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Notation

• Euclidean norm |x|2 =
n∑

i=1

x2
i in Rn.

• Notation: B(x, r) for the OPEN ball of radius r center x. The
CLOSED ball is denoted by B(x, r).

• An open BOX in Rn is Q =
n∏

i=1

(ai, bi). The corresponding closed

box is Q =
n∏

i=1

[ai, bi].

• (a) If D ⊆ Rn we denote by C(D,Rm) the set of continuous
(vector) functions on D into Rm.
(b) We denote by Cb(D,Rm) ⊆ C(D,Rm) the set of BOUNDED

continuous functions on D.
(c) We denote by Ck(D,Rm) the subset of functions in C(D,Rm)

which are continuously differentiable up to (including) order k.
(d) If m = 1 we simplify to C(D), Cb(D), Ck(D).

*************************************************************************

• REMINDER: BASIC ASSUMPTIONS INWHAT FOL-
LOWS

• *******************************************************
• Here n = m+ 1 and D ⊆ Rn is OPEN.
• A point in D is denoted by (t, x) ∈ R× Rm.
• ASSUMPTIONS ON f : f ∈ C(D,Rm) and satisfies:
• (Lipschitz continuity): Let K ⊂ D be compact. Then there
exists a constant LK > 0 such that for any two points (t, ξ1), (t, ξ2) ∈
K,

|f(t, ξ1)− f(t, ξ2)| < LK |ξ1 − ξ2|.

• Note: We take the same t.
• ALL FUNCTIONS BELOWARE ASSUMED TO SAT-
ISFY THESE ASSUMPTIONS.

• THE EQUATION:
(∗) y′(t) = f(t, y(t)), t ∈ I, (t, y(t)) ∈ D.
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• INITIAL VALUE PROBLEM=IVP: Suppose that (t0, y
0) ∈

D.
Find a solution of (*), in some open interval I ⊆ R, such that

(∗∗) t0 ∈ I, y(t0) = y0.

• FUNDAMENTAL NEW FORMULATION
• y(t) ∈ C(I,Rm) is a solution of the initial value problem if and
only if (t, y(t)) ∈ D for all t ∈ I and

(∗ ∗ ∗) y(t) = y0 +

t∫
0

f(s, y(s))ds, t ∈ I.

• IMPORTANTOBSERVATION: Equation (***) implies that
y(t) ∈ C1(I,Rm).

• MOSTGENERAL EXISTENCE THEOREM (Euler 1768,
Cauchy 1820-1830).

•
Theorem. Let the closed set (”cylinder”) Γ = [t0 − η, t0 + η]×
B(y0, α) ⊆ D.
Let M = max

(t,x)∈Γ
|f(t, x)| and assume that Mη < α.

Then the initial value problem (*)-(**) has a solution in I =
(t0 − η, t0 + η).

• ”DEFINITION” (just for this summary): The set Γ will be
called the ”local existence cylinder” (centered at (t0, y

0)).
*************************************************************

• MAXIMAL INTERVAL OF EXISTENCE
•
Theorem. Consider the IVP (*)-(**). Then there exists an
open interval(finite or infinite) Imax = (tmin, tmax) ⊆ R such
that
(i) t0 ∈ Imax and the IVP (*)-(**) has a solution y(t) in

Imax.
(ii) If z(t) is any solution to the IVP in some interval J ⊆ R

(containing t0) then J ⊆ Imax and z(t) ≡ y(t), t ∈ J.
(iii) If tmax < ∞ then the solution y(t) ”escapes to the bound-

ary” of D as t → tmax in the following sense:
For every compact K ⊆ D there exists an ε > 0 such that

t > tmax − ε ⇒ (t, y(t)) /∈ K.

A similar statement holds for tmin.
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Proof. (a) Uniqueness is always guaranteed by the assumed Lip-
schitz continuity.
(b) Let Φ be the collection of all finite intervals I = (aI , bI) ∋

t0 such that a solution exists in I.
Define:

tmin = inf
I∈Φ

aI , tmax = sup
I∈Φ

bI .

