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Notation

• The scalar product in Rm is denoted by (·, ·).
• Euclidean norm |x|2 =

m∑
i=1

x2
i in Rm.

• For every A ∈ Hom(Rm,Rm) we denote by ∥A∥ its (operator)
norm with respect to | · |.

• Notation: B(x, r) for the OPEN ball of radius r center x. The
CLOSED ball is denoted by B(x, r).

• (a) If D ⊆ Rn we denote by C(D,Rm) the set of continuous
(vector) functions on D into Rm.
(b) We denote by Cb(D,Rm) ⊆ C(D,Rm) the set of BOUNDED

continuous functions on D.
(c) We denote by Ck(D,Rm) the subset of functions in C(D,Rm)

which are continuously differentiable up to (including) order k.
(d) If m = 1 we simplify to C(D), Cb(D), Ck(D).

*************************************************************************
THE CASE y′ = Ay, WHERE A ∈ Hom(R2,R2) IS REAL,

NONSINGULAR, CONSTANT MATRIX
**************************************************************************
All solutions can be classified as nodes, spirals, saddle points or

centers (with respect to the origin–the only critical point).
READ: Coddington-Levinson, Ch. 15, Sec. 1, or Boyce-DiPrima,

Ch. 9, Secs. 1-3.

• BASIC DEFINITIONS AND FACTS
• *******************************************************
• DEFINITION (AN AUTONOMOUS SYSTEM): Given a
continuous function f(y) ∈ C(Rm,Rm), the system

(A) y′(t) = f(y(t)), t ∈ I ⊆ R,

is called autonomous.
• REMARKS: (a) In general we do not assume f to be Lipschitz,
so there is no guarantee of uniqueness of the solutions.
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(b) For simplicity we assume f to be defined in all of Rm. If
it is defined in an open set U ⊆ Rm then the solution y(t) exists
as long as y(t) ∈ U.
(c) Even if f is ”nice” the solutions are not necessarily defined

for all t ∈ R (think of m = 1 and f(y) = y2).
(d)The role of the t parameter: If y(t), t ∈ I is a solu-

tion then for every ”shift” t0 also ỹ(t) = y(t− t0), t − t0 ∈ I
is a solution of (A).

*************************************************************************

• IN THIS SUMMARY WE DISCUSS THE CASE m =
2.

• THIS CONTAINS THE SECOND ORDER SCALAR
EQUATION.
****************************************************************

• A NONLINEAR PENDULUM

Lz′′(t) = −g sin z(t),

where z(t) is the angle of deviation from (the vertical) equilib-
rium, L > 0 is the length of the pendulum and g > 0 is the
gravitation constant.

• Multiply by z′(t) and integrate to obtain

L

2
(
dz

dt
)2 = g(cos z(t)− 1) + E,

where E ≥ 0 is the energy (=nonnegative constant). The zero
level of the potential (gravitational) energy is set to zero at the
lowest (vertical) position z = 0.

• If E = 0 we have only the trivial solution z(t) ≡ 0.
• The case 0 < E < 2g.

Then we must have |z(t)| ≤ zmax = arccos(1 − E
g
) if z(t) ∈

(−π, π).
The trajectories in the phase plane z, z′ diagram (for these

values of E) are closed curves centered at the equilibrium (crit-
ical) points {(2kπ, 0), k = 0,±1,±2...}
CONCLUSION: In this case all trajectories are periodic.
COMPUTATION OF THE PERIOD:

dt

dz
=

√
L

2

1

g(cos z − 1) + E
.
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A quarter of a period is given by the time of motion from the
bottom z = 0 to the maximal angle zmax, so

T = 4

√
L

2

zmax∫
0

dz√
g(cos z − 1) + E

.

Note that T depends on E. In fact, with the change of variable

u = 1− g

E
(1− cos z),

we get

T (E) = 2

√
L

g

1∫
0

du

u
1
2 (1− u)

1
2 [1− E

2g
(1− u)]

1
2

.

