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Notation

• The scalar product in Rm is denoted by (·, ·).
• Euclidean norm |x|2 =

m∑
i=1

x2
i in Rm.

• For every A ∈ Hom(Rm,Rm) we denote by ‖A‖ its (operator)
norm with respect to | · |.

• Notation: B(x, r) for the OPEN ball of radius r center x. The
CLOSED ball is denoted by B(x, r).

• For every multi-index α = (α1, ..., αm) ∈ Nm we denote

Dα =
∂α1

∂xα1
1

...
∂αm

∂xαm
m

and |α| = α1 + ... + αm.
• (a) If D ⊆ Rn we denote by C(D,Rm) the set of continuous

(vector) functions on D into Rm.
(b) We denote by Cb(D,Rm) ⊆ C(D,Rm) the set of BOUNDED

continuous functions on D.
The norm is defined by:

‖φ‖Cb
= sup

x∈D
|φ(x)|.

(c) We denote by Ck(D,Rm) the subset of functions in C(D,Rm)
which are continuously differentiable up to (including) order k.

(d) We denote by Ck
b (D,Rm) the subset of Ck(D,Rm) such

that all derivatives are bounded up to (including) order k.
The norm is defined by:

‖φ‖Ck
b

= sup
x∈D

∑

|α|≤k

|Dαφ(x)|.

(e) If m = 1 we simplify to C(D), Cb(D), Ck(D).
(f) C∞

0 (U) is the space of smooth functions supported in
an open set U ⊆ Rm.
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*************************************************************************

• BASIC DEFINITIONS
• *******************************************************
• We consider (AN AUTONOMOUS SYSTEM)

(A) y′(t) = f(y(t)), t ∈ I ⊆ R,

f(y) ∈ C1(D,Rm), where D ⊆ Rm is an open set.
• We denothe by y(t; P ) the (unique) solution such that y(0; P ) =

P, P ∈ D.
• DEFINITION (critical point): A point Q ∈ D is said to be

critical (also equilibrium) for (A) if f(Q) = 0.
NOTE: The unique solution passing through Q is y(t; Q) ≡

Q.
• DEFINITION (hyperbolic critical point): A critical point

Q ∈ D for (A) is said to be hyperbolic if <λ 6= 0 for every
eigenvalue λ of the Jacobian f ′(Q) = Df(Q).

• DEFINITION (infinitesimally hyperbolic matrix): A ma-
trix A ∈ Hom(Cm, Cm) is said to be infinitesimally hyper-
bolic if <λ 6= 0 for every eigenvalue λ of A.

• DEFINITION (hyperbolic matrix): A matrix A ∈ Hom(Cm, Cm)
is said to be hyperbolic if |λ| 6= 1 for every eigenvalue λ of A.

• REMARK. Note that if B ∈ Hom(Cm, Cm) is infinitesimally
hyperbolic then A = etB is hyperbolic for any t 6= 0.

In particular, the evolution matrix etDf(0) of the linearized
system

(AL) y′(t) = Df(0)y(t), t ∈ R
is hyperbolic (for any t 6= 0) if y = 0 is a hyperbolic critical

point.
*******************************************************

• HYPERBOLIC MATRICES and MATRIX NORMS
• LEMMA. Let A ∈ Hom(Cm, Cm). Let

ρ(A) := max {|λ1|, ..., |λm|, λj is an eigenvalue of A, 1 ≤ j ≤ m} .

Then for every ε > 0 there exists a norm ‖ · ‖ on Cm such that

‖A‖ < ρ(A) + ε,

where ‖A‖ is the operator norm induced by ‖ · ‖.
Note that for every norm ‖ · ‖ on Cm, we have ‖A‖ ≥ ρ.
ρ(A) is called the spectral radius of A.
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Proof. Suppose the claim holds for A upper diagonal (i.e., all
elements below the diagonal = 0). Then, for any A, let P ∈
Hom(Cm, Cm) such that PAP−1 is upper diagonal, and let ‖ · ‖
be the corresponding norm. We then define a new norm by
‖z‖1 = ‖Pz‖, z ∈ Cm, and get

‖Az‖1 = ‖PAz‖ = ‖PAP−1Pz‖
≤ (ρ(PAP−1) + ε)‖Pz‖ = (ρ(A) + ε)‖Pz‖ = (ρ(A) + ε)‖z‖1.