(c) By uniqueness the solution exists in Imax = (tmin, tmax).
However, if tmax < ∞ and y(t) can be extended continuously to
tmax then we can construct a local existence cylinder centered
at (τ, y(τ)) ∈ D, with τ < tmax but sufficiently close, so that the
cylinder contains (tmax, y(tmax)) ∈ D, and therefore the solution
can be extended beyond (tmax, y(tmax)) ∈ D, contradicting the
maximality of Imax.
(d) To prove (iii) of the theorem suppose that tmax < ∞

and that there exists a compact K ⊆ D such that for some
sequence {tj} ↑ tmax we have {(tj, y(tj))} ⊆ K. By restricting
to a subsequence (and not changing notation) we can assume
that (tj, y(tj)) → (tmax, y

∗) ∈ K.
Let U ⊆ D be open such that K ⊆ U and U ⊆ D is compact.

Let M = max
(s,x)∈U

|f(s, x)|. There exists a local existence cylinder

Γj = [tj − η, tj + η]×B(y(tj), α) ⊆ U,

centered at (tj, y(tj)) such thatMη < α (see the above notation–
note that η, α are independent of j), and such that, for suffi-
ciently large j, (tmax, y

∗) ∈ Γj (and, in fact, is an interior
point of the cylinder).
Clearly the whole solution segment

{(t, y(t)), tj ≤ t < tmax} ⊆ Γj,

and it can be extended further (centered at (tmax, y
∗)), which

is a contradiction. �
• REMARK: In the special case that D = R × Rm, i.e., that
f(t, y) is everywhere defined (and satisfies the Lipschitz condi-
tion), the fact that tmax < ∞ implies |y(t)| → ∞ as t ↑ tmax.

• EXAMPLE: Consider the scalar equation

y′(t) = (t2 + y(t)2) sin(y(t)et), y(0) = 1.

The function z(t) = y(t)et satisfies

z′(t) = z(t) + y′(t)et = z(t) + (t2et + z(t)2e−t) sin(z(t)), z(0) = 1.



4 MATANIA BEN-ARTZI

We show that tmax = +∞ for this equation (hence also for the
y equation).
If not, then 0 < tmax < ∞. Take a positive integer l so large

that π(2l − 1
2
)e−tmax > 1. Suppose that, for some 0 < t1 <

tmax, we have z(t1) = π(2l − 1
2
). Then from the equation, since

sin(z(t1) = −1,

z′(t1) < z(t1)− z(t1)
2e−t1 ≤ z(t1)− z(t1)

2e−tmax < 0,

so z(t) ≤ π(2l − 1
2
), t < tmax. Similarly we show that z(t) is

bounded from below, so that tmax = +∞, and similarly tmin =
−∞.

• COROLLARY-THE LINEAR CASE.
Take D = I ×Rm, where I = (α, β) ⊆ R is a finite or infinite

open interval.
Let f(t, y) = A(t)y + b(t), where A(t) ∈ Hom(Rm,Rm) is

a continuous m ×m matrix function and b(t) ∈ C(I,Rm) is a
continuous vector function.

•

Theorem. Under these assumption, for every (t0, y
0) ∈ D

there exists a unique solution of the IVP (*)-(**), which ex-
ists for all t ∈ I (i.e., its maximal interval is I).

Proof. Suppose to the contrary that tmax < β. By the preceding
remark, we reach a contradiction by showing that

lim sup
t↑tmax

|y(t)| < ∞.

Let

M = max
t0≤τ≤tmax

∥A(τ)∥, ∥A(τ)∥ is matrix norm.

The equation yields

d

dt
|y(t)|2 = 2(y(t), y′(t)) = 2(y(t), A(t)y(t)) + 2(y(t), b(t)),

so that the (scalar) nonnegative function ξ(t) = |y(t)|2 satisfies

ξ′(t) ≤ (2M + 1)ξ(t) +N, N = max
t0≤τ≤tmax

|b(τ)|2.

Hence
d

dt
(ξ(t)e−(2M+1)t) ≤ Ne−(2M+1)t,

from which it follows that

lim sup
t↑tmax

|y(t)|2 = lim sup
t↑tmax

ξ(t) < ∞.
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(complete the details).
�

***************************************************************
• STABILITY WITH RESPECT TO CHANGE OF f .
• We study the dependence of the IVP (*)-(**) on a variation of
the function f. We use the above notation Imax for the maximal
interval related to the IVP (*)-(**).

•

Theorem. Let {fj}∞j=1 ⊆ C(D,Rm) be a sequence satisfying

the Lipschitz condition (possibly with constants depending on
j!). Suppose that fj → f, uniformly in every compact K ⊆ D.
Let D ∋ (tj, x

j) → (t0, y
0) and let yj(t) be the solution to the

IVP:

(yj)′(t) = fj(t, y
j(t)), (t, yj(t)) ∈ D,

yj(tj) = xj.

