BASIC THEOREMS ON EXISTENCE AND UNIQUENESS

MATANIA BEN-ARTZI

February 2011

Notation

- Euclidean norm $|x|^{2}=\sum_{i=1}^{n} x_{i}^{2}$ in \mathbb{R}^{n}.
- Notation: $B(x, r)$ for the OPEN ball of radius r center x. The CLOSED ball is denoted by $\bar{B}(x, r)$.
- An open BOX in \mathbb{R}^{n} is $Q=\prod_{i=1}^{n}\left(a_{i}, b_{i}\right)$. The corresponding closed box is $\bar{Q}=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$.
- (a) If $D \subseteq \mathbb{R}^{n}$ we denote by $C\left(D, \mathbb{R}^{m}\right)$ the set of continuous (vector) functions on D into \mathbb{R}^{m}.
(b) We denote by $C_{b}\left(D, \mathbb{R}^{m}\right) \subseteq C\left(D, \mathbb{R}^{m}\right)$ the set of BOUNDED continuous functions on D.
(c) We denote by $C^{k}\left(D, \mathbb{R}^{m}\right)$ the subset of functions in $C\left(D, \mathbb{R}^{m}\right)$ which are continuously differentiable up to (including) order k.
(d) If $m=1$ we simplify to $C(D), \quad C_{b}(D), \quad C^{k}(D)$.
- A "DIFFERENTIAL EQUATION" MEANS FINDING AN "UNKNOWN FUNCTION"
. $* *$
- Here $n=m+1$ and $D \subseteq \mathbb{R}^{n}$ is OPEN.
- A point in D is denoted by $(t, x) \in \mathbb{R} \times \mathbb{R}^{m}$.
- PROBLEM: We are given a function $f \in C\left(D, \mathbb{R}^{m}\right)$.

Let $I \subseteq \mathbb{R}$ be an open interval.
Find a function $y(t) \in C^{1}\left(I, \mathbb{R}^{m}\right)$ such that:
(a) The point $(t, y(t)) \in D$ for every $t \in I$.
(b) $\quad(*) \quad y^{\prime}(t)=f(t, y(t)), \quad t \in I$.

- This problem covers ALL POSSIBLE solutions of the equation (*).
- INITIAL VALUE PROBLEM: Suppose that $\left(t_{0}, y_{0}\right) \in D$.

Find a solution of $\left({ }^{*}\right)$, in some open interval $I \subseteq \mathbb{R}$, such that
$(* *) \quad t_{0} \in I, \quad y\left(t_{0}\right)=y_{0}$.

- FUNDAMENTAL NEW FORMULATION

- $y(t) \in C\left(I, \mathbb{R}^{m}\right)$ is a solution of the initial value problem if and only if $(t, y(t)) \in D$ for all $t \in I$ and

$$
(* * *) \quad y(t)=y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s, \quad t \in I
$$

- IMPORTANT OBSERVATION: Equation (${ }^{* * *}$) implies that $y(t) \in C^{1}\left(I, \mathbb{R}^{m}\right)$.
- MOST GENERAL EXISTENCE THEOREM (Euler 1768, Cauchy 1820-1830).

Theorem. Let the closed set ("cylinder") $\Gamma=\left[t_{0}-\eta, t_{0}+\eta\right] \times$ $\bar{B}\left(y_{0}, \alpha\right) \subseteq D$.

Let $M=\max _{(t, x) \in \Gamma}|f(t, x)|$ and assume that $M \eta<\alpha$.
Then the initial value problem (*)-(**) has a solution in $I=$ $\left(t_{0}-\eta, t_{0}+\eta\right)$.

- Proof. (a) For any integer $p>2$ define a (finite) set of points in \bar{I} by:

$$
t_{k}^{p}=t_{0}+\frac{k}{p} \eta, \quad k=-p, \ldots,-1,0,1, \ldots, p
$$

(b) Define (for the same p) points in $B\left(y_{0}, \alpha\right)$ by $z^{0, p}=y_{0}$ and

$$
z^{k, p}=z^{\tilde{k}, p}+\operatorname{sgn}(k) \frac{\eta}{p} f\left(t_{\tilde{k}}^{p}, z^{\tilde{k}, p}\right), \quad k= \pm 1, \ldots, \pm p .
$$

where $\tilde{k}=\operatorname{sgn}(k)(|k|-1)$.
(c) Define a corresponding " piecewise linear" function $z^{p}(t), \quad t \in$ I, by

$$
\begin{array}{r}
z^{p}(t)=\frac{p}{\eta}\left[\left(t_{k+1}^{p}-t\right) z^{k, p}+\left(t-t_{k}^{p}\right) z^{k+1, p}\right], \quad t \in\left[t_{k}^{p}, t_{k+1}^{p}\right], \\
k=-p,-(p-1), \ldots,-1,0,1, \ldots,(p-1) .
\end{array}
$$