Thus, it suffices to deal with a Jordan block of the form

A =




λ 1 0 0
0 λ 1 0
... ... ... ...
0 0 ... λ


 .

Let

Q =




µ 0 0 0
0 µ2 0 0
... ... ... ...
0 0 ... µm


 .

Then

(QAQ−1) =




λ µ−1 0 0
0 λ µ−1 0
... ... ... ...
0 0 ... λ


 .

The claim is now proved by taking the norm ‖z‖ = max {|z1|, ..., |zm|}
and µ > ε−1. ¤

• REMARK. The Lemma is true also for A ∈ Hom(Rm,Rm),
simply by regarding it as a complex matrix and restricting the
norm to Rm.

****************************************************************
• THE HARTMAN-GROBMAN THEOREM for DIF-

FEOMORPHISMS.
***********************************************************

• ASSUMPTION: A ∈ Hom(Rm,Rm) hyperbolic, nonsingular.
• We assume (changing coordinates) that A is in ”block-diagonal”

form (with m = m1 + m2, and one of them can be 0)

(BD) A =

(
A1 0
0 A2

)
,
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where A1 ∈ Hom(Rm1 ,Rm1) has eigenvalues inside the unit
circle and A2 ∈ Hom(Rm2 ,Rm2) has eigenvalues outside the
unit circle.

• We use the Lemma above to get norms ‖ · ‖i on Rmi , i = 1, 2
such that, with some 0 < ν < 1,

(∗) ‖A1‖1 < ν, ‖A−1
2 ‖2 < ν.

The norm on Rm is taken as the sum of these norms.
• CLAIM: Define a linear transformation L on Cb(Rm,Rm) (into

itself) by

L(h)(x) = h(Ax)− Ah(x), h ∈ Cb(Rm,Rm).

Then L is invertible.
REMARK: The fact that A is hyperbolic is essential in this

claim.

Proof. We decompose h = (h1, h2), where hi ∈ Cb(Rm,Rmi), i =
1, 2. Thus L can be decomposed as

Lh(x) = (L1h
1(x), L2h

2(x))

= (h1(Ax)− A1h
1(x), h2(Ax)− A2h

2(x)), x ∈ Rm,

where Li is a linear map on Cb(Rm,Rmi) (into itself).
We use the norms introduced above, so that (*) holds. Note

that the linear map Ti = hi(Ax), i = 1, 2, on Cb(Rm,Rmi) is in-
vertible with norm 1. Thus, it suffices to prove the invertibility

of the map L̃h = ((I1 − T−1
1 A1)h

1, (A−1
2 T2 − I2)h

2), where Ii is

the identity on Cb(Rm,Rmi), i = 1, 2. But the invertibility of L̃
follows clearly from (*), in view of Neumann’s series. Further-

more, ‖L̃i

−1‖ ≤ 1
1−ν

, i = 1, 2, where the norm is the operator

norm on Cb(Rm,Rmi). We conclude that ‖L−1
1 ‖ = ‖L̃1

−1
T−1

1 ‖ ≤
1

1−ν
and ‖L−1

2 ‖ = ‖L̃1

−1
A−1

2 ‖ ≤ ν
1−ν

≤ 1
1−ν

, so that

‖L−1‖ ≤ 2

1− ν
.

¤
• A FUNCTIONAL EQUATION.
• Consider the equation

(FE) h(Ax)− Ah(x) = p(x + h(x)).

The function p ∈ C1
b (Rm,Rm) is given (with p(0) = 0) and we

look for a solution h ∈ Cb(Rm,Rm) such that h(0) = 0.
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REMARK: The solution to this equation is the main ingre-
dient in the proof of the Hartman-Grobman Theorem below.

• PROPOSITION: Fix 0 < α < 1. There exists ε > 0 with the
following property:

For every p ∈ C1
b (Rm,Rm) such that p(0) = 0 and ‖p‖C1

b
<

ε there exists a unique function h ∈ Cb(Rm,Rm) such that
‖h‖Cb

< α, h(0) = 0 and (FE) is satisfied.

