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Notation

e Euclidean norm |z|? = Z z7 in R™

e Notation: B(z,r) for the OPEN ball of radius r center z. The
CLOSED ball is denoted by B(z,7).

e Anopen BOX in R" is @ = [] (a4, b;). The corresponding closed

i=1
box is Q = H[az, b;).

o (a)lf D C R” we denote by C(D,R™) the set of continuous
(vector) functions on D into R™.

(b) We denote by Cy,(D,R™) C C'(D,R™) the set of BOUNDED
continuous functions on D.

(c) We denote by C*(D, R™) the subset of functions in C(D, R™)
which are continuously differentiable up to (including) order k.

(d) If m = 1 we simplify to C(D), Cy(D), Ck(D).
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e REMINDER: BASIC ASSUMPTIONS IN WHAT FOL-
LOWS
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e Here n=m+ 1 and D C R"™ is OPEN.

e A point in D is denoted by (t,z) € R x R™.

e ASSUMPTIONS ON f: f e C(D,R™) and satisfies:

e (Lipschitz continuity): Let K C D be compact. Then there
exists a constant Lg > 0 such that for any two points (¢, &), (¢,£%) €
K’

f(t,6") = f(t,€7)] < Lil§' — €7).

e Note: We take the same t.
e ALL FUNCTIONS BELOW ARE ASSUMED TO SAT-
ISFY THESE ASSUMPTIONS.
e THE EQUATION:
() y'()=rfy@), tel, (ty@))eD.
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e INITIAL VALUE PROBLEM=IVP: Suppose that (t,y") €
D.
Find a solution of (*), in some open interval I C R, such that

(xx) toel, y(ty) =y
e FUNDAMENTAL NEW FORMULATION
e y(t) € C(I,R™) is a solution of the initial value problem if and
only if (¢,y(t)) € D for all t € I and

(x6) o) =+ [ Fehds, tel

e IMPORTANT OBSERVATION: Equation (***) implies that
y(t) € CH(I,R™).

e MOST GENERAL EXISTENCE THEOREM (Euler 1768,
Cauchy 1820-1830).

Theorem. Let the closed set ("cylinder”) T' = [to —n,to + 1] X
B(y°, o) C D.
Let M = (mz)ixF |f(t,x)| and assume that Mn < c.
t,x)e

Then the initial value problem (*)-(**) has a solution in I =
(to —m,to +n).
e "DEFINITION” (just for this summary): The set I" will be

called the "local existence cylinder” (centered at (o,4°)).
T T T R g B S T T

e MAXIMAL INTERVAL OF EXISTENCE

Theorem. Consider the IVP (*)-(**). Then there exists an
open interval(finite or infinite) 1™ = (timin, tmaz) C R such
that

(i) to € I™** and the IVP (*)-(**) has a solution y(t) in
[maﬂ?.

(i) If z(t) is any solution to the IVP in some interval J C R
(containing ty) then J C I™* and z(t) = y(t), te€ J.

(111) If tynae < 00 then the solution y(t) "escapes to the bound-
ary” of D ast — tyq. in the following sense:

For every compact K C D there exists an € > 0 such that

t>tmae —e = (Ly(t)) ¢ K.

A similar statement holds for t,,in.
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Proof. (a) Uniqueness is always guaranteed by the assumed Lip-
schitz continuity.

(b) Let ® be the collection of all finite intervals I = (ar, br) 3
to such that a solution exists in I.

Define:

tmin = inf ay,  t0: = supby.
I€d Icd

(c) By uniqueness the solution exists in 1™ = (t,3in, tmaz)-
However, if t,,4, < oo and y(t) can be extended continuously to
tmaz then we can construct a local existence cylinder centered
at (1,y(7)) € D, with 7 < t,,4, but sufficiently close, so that the
cylinder contains (¢4, Y(tmaz)) € D, and therefore the solution
can be extended beyond (taz, Y(tmaez)) € D, contradicting the
maximality of ™.