Denote by Ij,max the maximal interval of existence for this IVP.
Let the finite closed interval [p, q] ⊆ Imax. Then [p, q] ⊆ Ij,max

for sufficiently large j and

yj(t) → y(t), uniformly in t ∈ [p, q].

Remark: Recall that we always assume also that f satisfies the
Lipschitz condition.

Proof. – (a) Without loss of generality we can assume that
p ≤ t0 and that tj ∈ [p, q], since otherwise we can ”extend”
slightly the interval [p, q] (for sufficiently large j, of course).
In the following arguments, we will use (sometimes im-
plicitly) the index j in the sense of ”sufficiently large” j.

– (b) Let δ > 0 be sufficiently small, so that the set

K = {(t, x), t ∈ [p, q], |x− y(t)| ≤ δ}
is compact and contained in D.

– Let K ⊆ U ⊆ D where U is open and U ⊆ D is compact.
– Let M = sup

1≤j<∞
max
(t,x)∈U

|fj(t, x)| < ∞.

(why is it finite?)
– Let η, α > 0 with 2Mη < α so that the local existence
cylinder Γj = [tj − 2η, tj + 2η]× B(xj, α) ⊆ U for every j
(again, we start with sufficiently large j).
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– Assume further that

α <
1

6
δ.

For j sufficiently large we have

tj ∈ [t0 − η, t0 + η], |xj − y0| < 1

12
δ.

– Since

|xj − yj(t0)| = |yj(tj)− yj(t0)| ≤ Mη <
1

12
δ

we have |yj(t0)− y(t0)| < 1
6
δ so that

|yj(t)− y(t)| ≤ |yj(t)− yj(t0)|+ |yj(t0)− y(t0)|+ |y(t0)− y(t)|,

< 2Mη +
1

6
δ + 2Mη <

1

2
δ, t ∈ [t0, t0 + 2η], j sufficiently large.

– (c) Suppose that (passing to a subsequence, if needed,
without changing index) for every j there exists a point
τj ∈ [t0, q] such that |yj(τj) − y(τj)| = δ. We can assume
that τj is the first such point and by the above τj > t0+2η.
We can further assume that τj → τ ∗ ∈ [t0 + 2η, q].

– (d) Denote τ̄ = τ ∗ − η ≥ t0 + η. Since τ̄ < τj (for j
sufficiently large) we have [t0, τ̄ ] ⊆ Ij,max.
The solutions {yj} are uniformly bounded and equicontin-
uous on [t0, τ̄ ] (why? contained in K) and

|y(τ̄)− yj(τ̄)| ≥ |y(τ ∗)− yj(τ ∗)| − 2Mη ≥ 1

2
δ.

– (e) Using the Arzela-Ascoli theorem there is a subsequence
(we again do not change index) {yj} which converges uni-
formly to some function z(t) ∈ C([t0, τ̄ ],Rm).

– (f) Since

yj(t) = xj +

∫ t

tj

fj(s, y
j(s))ds, t ∈ [t0, τ̄ ],

we have in the limit

z(t) = y0 +

∫ t

t0

f(s, z(s))ds.

– (g) We conclude by uniqueness that z(t) ≡ y(t) t ∈ [t0, τ̄ ]
which contradicts the fact (see (d)) that |y(τ̄)−z(τ̄)| ≥ 1

2
δ.
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– (h) We conclude that for the given δ > 0, for all sufficiently
large j,

|yj(t)− y(t)| ≤ δ, t ∈ [t0, q],

and a similar argument for the interval [p, t0].
– (i) In particular, [p, q] ⊆ Ij,max for sufficiently large j.

�
**********************************************************************

• STABILITY AND CONTINUITY WITH RESPECT
TO THE INITIAL POINT

• SPECIAL CASE: In the above treatment, take fj ≡ f for all j.
• Let (τ, x) ∈ D and let y(t; τ, x) be the solution of (*) satisfying
y(τ) = x.

• We now regard the maximal interval of existence as a function
of the initial data:

Imax
τ,x = (tmin(τ, x), tmax(τ, x)).

As a direct corollary of the above stability theorem we have:
•

Theorem. (i)

lim inf
(τ,x)→(t0,y0)

tmax(τ, x) ≥ tmax(t0, y
0),

lim sup
(τ,x)→(t0,y0)

tmin(τ, x) ≤ tmin(t0, y
0).

