PROPERTIES OF THE SOLUTIONS

MATANIA BEN-ARTZI

March 2011

Notation

- Euclidean norm $|x|^{2}=\sum_{i=1}^{n} x_{i}^{2}$ in \mathbb{R}^{n}.
- Notation: $B(x, r)$ for the OPEN ball of radius r center x. The CLOSED ball is denoted by $\bar{B}(x, r)$.
- An open BOX in \mathbb{R}^{n} is $Q=\prod_{i=1}^{n}\left(a_{i}, b_{i}\right)$. The corresponding closed box is $\bar{Q}=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$.
- (a) If $D \subseteq \mathbb{R}^{n}$ we denote by $C\left(D, \mathbb{R}^{m}\right)$ the set of continuous (vector) functions on D into \mathbb{R}^{m}.
(b) We denote by $C_{b}\left(D, \mathbb{R}^{m}\right) \subseteq C\left(D, \mathbb{R}^{m}\right)$ the set of BOUNDED continuous functions on D.
(c) We denote by $C^{k}\left(D, \mathbb{R}^{m}\right)$ the subset of functions in $C\left(D, \mathbb{R}^{m}\right)$ which are continuously differentiable up to (including) order k.
(d) If $m=1$ we simplify to $C(D), \quad C_{b}(D), \quad C^{k}(D)$.

- REMINDER: BASIC ASSUMPTIONS IN WHAT FOLLOWS

. $* *$

- Here $n=m+1$ and $D \subseteq \mathbb{R}^{n}$ is OPEN.
- A point in D is denoted by $(t, x) \in \mathbb{R} \times \mathbb{R}^{m}$.
- ASSUMPTIONS ON $f: f \in C\left(D, \mathbb{R}^{m}\right)$ and satisfies:
- (Lipschitz continuity): Let $K \subset D$ be compact. Then there exists a constant $L_{K}>0$ such that for any two points $\left(t, \xi^{1}\right),\left(t, \xi^{2}\right) \in$ K,

$$
\left|f\left(t, \xi^{1}\right)-f\left(t, \xi^{2}\right)\right|<L_{K}\left|\xi^{1}-\xi^{2}\right| .
$$

- Note: We take the same t.
- ALL FUNCTIONS BELOW ARE ASSUMED TO SATISFY THESE ASSUMPTIONS.
- THE EQUATION:
$(*) \quad y^{\prime}(t)=f(t, y(t)), \quad t \in I, \quad(t, y(t)) \in D$.
- INITIAL VALUE PROBLEM=IVP: Suppose that $\left(t_{0}, y^{0}\right) \in$ D.

Find a solution of $\left({ }^{*}\right)$, in some open interval $I \subseteq \mathbb{R}$, such that

$$
(* *) \quad t_{0} \in I, \quad y\left(t_{0}\right)=y^{0} .
$$

- FUNDAMENTAL NEW FORMULATION

- $y(t) \in C\left(I, \mathbb{R}^{m}\right)$ is a solution of the initial value problem if and only if $(t, y(t)) \in D$ for all $t \in I$ and

$$
(* * *) \quad y(t)=y^{0}+\int_{0}^{t} f(s, y(s)) d s, \quad t \in I .
$$

- IMPORTANT OBSERVATION: Equation (${ }^{* * *)}$ implies that $y(t) \in C^{1}\left(I, \mathbb{R}^{m}\right)$.
- MOST GENERAL EXISTENCE THEOREM (Euler 1768, Cauchy 1820-1830).

Theorem. Let the closed set ("cylinder") $\Gamma=\left[t_{0}-\eta, t_{0}+\eta\right] \times$ $\overline{B\left(y^{0}, \alpha\right)} \subseteq D$.

Let $M=\max _{(t, x) \in \Gamma}|f(t, x)|$ and assume that $M \eta<\alpha$.
Then the initial value problem $\left(^{*}\right)-\left({ }^{* *}\right)$ has a solution in $I=$ $\left(t_{0}-\eta, t_{0}+\eta\right)$.

- "DEFINITION" (just for this summary): The set Γ will be called the "local existence cylinder" (centered at $\left(t_{0}, y^{0}\right)$).

- MAXIMAL INTERVAL OF EXISTENCE

Theorem. Consider the IVP (*)-(**). Then there exists an open interval(finite or infinite) $I^{\max }=\left(t_{\min }, t_{\max }\right) \subseteq \mathbb{R}$ such that
(i) $t_{0} \in I^{\max }$ and the IVP $\left(^{*}\right)-\left({ }^{* *}\right)$ has a solution $y(t)$ in $I^{\text {max }}$.
(ii) If $z(t)$ is any solution to the IVP in some interval $J \subseteq \mathbb{R}$ (containing t_{0}) then $J \subseteq I^{\max }$ and $z(t) \equiv y(t), \quad t \in J$.
(iii) If $t_{\max }<\infty$ then the solution $y(t)$ "escapes to the boundary" of D as $t \rightarrow t_{\text {max }}$ in the following sense:

For every compact $K \subseteq D$ there exists an $\varepsilon>0$ such that

$$
t>t_{\max }-\varepsilon \Rightarrow(t, y(t)) \notin K
$$

A similar statement holds for $t_{\text {min }}$.

