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Notation

e The scalar product in ]Rm is denoted by (-, ).

e Euclidean norm |z|? = Z z? in R™.

e For every A € Hom(Rm Rm) we denote by ||A]| its (operator)
norm with respect to | - |.

e Notation: B(z,r) for the OPEN ball of radius r center x. The
CLOSED ball is denoted by B(z,7).

e For every multi-index a = (ay, ..., ay,) € N™ we denote

g gem

D* =
a1 m
ox{'  Ox%

and |o| = o + ... + ap,.
e (a) If D C R" we denote by C(D,R™) the set of continuous
(vector) functions on D into R™.
(b) We denote by C,(D,R™) C C'(D,R™) the set of BOUNDED
continuous functions on D.
The norm is defined by:

[6llc, = sup[¢(x)].
rzeD

(c) We denote by C*(D,R™) the subset of functions in C(D, R™)
which are continuously differentiable up to (including) order k.

(d) We denote by CF(D,R™) the subset of C*(D,R™) such
that all derivatives are bounded up to (including) order k.

The norm is defined by:

I9llcy = sup > ID%(x
\a|<k
(e) If m = 1 we simplify to C(D), Cy(D), Ck(D).
(f) C°(U) is the space of smooth functions supported in

an open set U C R™.
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e BASIC DEFINITIONS
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e We consider (AN AUTONOMOUS SYSTEM)

(4) y(t)=fly@), telCR,

f(y) € CY(D,R™), where D C R™ is an open set.

e We denothe by y(¢; P) the (unique) solution such that y(0; P) =
P, PeD.

e DEFINITION (critical point): A point ) € D is said to be
critical (also equilibrium) for (A) if f(Q) = 0.

NOTE: The unique solution passing through @ is y(t; Q) =
Q.

e DEFINITION (hyperbolic critical point): A critical point
Q@ € D for (A) is said to be hyperbolic if £\ # 0 for every
eigenvalue A of the Jacobian f'(Q) = Df(Q).

e DEFINITION (infinitesimally hyperbolic matrix): A ma-
trix A € Hom(C™,C™) is said to be infinitesimally hyper-
bolic if R\ # 0 for every eigenvalue A of A.

e DEFINITION (hyperbolic matrix): A matrix A € Hom(C™,C™)
is said to be hyperbolic if |A| # 1 for every eigenvalue A of A.

e REMARK. Note that if B € Hom(C™,C™) is infinitesimally
hyperbolic then A = e'? is hyperbolic for any t # 0.

In particular, the evolution matrix €270 of the linearized
system

(AL) y(t)=Df(O0)y(t), teR

is hyperbolic (for any ¢ # 0) if y = 0 is a hyperbolic critical

point.
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e HYPERBOLIC MATRICES and MATRIX NORMS
e LEMMA. Let A € Hom(C™,C™). Let

p(A) :=max {|A1], ..., [Am], A; is an eigenvalue of A, 1 < j < m}.
Then for every € > 0 there exists a norm || - || on C™ such that
[All < p(A) +¢,

where ||A|| is the operator norm induced by || - ||.
Note that for every norm || - || on C™, we have ||A|| > p.
p(A) is called the spectral radius of A.
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Proof. Suppose the claim holds for A upper diagonal (i.e., all
elements below the diagonal = 0). Then, for any A, let P €
Hom(C™,C™) such that PAP~! is upper diagonal, and let || - ||
be the corresponding norm. We then define a new norm by
[l = [|Pz]], = € C™, and get

[A2]ly = ||[PAz|| = | PAP~ Pz
(p(PAP™Y) + e)[| Pzl = (p(A) + €)l|Pz]| = (p(A) + &) ||l

Thus, it suffices to deal with a Jordan block of the form

IN

A1 0 0
e 0O A 1 0
00 . A
Let
w 0 0 0
Q= 0 > 0 0
0 0 .
Then
Apt000
Qagh= |0 N
000 .. A