(ii) Let [a, b] ⊆ Imax
t0,y0

. The solution y(t; τ, x) converges uni-

formly in [a, b] to y(t; t0, y
0) as (τ, x) → (t0, y

0).
• REMARK: It follows that tmax(τ, x) is lower semicontinuous as
a function of (τ, x). Similarly, tmin(τ, x) is upper semicontinuous
as a function of (τ, x).

• Let E ⊆ R×D be the existence set of the solution y(t; τ, x):

E =
{
(t, τ, x) ∈ R×D, t ∈ Imax

τ,x

}
.

• CLAIM: E is open in R×D.
• EXERCISE: Prove this!
• THE FLOW MAP

Take (t0, y
0) ∈ D. Let W ⊆ Rm be an open neighborhood of

y0, so that

{t0} ×W ⊆ D.

The following theorem says that if we take a closed time interval
contained in Imax

t0,y0
, we can chooseW sufficiently small so thatthe
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solution beginning at (t0, x), x ∈ W exists in this interval and
it maps W, one-to-one, onto open neighborhoods.

•
Theorem. given [t0−T, t0+T ] ⊆ Imax

t0,y0
, we can choose an open

neighborhood W ⊆ Rm of y0, so that {t0} ×W ⊆ D, and such
that
(1) [t0 − T, t0 + T ] ⊆ Imax

t0,x
, x ∈ W.

Definition: The map Φτ (x) = y(τ ; t0, x), x ∈ W, is called
the flow map.

(2) For every τ ∈ [t0 − T, t0 + T ] the flow map is one-to-one
and its image Wτ = {Φτ (x), x ∈ W} ⊆ Rm is an open
neighborood of y(t0; τ, y

0).
(3) The map Φτ is open; an open subset of W is mapped onto

an open subset of Wτ .
(4) There exists r > 0 such that for every τ ∈ [t0 − T, t0 + T ]

the ball B(y(τ ; t0, y
0), r) ⊆ Wτ .

Proof. (1) If there is no such W, we can find a sequence xj →
y0, such that Imax

t0,xj does not contain [t0−T, t0+T ], contrary
to the previous theorem.

(2) Φτ is one-to-one by uniqueness of the solution; if Φτ (ξ) =
Φτ (ζ) then the solution beginning at this point arrives, at
t = t0, to the points ξ, ζ, which must be the same.
If Wτ is not open, there exists Φτ (ξ) ∈ Wτ which is not
interior. But we can take a small ball Bδ = B(Φτ (ξ), δ)
so that all solutions y(t; τ, z), z ∈ B, exist at t = t0, and
by the previous theorem y(t0; τ, z) ∈ W if δ > 0 is small.
Then B is in the image Wτ of W under Φτ , a contradiction.

(3) This is already contained in the previous argument of the
proof, as W can be replaced by any open subset.

(4) Otherwise there will be a sequence {τj}∞j=1 ⊆ [t0−T, t0+T ]

and {zj}∞j=1 such that |zj − y(τj; t0, y
0)| → 0 but zj /∈ Wτj .

Taking a subsequence (without changing index) we have
τj → τ ∈ [t0 − T, t0 + T ] so zj → y(τ ; t0, y

0). But then by
the previous theorem the interval of existence of y(t; τj, z

j)
contains t = t0 (for sufficiently large j) and y(t0; τj, z

j) →
y(t0; τ, y(τ ; t0, y

0)) = y0. In particular y(t0; τj, z
j) ∈ W, so

zj = Φτj(y(t0; τj, z
j)) ∈ Wτj , a contradiction.

�
• EXAMPLE: Consider the scalar equation (m = 1)

y′(t) = y(t)2 − εy(t)4, ε ≥ 0.
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For y(0) = 1 we have tmax = 1 if ε = 0, but tmax = +∞ if ε > 0.
(Prove this!).
**********************************************************************

• DEPENDENCE ON PARAMETERS
• Let P ⊆ Rp be open and suppose that

f(t, y;µ) : D × P → Rm.

• Consider the IVP

y′ = f(t, y;µ), y(t0) = y0, (t0, y
0) ∈ D, µ ∈ P.

• DEFINITION: We say that the IVP depends on a parameter µ
in the parameter domain P.

• REMARK: We assume that f(t, y;µ) satisfies the (local) Lip-
schitz condition with respect to y, possibly with constants de-
pending on µ. Let (τ, x, µ) ∈ D×P . Then the IVP has a unique
solution y(t; τ, x, µ), such that y(τ ; τ, x, µ) = x.
The maximal interval of existence depends of course on µ.