Note that

T (0) = 2

√
L

g

1∫
0

du

u
1
2 (1− u)

1
2

= 2π

√
L

g
,

that is, in the limit of ”infinitesimal amplitude”, the period is
equal to that of the linear pendulum.

• The case E = 2g.
In this case we have the set of equilibria {(2k + 1π, 0), k = 0,±1,±2...}

These are the unstable equilibria where the pendulum is at rest
at the ”top”. The trajectories ”connect” one such equilibrium
to the next one (”full swing” of the pendulum, clockwise or
counterclockwise).
QUESTION: The pendulum starts from its lowest position

z(0) = 0. It reaches the highest point z(t0) = π and then stops
there?
ANSWER:Yes and No. In fact, it will approach the highest

point only in infinite time!
To see this, write

dt

dz
=

√
L

2

1

g(cos z − 1) + 2g
,

then

t0 =

π∫
0

√
L

2

1

g(cos z + 1)
dz = ∞.
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• The case E > 2g.
In this case the derivative z′(t) of a trajectory never vanishes.

The trajectories in the phase plane are continuous graphs over
the z−axis, oscillating between minimal and maximal values of
z′(t), both positive (or both negative). The actual motion of
the pendulum is a continuous rotation (clockwise or counter-
clockwise).

• FRICTION IS ADDED...
The equation is now

Lz′′(t) + kz′(t) = −g sin z(t), k > 0.

The term kz′(t) is proportional to the (angular) velocity;
when z′(t) > 0, i.e., the pendulum is moving away from equi-
librium (at z = 0) it serves to decrease the acceleration z′′(t),
i.e., to slow down the motion.

• SOLUTION.
• Multiply by z′(t) and integrate to obtain

L

2
(
dz

dt
)2 + k

t∫
t0

z′(s)2ds = g(cos z(t)− 1) + E,

where we assume that z(t0) = 0 and E = L
2
z′(t0)

2 is the initial
energy.

• COROLLARY: The function f(t) = L
2
(dz
dt
)2 + g(1− cos z(t)) is

a decreasing function of t.
Since it is positive, it must converge to a limit

f(t) → ξ ≥ 0, as t → ∞.

From the equation

f ′(t) = −kz′(t)2 ≤ −2k

L
f(t),

so that

f(t) ≤ f(t0) exp (−
2k

L
(t− t0)).

Thus ξ = 0 and

z′(t) → 0, z(t) → 2πj, j ∈ Z, as t → ∞.

Note that the pendulum always approaches a stable equilibrium
(at the bottom position).
********************************************************************

• The LOTKA-VOLTERRA EQUATION
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• (
y′1(t)
y′2(t)

)
=

(
ay1(t)− by1(t)y2(t)
−cy2(t) + dy1(t)y2(t)

)
, a, b, c, d > 0.

• This is a model of ”predator”(y2)-”prey”(y1) interac-
tion.
(i) The prey population grows at a rate proportional to its

size but decreases in proportionality to the size of the predator
population.
(ii) The opposite statement applies to the predator popula-

tion.
• The critical (or equilibrium) point (other than (0, 0)) is

y = (
c

d
,
a

b
).

• Take a trajectory y(t) through a point y(0) = y0, so that
y01, y

0
2 > 0.

•
dy′1(t) + by′2(t) = ady1(t)− bcy2(t),

c
y′1(t)

y1(t)
+ a

y′2(t)

y2(t)
= ady1(t)− bcy2(t).

•
c
y′1(t)

y1(t)
+ a

y′2(t)

y2(t)
= dy′1(t) + by′2(t),

so that

c log y1(t) + b log y2(t) = dy1(t) + by2(t) + logK,

y1(t)
ce−dy1(t)y2(t)

ae−by2(t) = K.

Let

F = max
0≤x<∞

xce−dx, G = max
0≤x<∞

xae−bx.