The claim is now proved by taking the norm ||z|| = max {|z1], ..., |zm|}
! U

and p > e .
e REMARK. The Lemma is true also for A € Hom(R™ R™),
simply by regarding it as a complex matrix and restricting the

norm to R™.
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e THE HARTMAN-GROBMAN THEOREM for DIF-
FEOMORPHISMS.
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e ASSUMPTION: A € Hom(R™, R™) hyperbolic, nonsingular.
e We assume (changing coordinates) that A is in ”block-diagonal”
form (with m = m; 4+ ms, and one of them can be 0)

(BD) 4= </‘§; jQ) |
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where A; € Hom(R™ ,R™) has eigenvalues inside the unit
circle and Ay € Hom(R™2 R™2) has eigenvalues outside the
unit circle.

We use the Lemma above to get norms || - ||; on R™ i = 1,2
such that, with some 0 < v < 1,

(*) |AL]s < v, ||ATY]2 < v

The norm on R™ is taken as the sum of these norms.
CLAIM: Define a linear transformation L on C,(R™, R™) (into
itself) by

L(h)(x) = h(Az) — Ah(x), h e Cy(R™,R™).
Then L is invertible.

REMARK: The fact that A is hyperbolic is essential in this
claim.

Proof. We decompose h = (h', h?), where h' € Cy(R™ R™), i =
1,2. Thus L can be decomposed as
Lh(z) = (L1h' (z), Lyh*(z))

= (W' (Az) — A1h' (), h*(Ax) — Ayh*(2)), x € R™,
where L; is a linear map on Cp(R™, R™) (into itself).

We use the norms introduced above, so that (*) holds. Note
that the linear map T; = h'(Azx), i = 1,2, on Cy(R™ R™) is in-
vertible with norm 1. Thus, it suffices to prove the invertibility
of the map Lh = ((I, — Ty Ay hY, (A Ty — I,)h?), where I; is
the identity on C,(R™,R™) i = 1,2. But the invertibility of L
follows clearly from (*), in view of Neumann’s series. Further-
more, ||E,_1|| < &, i = 1,2, where the norm is the operator
norm on Cy(R™, R™). We conclude that ||L!| = ||ZI_1T1_1|| <
L and |1 = L0 451 < 1% < 5, s0 that

2
IL7H < —.
1—v

e A FUNCTIONAL EQUATION.
Consider the equation

(FE) h(Az) — Ah(z) = p(z + h(z)).

The function p € C}(R™,R™) is given (with p(0) = 0) and we
look for a solution h € Cy(R™, R™) such that h(0) = 0.
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REMARK: The solution to this equation is the main ingre-

dient in the proof of the Hartman-Grobman Theorem below.
¢ PROPOSITION: Fix 0 < a < 1. There exists € > 0 with the
following property:

For every p € Cy(R™,R™) such that p(0) = 0 and ||p[lc; <
¢ there exists a unique function h € Cy(R™,R™) such that
|hllc, < a, h(0) =0 and (FE) is satisfied.

Proof. Define a map on Cp(R™,R™) by ®(h)(z) = p(z+h(z))—
p(z). The equation (FE) can then be rewritten as Lh(x) =
®(h)(x) + p(z) or

(xx) h=L"®h)+ L 'p,
where L is the linear operator in the above Claim. From the
estimate at the end of the proof of that Claim we get

_ _ 2
1L (k) + L 'plle, < 17— 12(R) +plley.

Using the definition of the norm in C} (R™, R™) we get

[@(R)]le, < lpllclirlicy-
Taking € > 0 such that

2¢e
1—v

(14 a) < a,

we see that for any p such that ||p||c; < e the right-hand side
of (**) maps the ball of radius a in Cy(R™, R™) into itself.
Furthermore, for any h, h in this ball

_ s 2 -
1L (k) = L7 @(R)le, < 17— Iplcyllh = hlle,

2e
<
—1—-v

Ih = Rllc, < allh — Rllc,,

so that the map in the right-hand side of (**) is a contraction
on the ball of radius « in C,(R™, R™).