Proof. (a) Uniqueness is always guaranteed by the assumed Lipschitz continuity.
(b) Let Φ be the collection of all finite intervals $I=\left(a_{I}, b_{I}\right) \ni$ t_{0} such that a solution exists in I.

Define:

$$
t_{\min }=\inf _{I \in \Phi} a_{I}, \quad t_{\max }=\sup _{I \in \Phi} b_{I}
$$

(c) By uniqueness the solution exists in $I^{\max }=\left(t_{\min }, t_{\text {max }}\right)$. However, if $t_{\max }<\infty$ and $y(t)$ can be extended continuously to $t_{\max }$ then we can construct a local existence cylinder centered at $(\tau, y(\tau)) \in D$, with $\tau<t_{\text {max }}$ but sufficiently close, so that the cylinder contains $\left(t_{\max }, y\left(t_{\max }\right)\right) \in D$, and therefore the solution can be extended beyond $\left(t_{\max }, y\left(t_{\max }\right)\right) \in D$, contradicting the maximality of $I^{\max }$.
(d) To prove (iii) of the theorem suppose that $t_{\max }<\infty$ and that there exists a compact $K \subseteq D$ such that for some sequence $\left\{t_{j}\right\} \uparrow t_{\text {max }}$ we have $\left\{\left(t_{j}, y\left(t_{j}\right)\right)\right\} \subseteq K$. By restricting to a subsequence (and not changing notation) we can assume that $\left(t_{j}, y\left(t_{j}\right)\right) \rightarrow\left(t_{\max }, y^{*}\right) \in K$.

Let $U \subseteq D$ be open such that $K \subseteq U$ and $\bar{U} \subseteq D$ is compact. Let $M=\max _{(s, x) \in \bar{U}}|f(s, x)|$. There exists a local existence cylinder

$$
\Gamma_{j}=\left[t_{j}-\eta, t_{j}+\eta\right] \times \overline{B\left(y\left(t_{j}\right), \alpha\right)} \subseteq \bar{U}
$$

centered at $\left(t_{j}, y\left(t_{j}\right)\right)$ such that $M \eta<\alpha$ (see the above notationnote that η, α are independent of j), and such that, for sufficiently large $j, \quad\left(t_{\text {max }}, y^{*}\right) \in \Gamma_{j}$ (and, in fact, is an interior point of the cylinder).

Clearly the whole solution segment

$$
\left\{(t, y(t)), \quad t_{j} \leq t<t_{\max }\right\} \subseteq \Gamma_{j},
$$

and it can be extended further (centered at $\left(t_{\max }, y^{*}\right)$), which is a contradiction.

- REMARK: In the special case that $D=\mathbb{R} \times \mathbb{R}^{m}$, i.e., that $f(t, y)$ is everywhere defined (and satisfies the Lipschitz condition), the fact that $t_{\max }<\infty$ implies $|y(t)| \rightarrow \infty$ as $t \uparrow t_{\text {max }}$.
- EXAMPLE: Consider the scalar equation

$$
y^{\prime}(t)=\left(t^{2}+y(t)^{2}\right) \sin \left(y(t) e^{t}\right), \quad y(0)=1
$$

The function $z(t)=y(t) e^{t}$ satisfies

$$
z^{\prime}(t)=z(t)+y^{\prime}(t) e^{t}=z(t)+\left(t^{2} e^{t}+z(t)^{2} e^{-t}\right) \sin (z(t)), \quad z(0)=1
$$

We show that $t_{\max }=+\infty$ for this equation (hence also for the y equation).

If not, then $0<t_{\max }<\infty$. Take a positive integer l so large that $\pi\left(2 l-\frac{1}{2}\right) e^{-t_{\max }}>1$. Suppose that, for some $0<t_{1}<$ $t_{\text {max }}$, we have $z\left(t_{1}\right)=\pi\left(2 l-\frac{1}{2}\right)$. Then from the equation, since $\sin \left(z\left(t_{1}\right)=-1\right.$,

$$
z^{\prime}\left(t_{1}\right)<z\left(t_{1}\right)-z\left(t_{1}\right)^{2} e^{-t_{1}} \leq z\left(t_{1}\right)-z\left(t_{1}\right)^{2} e^{-t_{\max }}<0
$$

so $z(t) \leq \pi\left(2 l-\frac{1}{2}\right), t<t_{\text {max }}$. Similarly we show that $z(t)$ is bounded from below, so that $t_{\max }=+\infty$, and similarly $t_{\text {min }}=$ $-\infty$.

- COROLLARY-THE LINEAR CASE.