These maximal values are attained respectively at the critical
coordinates x = y1 and x = y2.
A trajectory (in the first quadrant y1, y2 > 0) exists if and

only if 0 < K ≤ FG.
If K = FG the solution is stationary, y(t) ≡ y.
If K < FG we have:

• CLAIM: If 0 < K < FG the trajectory is closed, in other
words, the solution is periodic in time.
PROOF: (i) Because lim

x→∞
(xce−dx + xae−bx) = 0, every tra-

jectory is bounded. Since it is a closed set, and never touches
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the axes (why?), it is compact, hence by the general theory the
solution exists for all t ∈ R.
(ii) In the first quadrant of the (y1, y2) plane (y1, y2 > 0)

consider the implicit equation

g(y1, y2) ≡ yc1e
−dy1ya2e

−by2 = K.

Clearly on this set ∇y1,y2g(y1, y2) ̸= 0, since the gradient van-
ishes only at yc and we assume K < FG.
By the Implicit Function Theorem it follows that the equation

determines a closed curve Λ.
The solution y(t) stays on Λ (why?) and its tangent y′(t)

does not vanish (why?) and is perpendicular to ∇y1,y2g(y1, y2)
at y(t) (why?), hence tangent to Λ. It follows that indeed the
solution ”goes around” Λ, which completes the proof.
(iii)Here is also a geometric picture of the situation:
It is easy to see from the equation that if y1(t) >

c
d
= yc1 then

y′2(t) > 0 so that y2(t) increases from a minimal value y2,min

(satisfying ya2,mine
−by2,minF = K) till it reaches the maximal

value y2,max, satisfying the same equation, where y1(t) = yc1. At
this point it begins to decrease, down to y2,min.
Q.E.D.

• THE PERIOD AND THE EQUILIBRIUM.
The above claim gives that, for some T > 0, possibly depend-

ing on the trajectory (i.e., on K), such that y(t+T ) = y(t), t ∈
R. It is interesting to note the following:

• CLAIM: The equilibrium value y is the average over a period
of the populations.

PROOF: Integrate
y′1(t)

y1(t)
= a− by2(t) to get

0 = aT − b

t0+T∫
t0

y2(t)dt,

for any fixed t0 ∈ R. Hence indeed

a

b
= y2 =

1

T

t0+T∫
t0

y2(t)dt,

and similarly,

c

d
= y1 =

1

T

t0+T∫
t0

y1(t)dt.
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Q.E.D.
********************************************************************

• DEFINITIONS IN THE GENERAL CASE OF Rm.
• We consider the autonomous system

(A) y′(t) = f(y(t)), t ∈ I ⊆ R,

where now we assume that f(y) ∈ C1(D,Rm) where D ⊆ Rm

is an open set.
• DEFINITION (critical point): A point Q ∈ D is said to be
critical (for (A)) if f(Q) = 0.

• NOTATION: For every P ∈ D we denote by y(t;P ) the (unique)
solution of (A) such that y(0;P ) = P.

• DEFINITION (periodic solution): A solution y(t;P ) is called
periodic if for some T > 0 we have y(T ;P ) = y(0;P ) = P.

• REMARK: Such a periodic solution exists for all t ∈ R and
satisfies y(t;P ) = y(t+ T ;P ) for all t ∈ R.
*********************************************************************

• The POINCARÉ-BENDIXSON THEOREM
• It is a theorem in the plane—m = 2.

******************************************************************
•

Theorem. Let K ⊆ D ⊆ R2 be compact. Assume that:
(i) There are no critical points in K.
(ii) For some P ∈ K the solution y(t;P ) exists for all t ≥ 0

and is contained in K. Then either
(a) y(t;P ) is periodic,
or
(b) The set

ω+ =
{
z ∈ K, z = lim

n→∞
y(tn;P ), tn ↑ ∞

}
,

is a periodic solution.
Below is an outline of the proof. For the full proof, see
E.A. Coddington and N. Levinson, Theory of Ordinary Dif-

ferential Equations, Ch. 16.
• REMARK: In the case of the Lotka-Volterra system considered
above, the theorem implies that ALL trajectories in the quarter-
plane y1 > 0, y2 > 0, are periodic (except for the one at the
critical point).