We conclude that in the ball there is exactly one fixed point
of the map (for every |[p[[¢; <€), which is the unique solution
of (**). O
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e DEFINITION (hyperbolic fixed point of a smooth map):
Let Q C R™ be open and 0 € Q. Let ¥ € C'(Q, R™) and assume
that W(0) = 0. We say that 0 is a hyperbolic fixed point if
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U’(0) = DW(0) is hyperbolic (i.e., has no eigenvalues on the
unit circle).

Theorem (THE HARTMAN-GROBMAN THEOREM-diffeomorphism).
Let F: B(0,a) CR™ < R™ for some a > 0. Suppose that,

(i) F e CY(B(0,a),R™).

(ii) x = 0 is a hyperbolic fixed point of F' and the
Jacobian DF(0) is nonsingular.

Then there are 0 < ¢ < b < a and an open set U C R™, such

that,

(1) There ezists a homeomorphism H mapping B(0,b)
onto U, and H(0) =0 € U.

(2) Both H and DF(0) map B(0,c) into B(0,b).

(3) F(H(z)) = H(DF(0)z), x¢€ B(0,c).

REMARK: Writing H~'(F(H(x))) = DF(0)z, x € B(0,c),
we see that the restriction of F' to the image of B(0,c¢) by H is
”similar” to the action of DF'(0) on this ball.

Proof. (1) We denote A = DF(0). Fix 0 < a < 1, and let
e > 0 be given by the above Proposition. Replacing a > 0
by a smaller radius if necessary, we can assume that

€
| F'(x) — A'THC'bl(B(O,a)) < 3

In particular,
€

17(z) = Azllc,soa) < ga.

(2) Let ¢ € C§°(B(0,a)), be such that , for a suitable b < a,

2
0< ¢(x) <1l ze B(O,(l), ¢<1’> =1 z€ B(O7b)7 ||¢||Cb1(B(0,a)) < a

(3) Define p(z) = ¢(x)(F(x) — Az). Then p is supported in
B(0,a) and

2 Ea _I_ E = ¢

a3 3

(4) In addition, we take ¢ > 0 sufficiently small (this might
involve a smaller radius a) so that

I12llepmy <

HAilpHcg(Rm) <L
This means that

I+ A7 p)(@) = I+ A )W)l = (L= 1A pllepm))llz = yll,
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so that,

(5 %) (A+p)(x) #(A+p)(y) ifz#y.

(Note: (A+p)(x) = Az + p(x)).
(5) The Proposition implies that there exists h € C,(R™, R™),
with ||h]|¢, < «, h(0) =0, such that (see (FE)),

h(Az) — Ah(z) = p(z + h(z)), =€ R™.
Defining H(x) = x + h(z), this can be written as
(ews) (At p)(H()) = H(An)
(6) There exists 0 < ¢ < b such that
z € B(0,¢) = z+ h(z) € B(0,b) = (A+p)(H(z)) = F(H(x)).

We can decrease (if needed) ¢ so that also x € B(0,c¢) =
Az € B(0,b), and we obtain assertions (2) and (3) of the
theorem.

(7) It remains to check that H is a homeomorphism on B(0,b).
Suppose first that for some = # y € R™, we have H(x) =
H(y). By (****) we have H(Az) = H(Ay). Continuing like
that we get

H(AFz) = H(A*y), k=1,2,..

Replacing = by A™'z in (****) and noting (***) we have
also H(A™'z) = H(A'y) and continuing like that we get

H(A*z) = H(A*y), k=—1,-2
(8) The definition of H now yields
|45 — A%y = [R(A%) — h(A*YI| < 2hlcym,

PEER

where the norm is as introduced above (before the Claim).

