l$ is at most a monotonically ordered sequence.
(f)BACK TO $y(t ; \bar{P})$ : Let $t_{j} \uparrow \infty$ be a sequence such that the points $S_{j}=y\left(t_{j} ; \bar{P}\right)$ converge to some $Q \in K$ (exists because $K$ is compact and the trajectory is assumed to be contained in it).

We can assume further that $t_{j+1}-t_{j}>2$.
(g) Let $l$ be transversal, centered at $Q$ (from (f)). Take $\varepsilon=$ 1 in (c) and let $\delta>0$ be the radius given by the Lemma. By discarding a finite number of points, we can assume that $\left\{S_{j}\right\}_{j=1}^{\infty} \subseteq B(Q, \delta)$. The trajectory $y\left(t ; S_{j}\right)$ intersects $l$ for some $\left|\tau_{j}\right|<1$. Thus the points $S_{j}^{*}=y\left(t_{j}+\tau_{j} ; \bar{P}\right)$ are on $l$ and are monotonically ordered.

Note: The sequence $\left\{t_{j}+\tau_{j}\right\}$ is increasing.
(h) If the sequence $\left\{S_{j}^{*}\right\}$ is finite then $y(t ; \bar{P})$ is periodic (points for two different $t^{\prime}$ s coincide)-contrary to hypothesis.

Thus, the sequence $\left\{S_{j}^{*}\right\}$ is infinite, converging to $Q$.
(i) Consider the trajectory $y(t ; Q)$. By the maximal interval theorem (and continuity wrt initial data) we have $y(t ; Q) \subseteq$ $K, \quad t \in[0, \infty)$.

FURTHERMORE, all points of $y(t ; Q)$ are limit points of $y(t ; \bar{P})$ (as in (f)). This also follows from continuity wrt initial data ( for any point $y(s ; Q)$, take $\left.\left\{y\left(t_{j}+s ; \bar{P}\right)\right\}\right)$.
(j) Let $s_{j} \uparrow \infty$ be a sequence such that the points $W_{j}=$ $y\left(s_{j} ; Q\right)$ converge to some $W \in K$ (exists because $K$ is compact and the trajectory was shown to be contained in it).
(k) Let $l$ be transversal centered at $W$. As in (g), there exists a monotonically ordered set of points $W_{j}^{*}=y\left(s_{j}^{*} ; Q\right) \in l$.
(l) If the sequence is finite, then $y(t ; Q)$ is periodic, concluding the proof.
(m) Otherwise, The sequence $\left\{W_{j}^{*}=y\left(s_{j}^{*} ; Q\right)\right\}_{j=1}^{\infty}$ is infinite, contained in $l$, and each point is (by (h)) a limit point of an infinite sequence of points on $y(t ; \bar{P})$ (intersection with $l$ ).

BUT THIS IS A CONTRADICTION TO THE MONOTONICITY (e).
(n) CLAIM: The set of limit points of $y(t ; \bar{P})$ (in the sense of $(f))$ is connected.
(o) CONCLUSION: The periodic trajectory $y(t ; Q)$ is the set of all limit points of $y(t ; \bar{P})$.
Q.E.D.

[^0]
[^0]:    Institute of Mathematics, Hebrew University, Jerusalem 91904, IsRAEL

    E-mail address: mbartzi@math.huji.ac.il