Take $D=I \times \mathbb{R}^{m}$, where $I=(\alpha, \beta) \subseteq \mathbb{R}$ is a finite or infinite open interval.

Let $f(t, y)=A(t) y+b(t)$, where $A(t) \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ is a continuous $m \times m$ matrix function and $b(t) \in C\left(I, \mathbb{R}^{m}\right)$ is a continuous vector function.

Theorem. Under these assumption, for every $\left(t_{0}, y^{0}\right) \in D$ there exists a unique solution of the IVP (*)-(**), which exists for all $t \in I$ (i.e., its maximal interval is I).
Proof. Suppose to the contrary that $t_{\max }<\beta$. By the preceding remark, we reach a contradiction by showing that

$$
\limsup _{t \uparrow t_{\max }}|y(t)|<\infty
$$

Let

$$
M=\max _{t_{0} \leq \tau \leq t_{\max }}\|A(\tau)\|, \quad\|A(\tau)\| \text { is matrix norm }
$$

The equation yields

$$
\frac{d}{d t}|y(t)|^{2}=2\left(y(t), y^{\prime}(t)\right)=2(y(t), A(t) y(t))+2(y(t), b(t))
$$

so that the (scalar) nonnegative function $\xi(t)=|y(t)|^{2}$ satisfies

$$
\xi^{\prime}(t) \leq(2 M+1) \xi(t)+N, \quad N=\max _{t_{0} \leq \tau \leq t_{\max }}|b(\tau)|^{2}
$$

Hence

$$
\frac{d}{d t}\left(\xi(t) e^{-(2 M+1) t}\right) \leq N e^{-(2 M+1) t}
$$

from which it follows that

$$
\limsup _{t \uparrow t_{\max }}|y(t)|^{2}=\limsup _{t \uparrow t_{\max }} \xi(t)<\infty
$$

(complete the details).

- STABILITY WITH RESPECT TO CHANGE OF f.
- We study the dependence of the $\operatorname{IVP}\left({ }^{*}\right)-\left({ }^{* *}\right)$ on a variation of the function f. We use the above notation $I^{\max }$ for the maximal interval related to the IVP $\left(^{*}\right)-\left({ }^{* *}\right)$.

Theorem. Let $\left\{f_{j}\right\}_{j=1}^{\infty} \subseteq C\left(D, \mathbb{R}^{m}\right)$ be a sequence satisfying the Lipschitz condition (possibly with constants depending on $j!$). Suppose that $f_{j} \rightarrow f$, uniformly in every compact $K \subseteq D$. Let $D \ni\left(t_{j}, x^{j}\right) \rightarrow\left(t_{0}, y^{0}\right)$ and let $y^{j}(t)$ be the solution to the IVP:

$$
\begin{gathered}
\left(y^{j}\right)^{\prime}(t)=f_{j}\left(t, y^{j}(t)\right), \quad\left(t, y^{j}(t)\right) \in D \\
y^{j}\left(t_{j}\right)=x^{j}
\end{gathered}
$$

Denote by $I^{j, m a x}$ the maximal interval of existence for this IVP.
Let the finite closed interval $[p, q] \subseteq I^{\max }$. Then $[p, q] \subseteq I^{j, \max }$ for sufficiently large j and

$$
y^{j}(t) \rightarrow y(t), \quad \text { uniformly in } \quad t \in[p, q] .
$$

Remark: Recall that we always assume also that f satisfies the Lipschitz condition.

Proof. - (a) Without loss of generality we can assume that $p \leq t_{0}$ and that $t_{j} \in[p, q]$, since otherwise we can "extend" slightly the interval $[p, q]$ (for sufficiently large j, of course).
In the following arguments, we will use (sometimes implicitly) the index j in the sense of "sufficiently large" j.

- (b) Let $\delta>0$ be sufficiently small, so that the set

$$
K=\{(t, x), \quad t \in[p, q], \quad|x-y(t)| \leq \delta\}
$$

is compact and contained in D.

- Let $K \subseteq U \subseteq D$ where U is open and $\bar{U} \subseteq D$ is compact.
- Let $M=\sup _{1 \leq j<\infty} \max _{(t, x) \in \bar{U}}\left|f_{j}(t, x)\right|<\infty$.
(why is it finite?)
- Let $\eta, \alpha>0$ with $2 M \eta<\alpha$ so that the local existence cylinder $\Gamma_{j}=\left[t_{j}-2 \eta, t_{j}+2 \eta\right] \times \overline{B\left(x^{j}, \alpha\right)} \subseteq U$ for every j (again, we start with sufficiently large j).
- Assume further that

$$
\alpha<\frac{1}{6} \delta .
$$

For j sufficiently large we have

$$
t_{j} \in\left[t_{0}-\eta, t_{0}+\eta\right], \quad\left|x^{j}-y^{0}\right|<\frac{1}{12} \delta .
$$