Proof. Define a map on Cb(Rm,Rm) by Φ(h)(x) = p(x+h(x))−
p(x). The equation (FE) can then be rewritten as Lh(x) =
Φ(h)(x) + p(x) or

(∗∗) h = L−1Φ(h) + L−1p,

where L is the linear operator in the above Claim. From the
estimate at the end of the proof of that Claim we get

‖L−1Φ(h) + L−1p‖Cb
≤ 2

1− ν
‖Φ(h) + p‖Cb

.

Using the definition of the norm in C1
b (Rm,Rm) we get

‖Φ(h)‖Cb
≤ ‖p‖C1

b
‖h‖Cb

.

Taking ε > 0 such that

2ε

1− ν
(1 + α) < α,

we see that for any p such that ‖p‖C1
b

< ε the right-hand side

of (**) maps the ball of radius α in Cb(Rm,Rm) into itself.

Furthermore, for any h, h̃ in this ball

‖L−1Φ(h)− L−1Φ(h̃)‖Cb
≤ 2

1− ν
‖p‖C1

b
‖h− h̃‖Cb

≤ 2ε

1− ν
‖h− h̃‖Cb

≤ α‖h− h̃‖Cb
,

so that the map in the right-hand side of (**) is a contraction
on the ball of radius α in Cb(Rm,Rm).

We conclude that in the ball there is exactly one fixed point
of the map (for every ‖p‖C1

b
< ε), which is the unique solution

of (**). ¤

***********************************************************
• DEFINITION (hyperbolic fixed point of a smooth map):

Let Ω ⊆ Rm be open and 0 ∈ Ω. Let Ψ ∈ C1(Ω,Rm) and assume
that Ψ(0) = 0. We say that 0 is a hyperbolic fixed point if
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Ψ′(0) = DΨ(0) is hyperbolic (i.e., has no eigenvalues on the
unit circle).

•
Theorem (THE HARTMAN-GROBMAN THEOREM–diffeomorphism).
Let F : B(0, a) ⊆ Rm ↪→ Rm for some a > 0. Suppose that,

(i) F ∈ C1(B(0, a),Rm).
(ii) x = 0 is a hyperbolic fixed point of F and the

Jacobian DF (0) is nonsingular.
Then there are 0 < c < b < a and an open set U ⊆ Rm, such

that,
(1) There exists a homeomorphism H mapping B(0, b)

onto U, and H(0) = 0 ∈ U.
(2) Both H and DF (0) map B(0, c) into B(0, b).
(3) F (H(x)) = H(DF (0)x), x ∈ B(0, c).
REMARK: Writing H−1(F (H(x))) = DF (0)x, x ∈ B(0, c),

we see that the restriction of F to the image of B(0, c) by H is
”similar” to the action of DF (0) on this ball.

Proof. (1) We denote A = DF (0). Fix 0 < α < 1, and let
ε > 0 be given by the above Proposition. Replacing a > 0
by a smaller radius if necessary, we can assume that

‖F (x)− Ax‖C1
b (B(0,a)) <

ε

3
.

In particular,

‖F (x)− Ax‖Cb(B(0,a)) <
ε

3
a.

(2) Let φ ∈ C∞
0 (B(0, a)), be such that , for a suitable b < a,

0 ≤ φ(x) ≤ 1, x ∈ B(0, a), φ(x) = 1, x ∈ B(0, b), ‖φ‖C1
b (B(0,a)) <

2

a
.

(3) Define p(x) = φ(x)(F (x) − Ax). Then p is supported in
B(0, a) and

‖p‖C1
b (Rm) ≤

2

a

ε

3
a +

ε

3
= ε.

(4) In addition, we take ε > 0 sufficiently small (this might
involve a smaller radius a) so that

‖A−1p‖C1
b (Rm) < 1.

This means that

‖(I + A−1p)(x)− (I + A−1p)(y)‖ ≥ (1− ‖A−1p‖C1
b (Rm))‖x− y‖,
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so that,

(∗ ∗ ∗) (A + p)(x) 6= (A + p)(y) if x 6= y.