(d) To prove (iii) of the theorem suppose that t,,.,, < oo
and that there exists a compact K C D such that for some
sequence {t;} T tmq we have {(¢;,y(t;))} € K. By restricting
to a subsequence (and not changing notation) we can assume
that (t],y(tj» — (tmaz;y*> € K.

Let U C D be open such that K C U and U C D is compact.

Let M = max |f(s,z)|. There exists a local existence cylinder
S,r)€E

FJ' = [tj - 77>tj +77] X B(y@j)?@) - U?

centered at (¢;,y(t;)) such that Mn < a (see the above notation—
note that 1, « are independent of j), and such that, for suffi-
ciently large j, (tmas,y*) € I'; (and, in fact, is an interior
point of the cylinder).

Clearly the whole solution segment

{(tay(t))a tj S t < tma:p} g Fj,

and it can be extended further (centered at (f42,%*)), which
is a contradiction. U

¢ REMARK: In the special case that D = R x R™, i.e., that
f(t,y) is everywhere defined (and satisfies the Lipschitz condi-
tion), the fact that t,,,, < oo implies |y(t)| — 0o as t 1T tmaz-

e EXAMPLE: Consider the scalar equation

y(t) = (& +y(t)")sin(y(t)e"), y(0) = 1.
The function z(t) = y(t)e' satisfies
2Z(t) = z2(t) + 9/ (t)e' = z(t) + (%' + z(t)%e ") sin(z(t)), 2(0) = 1.
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We show that t,,,, = +0o for this equation (hence also for the
y equation).

If not, then 0 < t,,,, < oo. Take a positive integer [ so large
that m(20 — %)e‘tm‘” > 1. Suppose that, for some 0 < #; <
tmaz, we have z(t1) = (20 — 1). Then from the equation, since
sin(z(ty) = —1,

() < 2(t) — 2(t)%e ™™ < 2(t)) — 2(t)%e e <0,

so z(t) < w(2l — 3), t < tige. Similarly we show that z() is
bounded from below, so that t,,,, = +00, and similarly ¢,,;, =
—00.
COROLLARY-THE LINEAR CASE.

Take D = I x R™ where I = («, ) C R is a finite or infinite
open interval.

Let f(t,y) = A(t)y + b(t), where A(t) € Hom(R™ R™) is
a continuous m X m matrix function and b(t) € C(I,R™) is a
continuous vector function.

Theorem. Under these assumption, for every (to,y°) € D
there exists a unique solution of the IVP (*)-(**), which ez-
ists for allt € I (i.e., its mazimal interval is I ).

Proof. Suppose to the contrary that ¢,,,, < . By the preceding
remark, we reach a contradiction by showing that

lim sup|y(t)| < oo.

tTtmaz

Let

M= max |JA(7)]], [||A(7)| is matrix norm.
to<T<tmaz

The equation yields

%|y(7f)|2 = 2(y(t), y'(1)) = 2(y (1), A(t)y(t)) + 2(y(2), b(t)),
so that the (scalar) nonnegative function £(t) = |y(¢)|* satisfies
gt) < 2M+1E() + N, N= max [|b()”

0 STSt'mam
Hence

i(g(t)e*(ZMJrl)t) < Ne—(2M+1)t
dt -
from which it follows that

Y

lim sup|y()|* = lim sup £(¢) < oo.

tTtmaz tTtma:v
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(complete the details).
U
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e STABILITY WITH RESPECT TO CHANGE OF f.

e We study the dependence of the IVP (*)-(**) on a variation of
the function f. We use the above notation ™" for the maximal
interval related to the IVP (*)-(**).

Theorem. Let {f;}72, C C(D,R™) be a sequence satisfying
the Lipschitz condition (possibly with constants depending on
j!). Suppose that f; — f, uniformly in every compact K C D.
Let D 3 (t;,27) = (to,y°) and let y?(t) be the solution to the
IVP:

W) (1) = fi(t.y’ (1), (t,4/(t) € D,

y(t;) = 2.
Denote by I"™% the mazimal interval of existence for this IVP.
Let the finite closed interval [p,q] C ™. Then [p, q] C 7™
for sufficiently large j and

v (t) — y(t), wuniformly in t € [p,q|.