- Since

$$
\left|x^{j}-y^{j}\left(t_{0}\right)\right|=\left|y^{j}\left(t_{j}\right)-y^{j}\left(t_{0}\right)\right| \leq M \eta<\frac{1}{12} \delta
$$

we have $\left|y^{j}\left(t_{0}\right)-y\left(t_{0}\right)\right|<\frac{1}{6} \delta$ so that

$$
\left|y^{j}(t)-y(t)\right| \leq\left|y^{j}(t)-y^{j}\left(t_{0}\right)\right|+\left|y^{j}\left(t_{0}\right)-y\left(t_{0}\right)\right|+\left|y\left(t_{0}\right)-y(t)\right|,
$$

$<2 M \eta+\frac{1}{6} \delta+2 M \eta<\frac{1}{2} \delta, \quad t \in\left[t_{0}, t_{0}+2 \eta\right], \quad j \quad$ sufficiently large.

- (c) Suppose that (passing to a subsequence, if needed, without changing index) for every j there exists a point $\tau_{j} \in\left[t_{0}, q\right]$ such that $\left|y^{j}\left(\tau_{j}\right)-y\left(\tau_{j}\right)\right|=\delta$. We can assume that τ_{j} is the first such point and by the above $\tau_{j}>t_{0}+2 \eta$. We can further assume that $\tau_{j} \rightarrow \tau^{*} \in\left[t_{0}+2 \eta, q\right]$.
(d) Denote $\bar{\tau}=\tau^{*}-\eta \geq t_{0}+\eta$. Since $\bar{\tau}<\tau_{j}$ (for j sufficiently large) we have $\left[t_{0}, \bar{\tau}\right] \subseteq I^{j, \max }$.
The solutions $\left\{y^{j}\right\}$ are uniformly bounded and equicontinuous on $\left[t_{0}, \bar{\tau}\right]$ (why? contained in K) and
$\left|y(\bar{\tau})-y^{j}(\bar{\tau})\right| \geq\left|y\left(\tau^{*}\right)-y^{j}\left(\tau^{*}\right)\right|-2 M \eta \geq \frac{1}{2} \delta$.
- (e) Using the Arzela-Ascoli theorem there is a subsequence (we again do not change index) $\left\{y^{j}\right\}$ which converges uniformly to some function $z(t) \in C\left(\left[t_{0}, \bar{\tau}\right], \mathbb{R}^{m}\right)$.
- (f) Since

$$
y^{j}(t)=x^{j}+\int_{t_{j}}^{t} f_{j}\left(s, y^{j}(s)\right) d s, \quad t \in\left[t_{0}, \bar{\tau}\right],
$$

we have in the limit

$$
z(t)=y^{0}+\int_{t_{0}}^{t} f(s, z(s)) d s
$$

- (g) We conclude by uniqueness that $z(t) \equiv y(t) \quad t \in\left[t_{0}, \bar{\tau}\right]$ which contradicts the fact (see (d)) that $|y(\bar{\tau})-z(\bar{\tau})| \geq \frac{1}{2} \delta$.
- (h) We conclude that for the given $\delta>0$, for all sufficiently large j,

$$
\left|y^{j}(t)-y(t)\right| \leq \delta, \quad t \in\left[t_{0}, q\right],
$$

and a similar argument for the interval $\left[p, t_{0}\right]$.

- (i) In particular, $[p, q] \subseteq I^{j, \max }$ for sufficiently large j.
**
- STABILITY AND CONTINUITY WITH RESPECT TO THE INITIAL POINT
- SPECIAL CASE: In the above treatment, take $f_{j} \equiv f$ for all j.
- Let $(\tau, x) \in D$ and let $y(t ; \tau, x)$ be the solution of $\left(^{*}\right)$ satisfying $y(\tau)=x$.
- We now regard the maximal interval of existence as a function of the initial data:

$$
I_{\tau, x}^{\max }=\left(t_{\min }(\tau, x), t_{\max }(\tau, x)\right) .
$$

As a direct corollary of the above stability theorem we have:

Theorem. (i)

$$
\begin{aligned}
\liminf _{(\tau, x) \rightarrow\left(t_{0}, y^{0}\right)} t_{\max }(\tau, x) & \geq t_{\max }\left(t_{0}, y^{0}\right), \\
\limsup _{(\tau, x) \rightarrow\left(t_{0}, y^{0}\right)} t_{\min }(\tau, x) & \leq t_{\min }\left(t_{0}, y^{0}\right) .
\end{aligned}
$$

(ii) Let $[a, b] \subseteq I_{t_{0}, y^{0}}^{\max }$. The solution $y(t ; \tau, x)$ converges uniformly in $[a, b]$ to $y\left(t ; t_{0}, y^{0}\right)$ as $(\tau, x) \rightarrow\left(t_{0}, y^{0}\right)$.