(Note: (A + p)(x) = Ax + p(x)).
(5) The Proposition implies that there exists h ∈ Cb(Rm,Rm),

with ‖h‖Cb
< α, h(0) = 0, such that (see (FE)),

h(Ax)− Ah(x) = p(x + h(x)), x ∈ Rm.

Defining H(x) = x + h(x), this can be written as

(∗ ∗ ∗∗) (A + p)(H(x)) = H(Ax).

(6) There exists 0 < c < b such that

x ∈ B(0, c) ⇒ x + h(x) ∈ B(0, b) ⇒ (A + p)(H(x)) = F (H(x)).

We can decrease (if needed) c so that also x ∈ B(0, c) ⇒
Ax ∈ B(0, b), and we obtain assertions (2) and (3) of the
theorem.

(7) It remains to check that H is a homeomorphism on B(0, b).
Suppose first that for some x 6= y ∈ Rm, we have H(x) =
H(y). By (****) we have H(Ax) = H(Ay). Continuing like
that we get

H(Akx) = H(Aky), k = 1, 2, ...

Replacing x by A−1x in (****) and noting (***) we have
also H(A−1x) = H(A−1y) and continuing like that we get

H(Akx) = H(Aky), k = −1,−2, ...

(8) The definition of H now yields

‖Akx− Aky‖ = ‖h(Akx)− h(Aky)‖ ≤ 2‖h‖Cb(Rm),

where the norm is as introduced above (before the Claim).
(9) Now we use the hyperbolic structure of A (which was also

essential for the Claim above). Using the block-diagonal
form (BD), we decompose

x− y = (x− y)1 + (x− y)2 ∈ Rm = Rm1 ⊕ Rm1 ,

and note that

‖(x− y)1‖ = ‖Ak
1A

−k
1 (x− y)1‖ ≤ 2νk‖h‖Cb(Rm) −−−→

k→∞
0,

with a similar argument for (x− y)2 (with k → −∞).
We conclude that x = y.
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(10) We know that H is one-to-one on B(x, b) and hence (since
the closed ball is compact) a homeomorphism onto its im-
age. In particular, the restriction of H−1 to the image
U = H(B(0, b)) is continuous. Finally, the set U is open
by the theorem on Invariance of Domain [2, Chapter 18].

¤
****************************************************************

• THE HARTMAN-GROBMAN THEOREM for DIF-
FERENTIAL EQUATIONS.

***********************************************************
• We turn back to the autonomous system

(A) y′(t) = f(y(t)), t ∈ I ⊆ R,

f(y) ∈ C1(D,Rm), where D ⊆ Rm is an open set, and its
linearization

(AL) y′(t) = Df(0)y(t), t ∈ R.

• ASSUMPTION: y = 0 ∈ D is a hyperbolic critical point,
namely, Df(0) has no pure imaginary eigenvalues.

We also assume that Df(0) is regular.
• Our goal is to construct a local homeomorphism that ”trans-

forms” the flow of (A) to the flow of (AL) near the critical
point.

• As in the case of diffeomorphisms above, we start with a certain
functional equation, related to a hyperbolic matrix A.

• ASSUMPTION: A ∈ Hom(Rm,Rm) hyperbolic, nonsingular.
• We assume (changing coordinates) that A is in ”block-diagonal”

form (with m = m1 + m2, and one of them can be 0)

(BD) A =

(
A1 0
0 A2

)
,

where A1 ∈ Hom(Rm1 ,Rm1) has eigenvalues inside the unit
circle and A2 ∈ Hom(Rm2 ,Rm2) has eigenvalues outside the
unit circle.

• CLAIM: Let F : Rm → Rm be a homeomorphism (i.e., con-
tinuous onto , with continuous inverse).

Define a linear transformation M on Cb(Rm,Rm) (into itself)
by

M(h)(x) = Ah(x)− h(F (x)), h ∈ Cb(Rm,Rm).
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Then M is invertible.
• REMARK. The operator M is slightly more general than the

operator L in the previous Claim (for diffeomorphisms), which
corresponds here to F (x) = x. However, the linear operator
h → h(F (x)) is of unit norm and the proof is identical.

•
Theorem (THE HARTMAN-GROBMAN THEOREM–differential
equations). Consider the system (A), where y = 0 is a hyper-
bolic fixed point and Df(0) is regular.