Remark: Recall that we always assume also that f satisfies the
Lipschitz condition.

Proof. — (a) Without loss of generality we can assume that
p < to and that ¢; € [p, g, since otherwise we can ”extend”
slightly the interval [p, q] (for sufficiently large j, of course).

In the following arguments, we will use (sometimes im-
plicitly) the indez j in the sense of "sufficiently large” j.
— (b) Let 6 > 0 be sufficiently small, so that the set

K={(t,z), telpdq, lz—y(t)<d}

is compact and contained in D.
— Let K C U C D where U is open and U C D is compact.
— Let M = sup max |f;(¢,2)] < oo.
1<j<o0 (t,x)elU
(why is it finite?)
— Let n,a > 0 with 2Mn < « so that the local existence

cylinder I'; = [t; — 2n,t; + 2n] x B(z7,a) C U for every j
(again, we start with sufficiently large j).
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— Assume further that

1
< =4.
56

For j sufficiently large we have
ti€to—mto+mn), |27 —4° < 1—12(5.
— Since
o9~y (t0)] = (1) — 97 (t0)| < My < 2
we have |y (tg) — y(to)| < ¢d so that
[y (1) — ()] < |y () = ' (to)| + [y (to) — y(to)| + ly(to) — y(t)],
< 2Mn + %5 +2Mn < %5, t € [to,to+2n], J sufficiently large.

— (c¢) Suppose that (passing to a subsequence, if needed,
without changing index) for every j there exists a point
7; € [to,q] such that |y/(;) — y(7;)| = 5. We can assume
that 7; is the first such point and by the above 7; > 5+ 2.
We can further assume that 7; — 7* € [ty + 21, ¢|.

— (d) Denote 7 = 7" —n > ty +n. Since 7 < 7; (for j
sufficiently large) we have [to, 7| C [/,

The solutions {y’} are uniformly bounded and equicontin-
uous on [tg, 7| (why? contained in K) and

— j (= * j (% 1
y(7) =y (T)] 2 [y(r7) =y’ (") = 2Mn = 5.
— (e) Using the Arzela-Ascoli theorem there is a subsequence
(we again do not change index) {y’} which converges uni-

formly to some function z(t) € C([ty, 7], R™).
— (f) Since

t
Y (t) = 2’ +/ fj(s,yj(s))ds, t € [to, 7],
tj
we have in the limit
t
A0 =+ [ fsi(s)ds.
to

— (g) We conclude by uniqueness that z(t) = y(t) t € [to, 7]
which contradicts the fact (see (d)) that |y(7) —z(7)| > 1.
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— (h) We conclude that for the given 6 > 0, for all sufficiently
large 7,

7 (t) —y(t)| <8, tE [to.q],

and a similar argument for the interval [p, t].
— (i) In particular, [p,q] C I?"™ for sufficiently large j.
0

>k 3K 3k sk ok ok ok ok sk sk ok sk ok ok oskskok sk ok sk sk sk sk sk sk sk skokok sk ok sk sk sk sk sk sk sk okoskokoskosk sk sk sk sk sk sk skokoskoskokokoskosk sk sk skosk sk okokoskokoskoskosk sk

e STABILITY AND CONTINUITY WITH RESPECT
TO THE INITIAL POINT

e SPECIAL CASE: In the above treatment, take f; = f for all j.

e Let (1,2) € D and let y(t; 7, ) be the solution of (*) satisfying
y(r) = x.

e We now regard the maximal interval of existence as a function
of the initial data:

I = (tmin (T, ), timae (T, ).