We denote it by Imax
τ,x,µ = (tmin(τ, x, µ), tmax(τ, x, µ)).

Theorem. Let f(t, y;µ) : D × P → Rm be continuous in all
variables and satisfy a (local) Lipschitz condition in y for fixed
(t, µ) ∈ D × P .
Fix (t0, y

0, µ0) ∈ D × P.
Then:
(i)

lim inf
(τ,x,µ)→(t0,y0,µ0)

tmax(τ, x, µ) ≥ tmax(t0, y
0, µ0),

lim sup
(τ,x,µ)→(t0,y0,µ0)

tmin(τ, x, µ) ≤ tmin(t0, y
0, µ0).

(ii) Let [a, b] ⊆ Imax
t0,y0,µ0 . The solution y(t; τ, x, µ) converges

uniformly in [a, b] to y(t; t0, y
0, µ0) as (τ, x, µ) → (t0, y

0, µ0).

Proof. Nice trick: Define a continuous function g : D × P →
Rm+p by

g(t, y, µ) = (f(t, y;µ), 0) ∈ Rm × Rp.

Clearly g is continuous in its variables and satisfies a (local)
Lipschitz condition in (y, µ).
For z(t) ∈ Rm+p solve the IVP

z′(t) = g(t, z(t)), z(τ) = (x, µ), (t, z(t)) ∈ D × P .
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By uniqueness

z(t) = (y(t; τ, x, µ), µ), t ∈ Imax
τ,x,µ,

and all the assertions follow from the previous theorem (depen-
dence on initial data). �

• REMARK: Thus, the parameter µ ”has the status” of the initial
data y0 in what concerns the dependence of the solution on these
data. In what follows we therefore omit the parameter.
**********************************************************************

• REGULARITY OF THE SOLUTION
• We return to the solution y(t; τ, x) of the IVP (*), with y(τ ; τ, x) =
x. . We know it is continuous (as a function of t, τ, x) on

E =
{
(t, τ, x) ∈ R×D, t ∈ Imax

τ,x

}
.

• In addition, by the equation, it is continuously differentiable
with respect to t.

• We show that if f is more regular, then so is the solution.

Theorem. Suppose that for some integer l ≥ 1, the function
f(t, y) ∈ C l(D,Rm). Fix τ = t0. Then the solution y(t; t0, x) is
l + 1 times continuously differentiable with respect to t and l
times continuously differentiable with respect to x.

Proof. Take first l = 1.
For notational simplicity we assume m = 1, so that the un-
known y is a scalar (there is no loss of generality, otherwise
we consider components of y).
The fact that y is twice continuously differentiable with
respect to t follows from the equation (*) and the assumed
differentiability of f , since

y′′(t; t0, x) =
∂f

∂t
(t, y(t; t0, x)) +

∂f

∂y
(t, y(t; t0, x))f(t, y(t; t0, x)).

–– To prove differentiability with respect to x, we fix b > t0
such that [t0, b] ⊆ Imax

t0,x̃
, the maximal interval for y(t; t0, x̃),

where x̃ ∈ (x− h0, x+ h0) for some h0 > 0.
Let K = {(t, y(t; t0, x)), t ∈ [t0, b]} be the (compact) graph
of y on [t0, b] and let U ⊆ D be open , such that K ⊆ U
and Ū ⊆ D is compact.

We denote N = maxŪ |∂f(t,y)
∂y

|.
– By the theorem on continuous dependence

∥y(t; t0, x+ h)− y(t; t0, x)∥ = max
t∈[t0,b]

|y(t; t0, x+ h)− y(t; t0, x)| −−→
h→0

0,
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so that, for h0 > 0 sufficiently small,

∥y(t; t0, x+ h)− y(t; t0, x)∥ <
1

2
dist(K,D \ U), |h| < h0.

In particular, the union of all graphs

{(t, y(t; t0, x+ h)), t ∈ [t0, b], |h| < h0} ⊆ U.

We have

y(t; t0, x) = x+

t∫
t0

f(s, y(s; t0, x))ds, t ∈ [t0, b].

Subtracting it from the same equation with x replaced by
x+ h we get

y(t; t0, x+ h)− y(t; t0, x)

h

= 1 +

t∫
t0

h−1(f(s, y(s; t0, x+ h))− f(s, y(s; t0, x)))ds, 0 < |h| < h0.