Let Φt be the flow of (A) and Ψt the flow of the linear system
(AL).

Then there is an open neighborhood 0 ∈ U ⊆ D, and a home-
omorphism G : U → G(U) ⊆ D, so that

G(Φt(x)) = Ψt(G(x)),

for all (t, x) ∈ R× U, such that Φt(x) ∈ U.

Proof. In this proof we refer to the above theorem (HARTMAN-
GROBMAN for diffeomorphisms) as the ”previous theoerm”
(and its proof).
(1) Let B(0, b) ⊆ B(0, a) ⊆ D and a cutoff function

0 ≤ φ(x) ≤ 1, x ∈ B(0, a), φ(x) = 1, x ∈ B(0, b), ‖φ‖C1
b (B(0,a)) <

2

a
.

We now define

f ∗(x) = φ(x)f(x) + (1− φ(x))Df(0)(x),

and replace the system (A) by

(A∗) y′(t) = f ∗(y(t)), t ∈ R.

We denote its (global) flow by Φ∗
t .

(2) We denote

F (x) = Φ∗
1(x), A = eDf(0) = Ψ1.

and set

p(x) = F (x)− Ax,

so that

p(x) =

1∫

0

[f ∗(Φ∗
t (x))−Df(0)Ψt(x)]dt.
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Note that

Φ∗
t (x)−Ψt(x) =

t∫

0

[f ∗(Φ∗
s(x))−Df(0)Ψs(x)]ds =

t∫

0

[f ∗(Φ∗
s(x))− f ∗(Ψs(x))]ds +

t∫

0

[f ∗(Ψs(x))−Df(0)Ψs(x)]ds.

For any ε > 0 we can choose 0 < a < 1 sufficiently small,
so that |f ∗(z)−Df(0)z| < ε min(1, |z|) for all z ∈ R. Thus

|Φ∗
t (x)−Ψt(x)| ≤ β

t∫

0

|Φ∗
s(x))−Ψs(x)|ds + εe|t|‖Df(0)‖, |t| ≤ 1,

where β > 0 is a Lipschitz constant for f ∗. Gronwall’s
inequality now yields

(∗ ∗ ∗ ∗ ∗) |Φ∗
t (x)−Ψt(x)| ≤ εe|t|(‖Df(0)‖+β).

(3) In particular it follows that p = Φ∗
1(x)−Ψ1(x) ∈ Cb(Rm,Rm),

so by the above Claim we have a unique solution g ∈
Cb(Rm,Rm) to the equation Mg = p, i.e.,

Ag(x)− g(F (x)) = p(x), x ∈ Rm.

Denoting G(x)x+ g(x) we can rewrite the last equation as

G(F (x)) = AG(x), x ∈ Rm.

(4) Define

G(x) =

1∫

0

Ψ−s(G(Φ∗
s(x)))ds, x ∈ Rm.
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Using the linearity of Ψt we have

Ψ−t(G(Φ∗
t (x))) =

1∫

0

Ψ−t−s(G(Φ∗
t+s(x)))ds =

t∫

t−1

Ψ−τ (Ψ−1(G(Φ∗
1(Φ

∗
τx))))dτ

=

t∫

t−1

Ψ−τ (A
−1(G(F (Φ∗

τx))))dτ =

t∫

t−1

Ψ−τ (G(Φ∗
τx))dτ =

0∫

t−1

Ψ−τ (G(Φ∗
τx))dτ +

t∫

0

Ψ−τ (G(Φ∗
τx))dτ =

1∫

t

Ψ1−τ (G(Φ∗
τ−1x))dτ +

t∫

0

Ψ−τ (G(Φ∗
τx))dτ =

1∫

t

Ψ−τ (AG(F−1(Φ∗
τx)))dτ +

t∫

0

Ψ−τ (G(Φ∗
τx))dτ =

1∫

0

Ψ−τ (G(Φ∗
τx))dτ = G(x)

.

(5) We conclude

Ψ−t(G(Φ∗
t (x))) = G(x), (t, x) ∈ R× Rm,

and in particular (with t = 1),

G(F (x)) = AG(x).