As a direct corollary of the above stability theorem we have:

Theorem. (i)
Hminf  fimae(7,2) > tmae(to, ¥°),

(my2)—(to,y")

hm sup tmin(Ta $> S tmin(t07 yo)
(1,2)—(to,y")
(i) Let [a,b] C I}'95. The solution y(t;7,z) converges uni-
formly in [a,b] to y(t;to,y°) as (1,2) — (to,y").
e REMARK: It follows that t,,..(7, ) is lower semicontinuous as
a function of (7, x). Similarly, t,,:,(T, z) is upper semicontinuous
as a function of (7, z).

e Let £ C R x D be the existence set of the solution y(; 7, x):
E={(t7z)eRxD, tel"}.

e CLAIM: F is openin R x D.
e EXERCISE: Prove this!
e THE FLOW MAP
Take (to,y°) € D. Let W C R™ be an open neighborhood of
y°, so that
{to} x W C D.

The following theorem says that if we take a closed time interval

contained in I t’g‘;ﬁ, we can choose W sufficiently small so thatthe
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solution beginning at (to,z), © € W exists in this interval and
it maps W, one-to-one, onto open neighborhoods.

Theorem. given [to—T,ty+T] C I[(’)“Z%, we can choose an open
neighborhood W C R™ of 4°, so that {to} x W C D, and such

that

(1)

(2)

(3)
(4)

[to—T,to—FT]gIgﬁ?, xreW.

Definition: The map ®,(x) = y(1;t0, x), x € W, is called
the flow map.

For every T € [to — T,ty + T the flow map is one-to-one
and its image W, = {®,(x), z € W} C R™ is an open
neighborood of y(to; T,1y°).

The map P, is open; an open subset of W is mapped onto
an open subset of W._.

There exists r > 0 such that for every T € [ty — T,to + T

the ball B(y(r;to,y°),7) C W,.

Proof. (1) If there is no such W, we can find a sequence z7 —

(2)

yY, such that IZ)‘;@ does not contain [to—T,to+T], contrary
to the previous theorem.
®, is one-to-one by uniqueness of the solution; if ®,(&) =
®_(¢) then the solution beginning at this point arrives, at
t = tp, to the points &, (, which must be the same.
If W, is not open, there exists ®,(£) € W, which is not
interior. But we can take a small ball Bs = B(®.(£),0)
so that all solutions y(¢;7,z2), z € B, exist at t = to, and
by the previous theorem y(to;7,2) € W if § > 0 is small.
Then B is in the image W, of W under @, a contradiction.
This is already contained in the previous argument of the
proof, as W can be replaced by any open subset.
Otherwise there will be a sequence {7;}72, C [to—T, to+1]
and {2/}77, such that |27 —y(7;;t0,y°)| = 0 but 27 ¢ W,
Taking a subsequence (without changing index) we have
T = T € [to — T, to + T] so 27 — y(7;to,y°). But then by
the previous theorem the interval of existence of y(¢; 75, 27)
contains t = ¢y (for sufficiently large j) and y(to; 75, 27) —
y(to; 7, y(7;to, ¥°)) = 4°. In particular y(to; 75, 27) € W, so
2 = ®, (y(to; 75, 27)) € W, a contradiction.

O

e EXAMPLE: Consider the scalar equation (m = 1)

y'(t) =y(t)” —ey(t)!, >0.



PROPERTIES OF THE SOLUTIONS 9

For y(0) = 1 we have t,,4, = 1if e = 0, but t,,4, = +ooif e > 0.
(Prove this!).
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DEPENDENCE ON PARAMETERS
e Let P C R? be open and suppose that

fty;p): Dx P —R™
Counsider the IVP

Y = flt,ysp), ylto) =1v" (to,y°) €D, pewP.

DEFINITION: We say that the IVP depends on a parameter
in the parameter domain P.
REMARK: We assume that f(t,y;u) satisfies the (local) Lip-
schitz condition with respect to y, possibly with constants de-
pending on u. Let (7, z, 1) € D x P. Then the IVP has a unique
solution y(¢; 7, x, i), such that y(r;7,z,u) = x.