- REMARK: It follows that $t_{\max }(\tau, x)$ is lower semicontinuous as a function of (τ, x). Similarly, $t_{\text {min }}(\tau, x)$ is upper semicontinuous as a function of (τ, x).
- Let $E \subseteq \mathbb{R} \times D$ be the existence set of the solution $y(t ; \tau, x)$:

$$
E=\left\{(t, \tau, x) \in \mathbb{R} \times D, \quad t \in I_{\tau, x}^{\max }\right\} .
$$

- CLAIM: E is open in $\mathbb{R} \times D$.
- EXERCISE: Prove this!
- THE FLOW MAP

Take $\left(t_{0}, y^{0}\right) \in D$. Let $W \subseteq \mathbb{R}^{m}$ be an open neighborhood of y^{0}, so that

$$
\left\{t_{0}\right\} \times W \subseteq D
$$

The following theorem says that if we take a closed time interval contained in $I_{t_{0}, y^{0}}^{\max }$, we can choose W sufficiently small so that the
solution beginning at $\left(t_{0}, x\right), x \in W$ exists in this interval and it maps W, one-to-one, onto open neighborhoods.

Theorem. given $\left[t_{0}-T, t_{0}+T\right] \subseteq I_{t_{0}, y^{0}}^{m a x}$, we can choose an open neighborhood $W \subseteq \mathbb{R}^{m}$ of y^{0}, so that $\left\{t_{0}\right\} \times W \subseteq D$, and such that
(1) $\left[t_{0}-T, t_{0}+T\right] \subseteq I_{t_{0}, x}^{\max }, \quad x \in W$.

Definition: The map $\Phi_{\tau}(x)=y\left(\tau ; t_{0}, x\right), x \in W$, is called the flow map.
(2) For every $\tau \in\left[t_{0}-T, t_{0}+T\right]$ the flow map is one-to-one and its image $W_{\tau}=\left\{\Phi_{\tau}(x), x \in W\right\} \subseteq \mathbb{R}^{m}$ is an open neighborood of $y\left(t_{0} ; \tau, y^{0}\right)$.
(3) The map Φ_{τ} is open; an open subset of W is mapped onto an open subset of W_{τ}.
(4) There exists $r>0$ such that for every $\tau \in\left[t_{0}-T, t_{0}+T\right]$ the ball $B\left(y\left(\tau ; t_{0}, y^{0}\right), r\right) \subseteq W_{\tau}$.
Proof. (1) If there is no such W, we can find a sequence $x^{j} \rightarrow$ y^{0}, such that $I_{t_{0}, x^{j}}^{\max }$ does not contain $\left[t_{0}-T, t_{0}+T\right]$, contrary to the previous theorem.
(2) Φ_{τ} is one-to-one by uniqueness of the solution; if $\Phi_{\tau}(\xi)=$ $\Phi_{\tau}(\zeta)$ then the solution beginning at this point arrives, at $t=t_{0}$, to the points ξ, ζ, which must be the same. If W_{τ} is not open, there exists $\Phi_{\tau}(\xi) \in W_{\tau}$ which is not interior. But we can take a small ball $B_{\delta}=B\left(\Phi_{\tau}(\xi), \delta\right)$ so that all solutions $y(t ; \tau, z), z \in B$, exist at $t=t_{0}$, and by the previous theorem $y\left(t_{0} ; \tau, z\right) \in W$ if $\delta>0$ is small. Then B is in the image W_{τ} of W under Φ_{τ}, a contradiction.
(3) This is already contained in the previous argument of the proof, as W can be replaced by any open subset.
(4) Otherwise there will be a sequence $\left\{\tau_{j}\right\}_{j=1}^{\infty} \subseteq\left[t_{0}-T, t_{0}+T\right]$ and $\left\{z^{j}\right\}_{j=1}^{\infty}$ such that $\left|z^{j}-y\left(\tau_{j} ; t_{0}, y^{0}\right)\right| \rightarrow 0$ but $z^{j} \notin W_{\tau_{j}}$. Taking a subsequence (without changing index) we have $\tau_{j} \rightarrow \tau \in\left[t_{0}-T, t_{0}+T\right]$ so $z^{j} \rightarrow y\left(\tau ; t_{0}, y^{0}\right)$. But then by the previous theorem the interval of existence of $y\left(t ; \tau_{j}, z^{j}\right)$ contains $t=t_{0}$ (for sufficiently large j) and $y\left(t_{0} ; \tau_{j}, z^{j}\right) \rightarrow$ $y\left(t_{0} ; \tau, y\left(\tau ; t_{0}, y^{0}\right)\right)=y^{0}$. In particular $y\left(t_{0} ; \tau_{j}, z^{j}\right) \in W$, so $z^{j}=\Phi_{\tau_{j}}\left(y\left(t_{0} ; \tau_{j}, z^{j}\right)\right) \in W_{\tau_{j}}$, a contradiction.

- EXAMPLE: Consider the scalar equation $(m=1)$

$$
y^{\prime}(t)=y(t)^{2}-\varepsilon y(t)^{4}, \quad \varepsilon \geq 0 .
$$

For $y(0)=1$ we have $t_{\text {max }}=1$ if $\varepsilon=0$, but $t_{\max }=+\infty$ if $\varepsilon>0$.
(Prove this!).