(d) The functions $\left\{z^{p}(t)\right\}_{p=2}^{\infty}$ are uniformly bounded and equicontinuous (Lipschitz constant $\leq M$) on \bar{I}.
(e) By the Arzela-Ascoli theorem there is a (uniformly) convergent subsequence $\left\{z^{p_{j}}\right\}$. Call the limit function $y(t), \quad t \in I$.
(f) Let $\varepsilon>0$. By uniform continuity of f in Γ there exists $\delta>$ 0 such that if $\xi^{1}, \xi^{2} \in \Gamma$ and $\left|\xi^{1}-\xi^{2}\right|<\delta$ then $\left|f\left(\xi^{1}\right)-f\left(\xi^{2}\right)\right|<\varepsilon$.
(g) In particular, if $\left(\frac{\eta}{p}\right)^{2}+\left|z^{k+1, p}-z^{k, p}\right|^{2}<\delta^{2}$ then

$$
\begin{gathered}
\left|z^{p}(t)-z^{p}\left(t_{k}^{p}\right)-\int_{t_{k}^{p}}^{t} f\left(s, z^{p}(s)\right) d s\right| \\
=\left|\int_{t_{k}^{p}}^{t}\left(f\left(t_{k}^{p}, z^{k, p}\right)-f\left(s, z^{p}(s)\right)\right) d s\right|<\varepsilon\left(t-t_{k}^{p}\right), \quad t \in\left[t_{k}^{p}, t_{k+1}^{p}\right], \quad k=-p, \ldots, p-1 .
\end{gathered}
$$

(h) Likewise, if $k>0$,

$$
\left|z^{p}\left(t_{k}^{p}\right)-z^{p}\left(t_{k-1}^{p}\right)-\int_{t_{k-1}^{p}}^{t_{k}^{p}} f\left(s, z^{p}(s)\right) d s\right|<\varepsilon\left(t_{k}^{p}-t_{k-1}^{p}\right),
$$

This can be continued down to t_{0}.
(i) Taking $p=p_{j}$ and passing to the limit as $j \rightarrow \infty$ we get

$$
y(t)-y_{0}=\int_{t_{0}}^{t} f(s, y(s)) d s, \quad t \in I
$$

(j) Thus, $y(t)$ satisfies $\left({ }^{* * *)}\right.$.

- REMARK: As was seen in Summary 2 (Examples), the solution is not necessarily unique.
- NEXT EXISTENCE AND UNIQUENESS THEOREM
- We use the same notation as above, but make the following additional assumption on f.
- ASSUMPTION (Lipschitz continuity): Let $K \subset D$ be compact. Then there exists a constant $L_{K}>0$ such that for any two points $\left(t, \xi^{1}\right),\left(t, \xi^{2}\right) \in K$,

$$
\left|f\left(t, \xi^{1}\right)-f\left(t, \xi^{2}\right)\right|<L_{K}\left|\xi^{1}-\xi^{2}\right| .
$$

- Note: We take the same t.

Theorem. (Picard) Let the closed set ("cylinder") $\Gamma=\left[t_{0}-\right.$ $\left.\eta, t_{0}+\eta\right] \times \overline{B\left(y_{0}, \alpha\right)} \subseteq D$.

Let $M=\max _{(t, x) \in \Gamma}|f(t, x)|$ and assume that $M \eta<\alpha$.
Assume further that f satisfies the above Lipschitz assumption.

Then the initial value problem $\left(^{*}\right)-\left({ }^{* *}\right)$ has a unique solution in $I=\left(t_{0}-\eta, t_{0}+\eta\right)$.