• Outline of the proof.
(a) Suppose y(t;P ) is not periodic.
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(b) A line segment l ⊆ D is called transversal if for every
y ∈ l the vector f(y) is not parallel to l.
Note: If Q ∈ K then it is a center of a transversal segment

(because f(Q) ̸= 0).
(c) LEMMA: Let Q ∈ K and let l be a transversal segment

centered at Q. Then for every ε > 0 there exists a δ > 0 such
that if P ∈ B(Q, δ) then the trajectory y(t;P ) intersects l for
some |t| < ε.
Proof: Use the implicit function theorem.
(d)CLAIM (heart of the proof): Let y(t;P ) be a trajectory

defined for t ∈ I ⊆ R. Let l ⊆ D be transversal. Then, if
[a, b] ⊆ I, there is at most a finite number of values a ≤ t1 <
t2 < ... < tn ≤ b, such that y(tj;P ) ∈ l.
Furthermore, the points S1 = y(t1;P ), ..., Sn = y(tn;P ) are

monotonically ordered on l.
Proof: Using the Jordan curve theorem.
(e)COROLLARY: The set of intersection points of the trajec-

tory y(t;P ) with l is at most a monotonically ordered sequence.
(f)BACK TO y(t;P ): Let tj ↑ ∞ be a sequence such that the

points Sj = y(tj;P ) converge to some Q ∈ K (exists because
K is compact and the trajectory is assumed to be contained in
it).
We can assume further that tj+1 − tj > 2.
(g) Let l be transversal, centered at Q (from (f)). Take ε =

1 in (c) and let δ > 0 be the radius given by the Lemma.
By discarding a finite number of points, we can assume that
{Sj}∞j=1 ⊆ B(Q, δ). The trajectory y(t;Sj) intersects l for some

|τj| < 1. Thus the points S∗
j = y(tj + τj;P ) are on l and are

monotonically ordered.
Note: The sequence {tj + τj} is increasing.
(h) If the sequence

{
S∗
j

}
is finite then y(t;P ) is periodic

(points for two different t′s coincide)–contrary to hypothesis.
Thus, the sequence

{
S∗
j

}
is infinite, converging to Q.

(i) Consider the trajectory y(t;Q). By the maximal interval
theorem (and continuity wrt initial data) we have y(t;Q) ⊆
K, t ∈ [0,∞).
FURTHERMORE, all points of y(t;Q) are limit points of

y(t;P )(as in (f)). This also follows from continuity wrt initial
data ( for any point y(s;Q), take

{
y(tj + s;P )

}
).
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(j) Let sj ↑ ∞ be a sequence such that the points Wj =
y(sj;Q) converge to some W ∈ K (exists because K is compact
and the trajectory was shown to be contained in it).
(k) Let l be transversal centered at W. As in (g), there exists

a monotonically ordered set of points W ∗
j = y(s∗j ;Q) ∈ l.

(l) If the sequence is finite, then y(t;Q) is periodic, concluding
the proof.
(m) Otherwise, The sequence

{
W ∗

j = y(s∗j ;Q)
}∞
j=1

is infinite,

contained in l, and each point is (by (h)) a limit point of an
infinite sequence of points on y(t;P ) (intersection with l).
BUT THIS IS A CONTRADICTION TO THEMONOTONIC-

ITY (e).
(n) CLAIM: The set of limit points of y(t;P ) (in the sense of

(f)) is connected.
(o) CONCLUSION: The periodic trajectory y(t;Q) is the set

of all limit points of y(t;P ).
Q.E.D.
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