- DEPENDENCE ON PARAMETERS
- Let $\mathcal{P} \subseteq \mathbb{R}^{p}$ be open and suppose that

$$
f(t, y ; \mu): D \times \mathcal{P} \rightarrow \mathbb{R}^{m} .
$$

- Consider the IVP

$$
y^{\prime}=f(t, y ; \mu), \quad y\left(t_{0}\right)=y^{0}, \quad\left(t_{0}, y^{0}\right) \in D, \quad \mu \in \mathcal{P} .
$$

- DEFINITION: We say that the IVP depends on a parameter μ in the parameter domain \mathcal{P}.
- REMARK: We assume that $f(t, y ; \mu)$ satisfies the (local) Lipschitz condition with respect to y, possibly with constants depending on μ. Let $(\tau, x, \mu) \in D \times \mathcal{P}$. Then the IVP has a unique solution $y(t ; \tau, x, \mu)$, such that $y(\tau ; \tau, x, \mu)=x$.

The maximal interval of existence depends of course on μ. We denote it by $I_{\tau, x, \mu}^{\max }=\left(t_{\min }(\tau, x, \mu), t_{\max }(\tau, x, \mu)\right)$.

Theorem. Let $f(t, y ; \mu): D \times \mathcal{P} \rightarrow \mathbb{R}^{m}$ be continuous in all variables and satisfy a (local) Lipschitz condition in y for fixed $(t, \mu) \in D \times \mathcal{P}$.

Fix $\left(t_{0}, y^{0}, \mu^{0}\right) \in D \times \mathcal{P}$.
Then:
(i)

$$
\begin{aligned}
& \underset{(\tau, x, \mu) \rightarrow\left(t_{0}, y^{0}, \mu^{0}\right)}{\lim \inf _{\max }(\tau, x, \mu) \geq t_{\max }\left(t_{0}, y^{0}, \mu^{0}\right),} \\
& \limsup _{(\tau, x, \mu) \rightarrow\left(t_{0}, y^{0}, \mu^{0}\right)} t_{\min }(\tau, x, \mu) \leq t_{\min }\left(t_{0}, y^{0}, \mu^{0}\right) .
\end{aligned}
$$

(ii) Let $[a, b] \subseteq I_{t_{0}, y^{0}, \mu^{0}}^{\max }$. The solution $y(t ; \tau, x, \mu)$ converges uniformly in $[a, b]$ to $y\left(t ; t_{0}, y^{0}, \mu^{0}\right)$ as $(\tau, x, \mu) \rightarrow\left(t_{0}, y^{0}, \mu^{0}\right)$.

Proof. Nice trick: Define a continuous function $g: D \times \mathcal{P} \rightarrow$ \mathbb{R}^{m+p} by

$$
g(t, y, \mu)=(f(t, y ; \mu), 0) \in \mathbb{R}^{m} \times \mathbb{R}^{p} .
$$

Clearly g is continuous in its variables and satisfies a (local) Lipschitz condition in (y, μ).
For $z(t) \in \mathbb{R}^{m+p}$ solve the IVP

$$
z^{\prime}(t)=g(t, z(t)), \quad z(\tau)=(x, \mu), \quad(t, z(t)) \in D \times \mathcal{P} .
$$

By uniqueness

$$
z(t)=(y(t ; \tau, x, \mu), \mu), \quad t \in I_{\tau, x, \mu}^{\max },
$$

and all the assertions follow from the previous theorem (dependence on initial data).

- REMARK: Thus, the parameter μ "has the status" of the initial data y^{0} in what concerns the dependence of the solution on these data. In what follows we therefore omit the parameter.
**
- REGULARITY OF THE SOLUTION
- We return to the solution $y(t ; \tau, x)$ of the $\operatorname{IVP}\left({ }^{*}\right)$, with $y(\tau ; \tau, x)=$ x. We know it is continuous (as a function of t, τ, x) on

$$
E=\left\{(t, \tau, x) \in \mathbb{R} \times D, \quad t \in I_{\tau, x}^{\max }\right\} .
$$

- In addition, by the equation, it is continuously differentiable with respect to t.
- We show that if f is more regular, then so is the solution.

Theorem. Suppose that for some integer $l \geq 1$, the function $f(t, y) \in C^{l}\left(D, \mathbb{R}^{m}\right)$. Fix $\tau=t_{0}$. Then the solution $y\left(t ; t_{0}, x\right)$ is $l+1$ times continuously differentiable with respect to t and l times continuously differentiable with respect to x.

Proof. Take first $l=1$.
For notational simplicity we assume $m=1$, so that the unknown y is a scalar (there is no loss of generality, otherwise we consider components of y).
The fact that y is twice continuously differentiable with respect to t follows from the equation (*) and the assumed differentiability of f, since
$y^{\prime \prime}\left(t ; t_{0}, x\right)=\frac{\partial f}{\partial t}\left(t, y\left(t ; t_{0}, x\right)\right)+\frac{\partial f}{\partial y}\left(t, y\left(t ; t_{0}, x\right)\right) f\left(t, y\left(t ; t_{0}, x\right)\right)$.