Denote for simplicity zh(t) = y(t;t0,x+h)−y(t;t0,x)
h

. By the mean
value theorem the last equality gives

|zh(t)| ≤ 1 +

t∫
t0

N |zh(s)|ds, t ∈ [t0, b].

CLAIM: For every integer r,

|zh(t)| ≤
r∑

j=0

(N(t− t0))
r

r!
+

(N(t− t0))
r+1

(r + 1)!
∥zh∥.

The case r = 0 is obtained from the above inequality:

|zh(t)| ≤ 1 +N(t− t0) max
s∈[t0,b]

|zh(s)| = 1 +N(t− t0)∥zh∥, t ∈ [t0, b],

and the general case is obtained by induction (as in the
proof of Picard’s theorem).
Letting r → ∞ we obtain

|zh(t)| ≤ eN(t−t0), t ∈ [t0, b].

(Remark: This is in fact a simple consequence of Gron-
wall’s inequality.)
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– COROLLARY: The family
{
zh(t)

}
|h|<h0

is uniformly bounded

in t ∈ [t0, b].
– From

zh(t) = 1 +

t∫
t0

h−1(f(s, y(s; t0, x+ h))− f(s, y(s; t0, x)))ds, 0 < |h| < h0,

it now follows that

|zh(t+ δ)− zh(t)|

≤
t+δ∫
t

h−1|(f(s, y(s; t0, x+ h))− f(s, y(s; t0, x)))|ds ≤ N |δ|∥zh∥, 0 < |h| < h0.

– CONCLUSION: The family
{
zh(t)

}
|h|<h0

is equicontinuous

in t ∈ [t0, b].
– By the Arzela-Ascoli theorem there exists a subsequence{

zhj(t)
}
with hj → 0 that converges uniformly (on [t0, b])

to a function w(t; t0, x).
From the equation and the continuity of ∂f

∂y
and y(s; t0, x+

h) it follows that

w(t; t0, x) = 1 +

t∫
t0

∂f

∂y
(s, y(s; t0, x))w(s; t0, x)ds.

– It follows that the limit function w satisfies the LINEAR
IVP:

d

dt
w(t; t0, x) =

∂f

∂y
(t, y(t; t0, x))w(t; t0, x), t ∈ [t0, b], w(t0; t0, x) = 1.

By uniqueness (of solutions to linear equations) the whole
family

{
zh(t)

}
|h|<h0

converges to the same limit w as h →
0, so that , by definition, it is the derivative with respect
to x:

w(t; t0, x) =
∂y(t; t0, x)

∂x
, t ∈ [t0, b], w(t0; t0, x) = 1.

– NOTE in particular that ,as a solution of a linear equation,
∂y(t;t0,x)

∂x
is defined for t ∈ Imax

t0,x
.

– Suppose l > 1.
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We refer to the equation

∂y(t; t0, x)

∂x
= 1 +

t∫
t0

∂f

∂y
(s, y(s; t0, x))

∂y(s; t0, x)

∂x
ds,

as we referred before to y. Repeating the same reasoning
(based on the fact that f is at least twice continuously
differentiable), we get

∂2y(t; t0, x)

∂x2

=

t∫
t0

[∂2f

∂y2
(s, y(s; t0, x))

(∂y(s; t0, x)
∂x

)2
+

∂f

∂y
(s, y(s; t0, x))

∂2y(s; t0, x)

∂x2

]
ds,

or, in other words, that ∂2y(t;t0,x)
∂x2 satisfies a LINEAR IVP

(as function of t)

d

dt

∂2y(t; t0, x)

∂x2
=

∂2f

∂y2
(t, y(t; t0, x))(

∂y(t; t0, x)

∂x
)2

+
∂f

∂y
(t, y(t; t0, x))

∂2y(t; t0, x)

∂x2
,

∂2y(t0; t0, x)

∂x2
= 0 .

– It is clear how to do higher order pure x− derivatives; at
each level the highest order derivative satisfies a LINEAR
equation.

– The pure t− derivatives are simpler–just differentiate the
equation (*) with respect to t. Justification is simple;the
right hand side at each step is differentiable with respect
to t by the chain rule.
For mixed derivatives, we do first the t−derivatives and
then proceed with the x− derivatives as above.

�

• REMARK( Differentiability with respect to parameter): recall
that parameters have the ”status” of the initial data x, so if
f(t, y;µ) is l−times continuously differentiable with respect to
(t, y, µ) then the solution is l−times continuously differentiable
with respect to µ.
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