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Notation

e Euclidean norm |z|? = Z z? in R™.

e Notation: B(z,r) for the OPEN ball of radius r center x. The
CLOSED ball is denoted by B(z,7).
e An open BOX in R" is @ = [](ay, b;). The corresponding closed

box is @ = H[@u il

e (a) If D C R” we denote by C(D,R™) the set of continuous
(vector) functions on D into R™.

(b) We denote by C,(D,R™) C C'(D,R™) the set of BOUNDED
continuous functions on D.

(c) We denote by C*(D,R™) the subset of functions in C(D, R™
which are continuously differentiable up to (including) order k.

(d) If m = 1 we simplify to C(D), Cy(D), C¥(D).
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e A’DIFFERENTIAL EQUATION” MEANS FINDING
AN UNKNOWN FUNCTION”
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e SOME EXAMPLES

e Find a function y(t) € C*(R) such that y/(t) = ky(t) for some
ke R.

e Let I = (a,b) CR and a(t),b(t) € C(I). Find a function y(t) €
C*(I) such that

y'(t) = a(t)y(t) + b(t).

t
SOLUTION: Let ty € I and define u(t) = exp(— [ a(s)ds).
t
Then '
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SO,

t s t

y(t) = ly(to) +/b(8) eXp(—/a(r)dr)dS] exp(/ a(s)ds).

to to to

e REMARK: These are all the solutions (why?) and they exist
in all of 1.
e Find a function y(t) € C*(R) such that v = y2.
SOLUTION:  y(t) = 0 is certainly a solution.
Otherwise, take u(t) = ﬁ, sou(t)=—-1=ult) =a—t=
y(t) = - for some real .
e Show there are no other solutions. Conclude that only the " triv-
ial” solution is defined on the whole line.
e Find a function y(¢) € C'(R) such that 3y = —y?.
e Find a function 0 < y(t) € C*(R) such that y' = \/y.
SOLUTION: If v(t) = \/y then v'(t) = 3 = v(t) — v(ty) =
%(t —1tp), 1> to, since the computation assumes v > 0. Define
k = 2v(tg) — to so that

1
4

However, also y = 0 is a solution and also

0, t<t,
y(t)Z{ ’

y(t) = =(k+1t)? t>—k, VkeR.

Tt —t0)?, t>to.

e Conclude that there are infinitely many solutions through any
point (g, 0).

e Find a function y(¢) € C'(R) such that y' = (4¢3—-2t)y?, y(ty) =
Yo

SOLUTION: Verify that y(t) = 1+yo(t2gf4ft2+t4)'

0 0
Is this the only solution? Are there solutions defined on the
whole line?
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e BASIC DEFINITIONS
e DEFINITION: A scalar differential equation of order n is an
algebraic equation

F(t,y(),y'(t), ...y ™ (#) =0,

for an unknown function y(¢) defined in a certain interval ¢ €
(a,b) C R.
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e DEFINITION: The equation is regular if it can be ”solved”
for the highest-order derivative, namely, if it can be written as

y "M () = Gt yt),y' ), ..y V(1))

where the dependence of G on its first variable (t) is regular.
e DEFINITION: The equation is linear if F' (first definition above)

is linear in its second,...,last variables (namely, y(t), ' (t), ..., 4™ (t)).
e DEFINITION: Let f : (a,b) x D — R", where D C R" is open.

A first-order system is a system of equations of the form

2(t) = f(t, 2(1))
for an unknown wvector function z : (a,b) C R — D.

e DEFINITION: The initial value problem for any of the above
consists of finding a solution y(t) (resp. z(¢)) such that, for some
to € (a,b) and given values o, ...,y(()"_l) (resp. 2o € R"),

y(to) = yo, v/ (t0) = U3, y™ D (to) =y "
(resp. z(to) = zo)-
e CLAIM: Any regular n—th order equation can be reduced to a

first-order system.
PROOF": Simply define a vector z(t) € R™ by

(21(8), 22(1), oo, za(t) = (y(2), ' (1), .. gV (2)).
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e FIRST-ORDER EQUATIONS IN TWO VARIABLES
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NOTATION: Following common use, we use ”symmetric” no-

tation x,y.
SRR KSR KSR KR KR KRR SRR SRR Rk Rk sk sk sk sk sk sk kR SRR sk sk RSk ok o

(%) M(x,y)dx + N(x,y)dy = 0.
M, N are continuous (real) functions defined in some open
domain D C R?, and such that M? + N2 > 0.

e The meaning of the equation is that in a neighborhood of any
point (zg,y0) € D we look for a function y(z) satisfying M (z, y(x))+
N(z,y(z))y'(z) = 0 or a function x(y) satisfying M (z(y), y)z'(y)+
N(z(y),y) = 0.

e EXACT EQUATIONS: If in some open set U C D there
exists a function ¢ € C'(U) such that V¢ = (M, N) in U, we
say that the equation (*) is ezxact.
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This is equivalent to saying that the (vector)field (M, N) is
conservative in U, with potential function ¢.