- To prove differentiability with respect to x, we fix $b>t_{0}$ such that $\left[t_{0}, b\right] \subseteq I_{t_{0}, \tilde{x}}^{\max }$, the maximal interval for $y\left(t ; t_{0}, \tilde{x}\right)$, where $\tilde{x} \in\left(x-h_{0}, x+h_{0}\right)$ for some $h_{0}>0$.
Let $K=\left\{\left(t, y\left(t ; t_{0}, x\right)\right), t \in\left[t_{0}, b\right]\right\}$ be the (compact) graph of y on $\left[t_{0}, b\right]$ and let $U \subseteq D$ be open, such that $K \subseteq U$ and $\bar{U} \subseteq D$ is compact.
We denote $N=\max _{\bar{U}}\left|\frac{\partial f(t, y)}{\partial y}\right|$.
- By the theorem on continuous dependence
$\left\|y\left(t ; t_{0}, x+h\right)-y\left(t ; t_{0}, x\right)\right\|=\max _{t \in\left[t_{0}, b\right]}\left|y\left(t ; t_{0}, x+h\right)-y\left(t ; t_{0}, x\right)\right| \xrightarrow[h \rightarrow 0]{\longrightarrow} 0$,
so that, for $h_{0}>0$ sufficiently small,

$$
\left\|y\left(t ; t_{0}, x+h\right)-y\left(t ; t_{0}, x\right)\right\|<\frac{1}{2} \operatorname{dist}(K, D \backslash U), \quad|h|<h_{0} .
$$

In particular, the union of all graphs

$$
\left\{\left(t, y\left(t ; t_{0}, x+h\right)\right), t \in\left[t_{0}, b\right],|h|<h_{0}\right\} \subseteq U
$$

We have

$$
y\left(t ; t_{0}, x\right)=x+\int_{t_{0}}^{t} f\left(s, y\left(s ; t_{0}, x\right)\right) d s, \quad t \in\left[t_{0}, b\right] .
$$

Subtracting it from the same equation with x replaced by $x+h$ we get

$$
\frac{y\left(t ; t_{0}, x+h\right)-y\left(t ; t_{0}, x\right)}{h}
$$

$=1+\int_{t_{0}}^{t} h^{-1}\left(f\left(s, y\left(s ; t_{0}, x+h\right)\right)-f\left(s, y\left(s ; t_{0}, x\right)\right)\right) d s, \quad 0<|h|<h_{0}$.
Denote for simplicity $z^{h}(t)=\frac{y\left(t ; t_{0}, x+h\right)-y\left(t ; t_{0}, x\right)}{h}$. By the mean value theorem the last equality gives

$$
\left|z^{h}(t)\right| \leq 1+\int_{t_{0}}^{t} N\left|z^{h}(s)\right| d s, \quad t \in\left[t_{0}, b\right] .
$$

CLAIM: For every integer r,

$$
\left|z^{h}(t)\right| \leq \sum_{j=0}^{r} \frac{\left(N\left(t-t_{0}\right)\right)^{r}}{r!}+\frac{\left(N\left(t-t_{0}\right)\right)^{r+1}}{(r+1)!}\left\|z^{h}\right\| .
$$

The case $r=0$ is obtained from the above inequality:

$$
\left|z^{h}(t)\right| \leq 1+N\left(t-t_{0}\right) \max _{s \in\left[t_{0}, b\right]}\left|z^{h}(s)\right|=1+N\left(t-t_{0}\right)\left\|z^{h}\right\|, \quad t \in\left[t_{0}, b\right],
$$

and the general case is obtained by induction (as in the proof of Picard's theorem).
Letting $r \rightarrow \infty$ we obtain

$$
\left|z^{h}(t)\right| \leq e^{N\left(t-t_{0}\right)}, \quad t \in\left[t_{0}, b\right] .
$$

(Remark: This is in fact a simple consequence of Gronwall's inequality.)

- COROLLARY: The family $\left\{z^{h}(t)\right\}_{|h|<h_{0}}$ is uniformly bounded in $t \in\left[t_{0}, b\right]$.
- From
$z^{h}(t)=1+\int_{t_{0}}^{t} h^{-1}\left(f\left(s, y\left(s ; t_{0}, x+h\right)\right)-f\left(s, y\left(s ; t_{0}, x\right)\right)\right) d s, \quad 0<|h|<h_{0}$,
it now follows that

$$
\left|z^{h}(t+\delta)-z^{h}(t)\right|
$$

$\leq \int_{t}^{t+\delta} h^{-1}\left|\left(f\left(s, y\left(s ; t_{0}, x+h\right)\right)-f\left(s, y\left(s ; t_{0}, x\right)\right)\right)\right| d s \leq N|\delta|\left\|z^{h}\right\|, \quad 0<|h|<h_{0}$.