(9) Now we use the hyperbolic structure of A (which was also
essential for the Claim above). Using the block-diagonal
form (BD), we decompose

r—y=@—y1+(x -y eR"=R™OR™,
and note that
I = whll = 1AFAT @ — )il < 205 Al ) —— O

with a similar argument for (x — y)o (with & — —o00).
We conclude that x = y.
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(10) We know that H is one-to-one on B(x,b) and hence (since
the closed ball is compact) a homeomorphism onto its im-
age. In particular, the restriction of H~! to the image
U = H(B(0,b)) is continuous. Finally, the set U is open
by the theorem on Invariance of Domain [2, Chapter 18].

O
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e THE HARTMAN-GROBMAN THEOREM for DIF-
FERENTIAL EQUATIONS.
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e We turn back to the autonomous system

(4) y(t)=fyt), telCR,
fly) € CYD,R™), where D C R™ is an open set, and its
linearization

(AL) Yy (t)=Df(O)y(t), teR.

e ASSUMPTION: v = 0 € D is a hyperbolic critical point,

namely, Df(0) has no pure imaginary eigenvalues.
We also assume that D f(0) is regular.

e Our goal is to construct a local homeomorphism that ”trans-
forms” the flow of (A) to the flow of (AL) near the critical
point.

e Asin the case of diffeomorphisms above, we start with a certain
functional equation, related to a hyperbolic matrix A.

e ASSUMPTION: A € Hom(R™,R™) hyperbolic, nonsingular.

e We assume (changing coordinates) that A is in ”block-diagonal”
form (with m = my + mo, and one of them can be 0)

A 0
(5D) A= (% 1),
where A; € Hom(R™ ,R™) has eigenvalues inside the unit
circle and Ay € Hom(R™?,R™?) has eigenvalues outside the
unit circle.
e CLAIM: Let F' : R™ — R™ be a homeomorphism (i.e., con-
tinuous onto , with continuous inverse).

Define a linear transformation M on Cp(R™, R™) (into itself)
by

M(h)(z) = Ah(z) — h(F(z)), h € Cy(R™,R™).



HARTMAN-GROBMAN THEOREM 9

Then M is invertible.

e REMARK. The operator M is slightly more general than the
operator L in the previous Claim (for diffeomorphisms), which
corresponds here to F(x) = x. However, the linear operator

h — h(F(x)) is of unit norm and the proof is identical.
[ ]

Theorem (THE HARTMAN-GROBMAN THEOREM-differential
equations). Consider the system (A), where y = 0 is a hyper-
bolic fixed point and D f(0) is reqular.

Let @, be the flow of (A) and ¥y the flow of the linear system
(AL).

Then there is an open neighborhood 0 € U C D, and a home-
omorphism G : U — G(U) C D, so that

G(Pi(z)) = Ui(G(2)),
for all (t,x) € R x U, such that ®,(z) € U.

Proof. In this proof we refer to the above theorem (HARTMAN-
GROBMAN for diffeomorphisms) as the ”previous theoerm”
(and its proof).
(1) Let B(0,b) € B(0,a) C D and a cutoff function
2
0< ¢($) <1, z e B(O,a), ¢<.Z') =1, x € B(O,b), HQSHC;(B(O@)) < a
We now define
fr(@) = o) f(z) + (1 = ¢(2)) D f(0)(x),
and replace the system (A) by

(A7) y(t)=fy), teR

We denote its (global) flow by ®;.
(2) We denote

F(z) = ®i(z), A=eP/O =y,

and set
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Note that

@i (x) - Wy(z) = / (@2 (2)) — DF(0) V()]s =

t

/ (@ (@) — f*(Wa(a))ds + / (W) — DF(O)V,()]ds.