- Proof. (a) Define on the space $C\left(\bar{I}, \mathbb{R}^{m}\right)$ a map by:

$$
\mathcal{G} \phi(t)=y_{0}+\int_{t_{0}}^{t} f(s, \phi(s)) d s
$$

(b) Let $Y \subseteq C\left(\bar{I}, \mathbb{R}^{m}\right)$ be the closed set of functions that assume values in $\overline{B\left(y_{0}, \alpha\right)}$. From the assumption $M \eta<\alpha$ it is clear that if $\phi \in Y$ then also $\mathcal{G} \phi \in Y$.
(c) So in what follows all functions considered are assumed to be in Y.

The norm on such functions is $\|\phi\|=\max _{t \in \bar{I}}|\phi(t)|$.
(d) By the Lipschitz assumption

$$
|\mathcal{G} \phi(t)-\mathcal{G} \psi(t)| \leq L_{\Gamma} \int_{t_{0}}^{t}|\phi(s)-\psi(s)| d s \leq L_{\Gamma}\|\phi-\psi\|\left|t-t_{0}\right| .
$$

(e) Repeating this we have

$$
\left|\mathcal{G}^{2} \phi(t)-\mathcal{G}^{2} \psi(t)\right| \leq L_{\Gamma} \int_{t_{0}}^{t}|\mathcal{G} \phi(s)-\mathcal{G} \psi(s)| d s \leq L_{\Gamma}^{2}\|\phi-\psi\| \int_{t_{0}}^{t}\left|s-t_{0}\right| d s .
$$

(f) By induction therefore, for any integer p,

$$
\left|\mathcal{G}^{p} \phi(t)-\mathcal{G}^{p} \psi(t)\right| \leq \frac{L_{\Gamma}^{p}}{p!}\|\phi-\psi\|\left|t-t_{0}\right|^{p}, \quad t \in \bar{I}
$$

(g) It follows that

$$
\left\|\mathcal{G}^{p} \phi-\mathcal{G}^{p} \psi\right\| \leq \frac{L_{\Gamma}^{p}}{p!}\|\phi-\psi\| \eta^{p}
$$

(h) Choose p so large that $\frac{L_{\Gamma}^{p}}{p!} \eta^{p}<1$. Then \mathcal{G}^{p} is a contraction on the closed set Y.
(i) Using the contraction map theorem, let $z \in Y$ be the unique fixed point of \mathcal{G}^{p}.
(j) Let

$$
y(t)=\mathcal{G} z(t)
$$

Then $y(t) \in Y$ and $\mathcal{G}^{p} y=\mathcal{G}^{p}(\mathcal{G} z)=\mathcal{G} z=y$.
It follows that y is a fixed point of \mathcal{G}^{p} in Y so by uniqueness $y=z$.
(k) Thus, $y=\mathcal{G} y$ and it follows that $y(t)$ satisfies $\left({ }^{* * *}\right)$.
(l) Uniqueness: Suppose two functions, y^{1}, y^{2} satisfy (${ }^{* * *}$) in some interval $\bar{I}=\left[t_{0}-\eta, t_{0}+\eta\right]$. Suppose that their values are
contained in a closed ball $\overline{B\left(y_{0}, \alpha\right)}$ and let L_{Γ} be the Lipschitz constant for $\Gamma=\bar{I} \times \overline{B\left(y_{0}, \alpha\right)}$. By taking a smaller η, if needed, we can assume $L_{\Gamma} \eta<1$.
(m) As in (d) it follows that
$\left\|y^{1}-y^{2}\right\|=\left\|\mathcal{G} y^{1}-\mathcal{G} y^{2} \mid \leq L_{\Gamma} \eta\right\| y^{1}-y^{2}\|<\| y^{1}-y^{2} \|$,
which is a contradiction. Thus $y^{1} \equiv y^{2}$ in $\left[t_{0}-\eta, t_{0}+\eta\right]$ and the process can be continued to intervals centered at the endpoints (if the condition $L_{\Gamma} \eta<1$ forced the reduction of η).

- DEFINITION (SUCCESSIVE APPROXIMATION): The method of proof of the last theorem is known as "successive approximation".
- Indeed, starting from any function $\phi \in Y$ the sequence $\left\{\mathcal{G} \phi, \mathcal{G}^{2} \phi, \ldots, \mathcal{G}^{l} \phi, \ldots\right\}$ converges to the unique solution $y(t)$.
- EXERCISE: Show this! (hint: The sequence is Cauchy, see (d)).

Institute of Mathematics, Hebrew University, Jerusalem 91904, IsRAEL

E-mail address: mbartzi@math.huji.ac.il