- CONCLUSION: The family $\left\{z^{h}(t)\right\}_{|h|<h_{0}}$ is equicontinuous in $t \in\left[t_{0}, b\right]$.
- By the Arzela-Ascoli theorem there exists a subsequence $\left\{z^{h_{j}}(t)\right\}$ with $h_{j} \rightarrow 0$ that converges uniformly (on $\left[t_{0}, b\right]$) to a function $w\left(t ; t_{0}, x\right)$.
From the equation and the continuity of $\frac{\partial f}{\partial y}$ and $y\left(s ; t_{0}, x+\right.$ h) it follows that

$$
w\left(t ; t_{0}, x\right)=1+\int_{t_{0}}^{t} \frac{\partial f}{\partial y}\left(s, y\left(s ; t_{0}, x\right)\right) w\left(s ; t_{0}, x\right) d s
$$

- It follows that the limit function w satisfies the LINEAR IVP:

$$
\frac{d}{d t} w\left(t ; t_{0}, x\right)=\frac{\partial f}{\partial y}\left(t, y\left(t ; t_{0}, x\right)\right) w\left(t ; t_{0}, x\right), \quad t \in\left[t_{0}, b\right], \quad w\left(t_{0} ; t_{0}, x\right)=1 .
$$

By uniqueness (of solutions to linear equations) the whole family $\left\{z^{h}(t)\right\}_{|h|<h_{0}}$ converges to the same limit w as $h \rightarrow$ 0 , so that, by definition, it is the derivative with respect to x :

$$
w\left(t ; t_{0}, x\right)=\frac{\partial y\left(t ; t_{0}, x\right)}{\partial x}, \quad t \in\left[t_{0}, b\right], \quad w\left(t_{0} ; t_{0}, x\right)=1 .
$$

- NOTE in particular that ,as a solution of a linear equation, $\frac{\partial y\left(t ; t_{0}, x\right)}{\partial x}$ is defined for $t \in I_{t_{0}, x}^{\max }$.
- Suppose $l>1$.

We refer to the equation

$$
\frac{\partial y\left(t ; t_{0}, x\right)}{\partial x}=1+\int_{t_{0}}^{t} \frac{\partial f}{\partial y}\left(s, y\left(s ; t_{0}, x\right)\right) \frac{\partial y\left(s ; t_{0}, x\right)}{\partial x} d s
$$

as we referred before to y. Repeating the same reasoning (based on the fact that f is at least twice continuously differentiable), we get

$$
\begin{gathered}
\frac{\partial^{2} y\left(t ; t_{0}, x\right)}{\partial x^{2}} \\
=\int_{t_{0}}^{t}\left[\frac{\partial^{2} f}{\partial y^{2}}\left(s, y\left(s ; t_{0}, x\right)\right)\left(\frac{\partial y\left(s ; t_{0}, x\right)}{\partial x}\right)^{2}+\frac{\partial f}{\partial y}\left(s, y\left(s ; t_{0}, x\right)\right) \frac{\partial^{2} y\left(s ; t_{0}, x\right)}{\partial x^{2}}\right] d s
\end{gathered}
$$

or, in other words, that $\frac{\partial^{2} y\left(t ; t_{0}, x\right)}{\partial x^{2}}$ satisfies a LINEAR IVP (as function of t)

$$
\begin{gathered}
\frac{d}{d t} \frac{\partial^{2} y\left(t ; t_{0}, x\right)}{\partial x^{2}}=\frac{\partial^{2} f}{\partial y^{2}}\left(t, y\left(t ; t_{0}, x\right)\right)\left(\frac{\partial y\left(t ; t_{0}, x\right)}{\partial x}\right)^{2} \\
\quad+\frac{\partial f}{\partial y}\left(t, y\left(t ; t_{0}, x\right)\right) \frac{\partial^{2} y\left(t ; t_{0}, x\right)}{\partial x^{2}} \\
\frac{\partial^{2} y\left(t_{0} ; t_{0}, x\right)}{\partial x^{2}}=0
\end{gathered}
$$

- It is clear how to do higher order pure x - derivatives; at each level the highest order derivative satisfies a LINEAR equation.
- The pure t - derivatives are simpler-just differentiate the equation $\left({ }^{*}\right)$ with respect to t. Justification is simple;the right hand side at each step is differentiable with respect to t by the chain rule.
For mixed derivatives, we do first the t-derivatives and then proceed with the x - derivatives as above.
- REMARK(Differentiability with respect to parameter): recall that parameters have the "status" of the initial data x, so if $f(t, y ; \mu)$ is l-times continuously differentiable with respect to (t, y, μ) then the solution is l-times continuously differentiable with respect to μ.

Institute of Mathematics, Hebrew University, Jerusalem 91904, IsRAEL

E-mail address: mbartzi@math.huji.ac.il