0

For any € > 0 we can choose 0 < a < 1 sufficiently small,
so that | f*(z) — Df(0)z| < emin(1, |z]) for all z € R. Thus

t
@7 (2) = Wi(2)] < ﬁ/ |@3(2)) — Wu(w)lds + e IPTOL e <1,
0

where § > 0 is a Lipschitz constant for f*. Gronwall’s
inequality now yields

(% s * % %) |DF () — Uy (x)] < celtlIDFO)]+8)

(3) In particular it follows that p = ®7(x)—V;(z) € Cp(R™,R™),
so by the above Claim we have a unique solution g €
Cp(R™, R™) to the equation Mg = p, i.e.,

Ag(z) - g(F(x)) = pla),  €R™.
Denoting G(x)z + g(x) we can rewrite the last equation as

G(F(z)) = AG(z), z¢€R™

G(z) = /‘IJ_S(G(CI):(x)))ds, T ER™
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Using the linearity of ¥, we have

1 t

U_,(G(®; (2))) = / U, (G(®],,()))ds = / U (U, (G(@](@5))))dr

(5) We conclude
V(G(P;(x))) = G(x), (t,x) € RXR™,
and in particular (with ¢t = 1),
G(F(x)) = AG(x).

This is the same equation satisfied by G(z) = =+ g(x) and
by the uniqueness of g we conclude that G(x) = G(x) if

G(x) — z € Cy(R™, R™),

(6) To prove it we write

1 1

0w) v = [ (G@1@))ds ~ 2 = [V (G(®I(a) ~ W.(a))ds =

0 0

/ U_L(G(®](x)) — B1(x) + D (x) — U, (x))ds,
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so that, using (*****) above ( see (2)),
G(2) — x| < 7O sup [|G(®;(2)) — @;(x)| + [@(2) — y(2)]]
0<s<1

< PTOMglle, + sup |@}(x) — V()]
0<s<1

< POl llglle, + gellDf(O)Heﬂ].

Thus G = G.
(7) Next we note that (*****) (see (2) above) implies that for
any € > 0 we can choose a > 0 sufficiently small so that

Ipllc,@m) < e
We also have

D& () — DU, (x / DF* (DD (x)) — DF(0)(DV,(x))]ds =

/ (D (D#*(2)) — DF*(DV,(x))]ds + / (D (D, (2)) — DF(0)(DV(x)))ds.

For any € > 0 we can choose 0 < a < 1 sufficiently small,
so that ||Df*(2) — Df(0)|| < e for all z € R. Also note that
DV (x) = ¥y(x). Let v be a Lipschitz constant for D f*.
We obtain, for |t| <1,

t
D®? (2) — DUy(z)] < 4 / DD (2)) — DU, (x)|ds + ecIPFOI
0

Gronwall’s inequality now yields, as in (****¥)
D! () — DU, ()] < eeIPFOIE) |y < 1.

Combined with the above estimate for p = ®3(z) — ¥y (x)
we conclude that for any € > 0 we can choose a > 0 suffi-
ciently small so that ||p|[c;@m) < €.

I

(8) In particular, by the above Proposition , we have a unique
function h € Cy(R™,R™) such that ||hlc, < 1, R(0) =0
and (FE) is satisfied:

(FE) h(Az) — Ah(z) = p(x + h(z)).
Letting H(z) = « + h(z) it can be rewritten as
F(H(z)) = H(Az).
H is a GLOBAL homeomorphism on R™.
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(Note the difference between this and (****) in the proof
of the theorem for diffeomorphisms, where A+ p = F only
for "small” z.).

(9) We get
G(H(Az)) = G(F(H(x))) = AG(H (x)),
and denoting K = G o H it gives K(Ax) = AK(z). But
K(x) =+ h(z) + g(H(z)) =z + h(z )+ (z + h(z)) so
with 7(x) = h(z) + g(x + h(z)) € Co(R™,R™) we have
= K(Az) — AK(z) = r(Azx) — Ar(x)
and the Claim above (with M (r)(z) = Ar(z) — r(A(x)))
yields r(z) = 0. So K = G o H = I, the identity, and
G = H~! is a homeomorphism on R™.
(10) From G = G proved above and the result of (4)
V(G(P;(x))) = G(x), (t,x) € RXR™,
we obtain,
G(%;(x)) = W (G(x)), = €R™

(11) Finally, if z € B(0,b) (see the beginning of the proof),
we have the equality of the flows ®f(x) = ®4(x) in some
interval t € (—6(x),d(z)).

U
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