The maximal interval of existence depends of course on pu.
We denote it by 7% = (tin(T, T, 1t), tiaz (T, T, 11)).

T?”"?l"'

Theorem. Let f(t,y;u) : D x P — R™ be continuous in all
variables and satisfy a (local) Lipschitz condition in y for fixved
(t,u) € D x P.

Fiz (tg,y°, u°) € D x P,

Then:

(1)

lim inf tmax(Tv x, [11) Z tmaa: (t07 yO’ ILLO)7
(T7zvu)*>(t07y0nu'o)

lim sup tmz’n(Ta x, HJ) S tmin (t()v y07 MO)
(7., 1) = (to,y,10)
(i) Let [a,b] C I["% o. The solution y(t;7,x, p) converges

uniformly in [a,b] to y(t;te,y°, 1°) as (7,2, 1) = (to,y", u°).

Proof. Nice trick: Define a continuous function g : D x P —
RmtP by

g(t,y, ) = (f(t,y;1),0) € R™ x RP.

Clearly g is continuous in its variables and satisfies a (local)
Lipschitz condition in (y, u).
For z(t) € R™*? solve the IVP

Y(t) = gt 2(8), 2(7) = (w,p), (t,2() € D x P,
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By uniqueness

2(t) = (yt; 7w, p0), 1), €L,

and all the assertions follow from the previous theorem (depen-
dence on initial data). O

e REMARK: Thus, the parameter p ”has the status” of the initial
data 3” in what concerns the dependence of the solution on these

data. In what follows we therefore omit the parameter.
Skoskosk sk sk sk skoske sk sksk skoskeosk skosk sk skosk sk ks skosk sk skosk sk skosk skoske sk skosk sk skosk skoskeosk skoske sk skosk sk ks skoske sk skosk sk skosk skoskosk skoskeoskoskoskoskosk sk skok

e REGULARITY OF THE SOLUTION
e We return to the solution y(t; 7, ) of the IVP (*), with y(7; 7,2) =
x. . We know it is continuous (as a function of ¢, 7,x) on

E={(trz)eRxD, tell}.

e In addition, by the equation, it is continuously differentiable
with respect to t.
e We show that if f is more regular, then so is the solution.

Theorem. Suppose that for some integer | > 1, the function
f(t,y) € CY(D,R™). Fiz 7 = to. Then the solution y(t;ty,x) is
[ + 1 times continuously differentiable with respect to t and [
times continuously differentiable with respect to x.

Proof. Take first [ = 1.
For notational simplicity we assume m = 1, so that the un-
known y is a scalar (there is no loss of generality, otherwise
we consider components of y).
The fact that y is twice continuously differentiable with
respect to ¢ follows from the equation (*) and the assumed
differentiability of f, since

of

y//<t; th 33) = %(ta y(tv th .CI])) + a_y(t7 y<t7 tO? $))f(t, y(t7 th l’))

— To prove differentiability with respect to x, we fix b > t,

such that [t,b] C I}7%", the maximal interval for y(t;to, T),

where & € (z — hg, x + hg) for some hg > 0.
Let K = {(t,y(t;t0,x)), t € [to,b]} be the (compact) graph
of y on [tg,b] and let U C D be open , such that K C U

and U C D is compact.

We denote N = maxg |<9f g;y) .

— By the theorem on continuous dependence

lly(t; to, x + h) — y(t; to, )| = max |y(t;to, z + h) — y(t; to, x)] — 0,
t€[to,b] h—0
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so that, for hy > 0 sufficiently small,
ot o, 2+ b) = y(ts to,2)| < Sdist(K, D), [h] < o
In particular, the union of all graphs

{(t,y(t,to,l'—F h))? te [t07b]7 |h‘ < ho} g U
We have

y(t;to,x) = x + /f(s,y(s;to,x))ds, t € [to,b)].