This is the same equation satisfied by G(x) = x+g(x) and
by the uniqueness of g we conclude that G(x) = G(x) if

G(x)− x ∈ Cb(Rm,Rm).

(6) To prove it we write

G(x)− x =

1∫

0

Ψ−s(G(Φ∗
s(x)))ds− x =

1∫

0

Ψ−s(G(Φ∗
s(x))−Ψs(x))ds =

1∫

0

Ψ−s(G(Φ∗
s(x))− Φ∗

s(x) + Φ∗
s(x)−Ψs(x))ds,
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so that, using (*****) above ( see (2)),

|G(x)− x| ≤ e‖Df(0)‖ sup
0≤s≤1

[|G(Φ∗
s(x))− Φ∗

s(x)|+ |Φ∗
s(x)−Ψs(x)|]

≤ e‖Df(0)‖ [‖g‖Cb
+ sup

0≤s≤1
|Φ∗

s(x)−Ψs(x)|]

≤ e‖Df(0)‖ [‖g‖Cb
+ εe‖Df(0)‖eβ].

Thus G = G.
(7) Next we note that (*****) (see (2) above) implies that for

any ε > 0 we can choose a > 0 sufficiently small so that
‖p‖Cb(Rm) ≤ ε.
We also have

DΦ∗
t (x)−DΨt(x) =

t∫

0

[Df ∗(DΦ∗
s(x))−Df(0)(DΨs(x))]ds =

t∫

0

[Df ∗(DΦ∗
s(x))−Df ∗(DΨs(x))]ds +

t∫

0

[Df ∗(DΨs(x))−Df(0)(DΨs(x))]ds.

For any ε > 0 we can choose 0 < a < 1 sufficiently small,
so that ‖Df ∗(z)−Df(0)‖ < ε for all z ∈ R. Also note that
DΨs(x) = Ψs(x). Let γ be a Lipschitz constant for Df ∗.
We obtain, for |t| ≤ 1,

|DΦ∗
t (x)−DΨt(x)| ≤ γ

t∫

0

|DΦ∗
s(x))−DΨs(x)|ds + εe|t|‖Df(0)‖,

Gronwall’s inequality now yields, as in (*****),

|DΦ∗
t (x)−DΨt(x)| ≤ εe|t|(‖Df(0)‖+γ), |t| ≤ 1.

Combined with the above estimate for p = Φ∗
1(x)− Ψ1(x)

we conclude that for any ε > 0 we can choose a > 0 suffi-
ciently small so that ‖p‖C1

b (Rm) ≤ ε.

(8) In particular, by the above Proposition , we have a unique
function h ∈ Cb(Rm,Rm) such that ‖h‖Cb

< 1, h(0) = 0
and (FE) is satisfied:

(FE) h(Ax)− Ah(x) = p(x + h(x)).

Letting H(x) = x + h(x) it can be rewritten as

F (H(x)) = H(Ax).

H is a GLOBAL homeomorphism on Rm.
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(Note the difference between this and (****) in the proof
of the theorem for diffeomorphisms, where A + p = F only
for ”small” x.).

(9) We get

G(H(Ax)) = G(F (H(x))) = AG(H(x)),

and denoting K = G ◦ H it gives K(Ax) = AK(x). But
K(x) = x + h(x) + g(H(x)) = x + h(x) + g(x + h(x)) so,
with r(x) = h(x) + g(x + h(x)) ∈ Cb(Rm,Rm) we have

0 = K(Ax)− AK(x) = r(Ax)− Ar(x)

and the Claim above (with M(r)(x) = Ar(x) − r(A(x)))
yields r(x) ≡ 0. So K = G ◦ H = I, the identity, and
G = H−1 is a homeomorphism on Rm.

(10) From G = G proved above and the result of (4)

Ψ−t(G(Φ∗
t (x))) = G(x), (t, x) ∈ R× Rm,

we obtain,

G(Φ∗
t (x)) = Ψt(G(x)), x ∈ Rm.

(11) Finally, if x ∈ B(0, b) (see the beginning of the proof),
we have the equality of the flows Φ∗

t (x) = Φt(x) in some
interval t ∈ (−δ(x), δ(x)).

¤
****************************************************
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