In this case every solution in U is given implicitly by ¢(z,y) =
const.

REMINDER: If U is an open disk and M, N € C'(U) then a
necessary and sufficient condition for the equation to be exact
in U is that 8M = %N

SEPARABLE EQUATIONS: This is a special case of the
previous one, where M (z,y) = A(x), N(x,y) = B(y). The po-
tential is then o(z,y) = a(x)+p(y) where o/ (z) = A(x), 5 (y) =
B(y).

INTEGRATING FACTOR: Let pu(x,y) # 0 and multiply
(*) by p to get

pu(x,y) M (z, y)dx + p(z, y)N(z,y)dy = 0.

DEFINITION: If this equation is exact, we say that u(z,y) is
an integrating factor of (*).
EXAMPLE: The equation

(3zy + y*)dz + (2* + 2y)dy = 0.

An integrating factor is u(x,y) = x so that the new equation
has a potential function ¢(z,y) = 2°y + 222y
HOMOGENEOUS EQUATIONS: The equation (*) is ho-
mogeneous in an open set U C D if, say, N(z,y) > 0 in U
and the quotient % = —F (%), where F(t) is a continuous
function of a single (real) variable t.

In this case the equation (*) becomes

For the solution, introduce a new wunknown function v = £

which satisfies the equation
o' +v = F(v)

which can be rewritten as a separable equation (for v = v(z)).
EXAMPLE: Solve the equation (see above, the example for
integrating factor)

(3zy + yH)dx + (2° + xy)dy = 0,

using the method of homogeneous equations.
THE RICCATI EQUATION:

Y (z) = qi(z) + ga(x)y + g3(2)y?,
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in some open interval I C R, where the coefficients are contin-
uous functions.

If some solution y; (z) is known, then defining a new unknown
function v(z) by

1

= @

we get a linear equation

V' = —(g2(7) + 2g3(2)y1(2))v — g3().
THE BRACHISTOCHRONE PROBLEM:

Find the curve along which a particle will slide without fric-
tion in the minimum time from one given point P to another @,
the latter being lower than the former but not directly beneath
1t.

(One of the most famous problems in the history of mathe-
matics, posed by Johann Bernoulli, 1696. Read the full story
in:

D. E. Smith, ”A Source Book in Mathematics, Vol. 2", pp.

644-655).
SOLUTION (W.E. Boyce and R. C. DiPrima, ” Elementary Dif-
ferential Equations and Boundary Value Problems”, 3-rd Ed.
Ch. 2.10, p. 69):

(a) Take P = (0,0) and the y—axis directed down, so () =

Q(zo,yo) where zg,yo > 0.
(b) The equation for the unknown curve y(z) is

1+ 9/ (2)Jy(z) = &2,
where k£ > 0 is a constant (determined by physical constants).
We look for monotone increasing solutions.
(c) Introduce a new unknown function u by
y = k?sin?u,
and the equation is transformed to
dr — 2k?* sin® udu = 0.

(d) The solution is then

/{Z2
r = E(Qu — sin(2u)),

and from the definition of wu,
2

y(z) = 5(1 — cos(2u)).
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(d) The solution is then a graph, parametrized by u, namely,
r=x(u),y=yu).

(e) This graph is the cycloid.
THE LOGISTIC EQUATION (Verhulst, 1838):

y(t) =yla—by), y(0)=yo, tel0,00).

a,b > 0 are (known) parameters.
This is a model for population evolution where a represents the
"growth rate without environmental influence” while b repre-
sents the ”decrease of growth rate due to increasing population
density”.
SOLUTION: (a) If for some ty > 0 we have a — by(ty) = 0 then
y(t) = y(to) (consequence of a uniqueness theorem to be proved
later).

(b) So sgn(a — by(t)) = sgn(a — byy) for all ¢ € [0,00). By
separation of variables

y(t)

Yo 'a— by(t)

—b
a Yo | _ eat7 te [07 00)7

or
a

t)=—2—.
y(t) 1t G;;’(;erfat

(c) The asymptotic value, as t — oo, is always ¢.
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