Subtracting it from the same equation with x replaced by
x + h we get
h

t

=1+ /h_l(f(s,y(s;to,x—i— h)) = f(s,y(s;to,x)))ds, 0 < |h| < hyg.

to

Denote for simplicity 2"(t) = y(t;to’ﬁh}z*y(t;to’x)

value theorem the last equality gives

. By the mean

12"t <1 +/N|zh(s)|ds, t € [to,b)].

CLAIM: For every integer r,

|<Z t—to ( (<T+1;‘) H hH

The case r = 0 is obtained from the above inequality:

|2"(1)] <1+ N(t —to) max 12" (s)| = L+ N(t —to)lz"[I, t € [to, b],
s€lto

and the general case is obtained by induction (as in the
proof of Picard’s theorem).
Letting » — oo we obtain

12" (1) < Nt € [to, b).

(Remark: This is in fact a simple consequence of Gron-
wall’s inequality.)
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— COROLLARY:: The family {Zh(t)}\h|<ho is uniformly bounded
inte [to, b]
— From
¢

) =1+ /h_l(f(s,y(s;to,x +h)) — f(s,y(s;to,z)))ds, 0 < |h| < ho,
to
it now follows that
[2"(t +6) — 2" (t)]
t+6
< /h1|(f(s,y(s;t0,x +h)) = f(s,y(sito, )))lds < N3|[[z"[[, 0 <[h] < ho.
t
— CONCLUSION: The family {Zh(t)}\h\<ho is equicontinuous
inte [to, b]
— By the Arzela-Ascoli theorem there exists a subsequence
{z"i(t)} with h; — 0 that converges uniformly (on [to, b])
to a function w(t; g, x).
From the equation and the continuity of % and y(s; to, z +
h) it follows that

¢
w(t;tg,x) =1+ / g—f(s,y(s;to,a:))w(s;to,x)ds.
)
to

— It follows that the limit function w satisfies the LINEAR

IVP:
d of
EW(tto,[If) = a—y(t,y(t,to,l'))UJ(t,to,.ﬁE), t e [to,b], w(to;to,.ﬁﬂ) =1.

By uniqueness (of solutions to linear equations) the whole
family {zh(t)}l h<hp, COBVErges to the same limit w as h —
0, so that , by definition, it is the derivative with respect
to x:

Ay(t; to, )
or
— NOTE in particular that ,as a solution of a linear equation,
Wltito) s defined for t € [ma®.

ox to,x
— Suppose [ > 1.

U}(t,to,x) = t e [to,b], U)(to;to,i[}) =1.
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We refer to the equation

att, Ay(s: to,
y< ° = /a 8y3t07 )) y(sao )dS,

as we referred before to y. Repeating the same reasoning
(based on the fact that f is at least twice continuously
differentiable), we get

aQy(t7 tOv I’)
02

/[ f(s y(sito, x ))(M)2+%(S’y(s;to,x))M]d37

to

0y? ox dy Ox?

or, in other words, that Pytlor) gatisfies a LINEAR TVP

Ox?
(as function of t)
d O%y(t:tg,z)  O*f ‘ Ay(t;to, ) o
E Ox2 a 2( y(tat07$>)( o )
af . aQy(t7 th I)
+ay (t,y(t,to,l')) axg )
azy(t07 th ZZ') =0

0x?

— It is clear how to do higher order pure x— derivatives; at
each level the highest order derivative satisfies a LINEAR
equation.

— The pure t— derivatives are simpler—just differentiate the
equation (*) with respect to t. Justification is simple;the
right hand side at each step is differentiable with respect
to t by the chain rule.

For mixed derivatives, we do first the t—derivatives and
then proceed with the z— derivatives as above.

U

e REMARK( Differentiability with respect to parameter): recall
that parameters have the ”status” of the initial data z, so if
f(t,y; p) is I—times continuously differentiable with respect to
(t,y, ) then the solution is [—times continuously differentiable
with respect to .
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