AUTONOMOUS SYSTEMS, HYPERBOLIC CASE: THE HARTMAN-GROBMAN THEOREM

(FOLLOWING [1, CHAPTER 4])

MATANIA BEN-ARTZI

June 2008

Notation

- The scalar product in \mathbb{R}^{m} is denoted by (\cdot, \cdot).
- Euclidean norm $|x|^{2}=\sum_{i=1}^{m} x_{i}^{2}$ in \mathbb{R}^{m}.
- For every $A \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ we denote by $\|A\|$ its (operator) norm with respect to $|\cdot|$.
- Notation: $B(x, r)$ for the OPEN ball of radius r center x. The CLOSED ball is denoted by $\bar{B}(x, r)$.
- For every multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}^{m}$ we denote

$$
D^{\alpha}=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \ldots \frac{\partial^{\alpha_{m}}}{\partial x_{m}^{\alpha_{m}}}
$$

and $|\alpha|=\alpha_{1}+\ldots+\alpha_{m}$.

- (a) If $D \subseteq \mathbb{R}^{n}$ we denote by $C\left(D, \mathbb{R}^{m}\right)$ the set of continuous (vector) functions on D into \mathbb{R}^{m}.
(b) We denote by $C_{b}\left(D, \mathbb{R}^{m}\right) \subseteq C\left(D, \mathbb{R}^{m}\right)$ the set of BOUNDED continuous functions on D.

The norm is defined by:

$$
\|\phi\|_{C_{b}}=\sup _{x \in D}|\phi(x)| .
$$

(c) We denote by $C^{k}\left(D, \mathbb{R}^{m}\right)$ the subset of functions in $C\left(D, \mathbb{R}^{m}\right)$ which are continuously differentiable up to (including) order k.
(d) We denote by $C_{b}^{k}\left(D, \mathbb{R}^{m}\right)$ the subset of $C^{k}\left(D, \mathbb{R}^{m}\right)$ such that all derivatives are bounded up to (including) order k.

The norm is defined by:

$$
\|\phi\|_{C_{b}^{k}}=\sup _{x \in D} \sum_{|\alpha| \leq k}\left|D^{\alpha} \phi(x)\right| .
$$

(e) If $m=1$ we simplify to $C(D), \quad C_{b}(D), \quad C^{k}(D)$.
(f) $\quad C_{0}^{\infty}(U)$ is the space of smooth functions supported in an open set $U \subseteq \mathbb{R}^{m}$.

- BASIC DEFINITIONS
- $* ~$
- We consider (AN AUTONOMOUS SYSTEM)

$$
\begin{equation*}
y^{\prime}(t)=f(y(t)), \quad t \in I \subseteq \mathbb{R} \tag{A}
\end{equation*}
$$

$f(y) \in C^{1}\left(D, \mathbb{R}^{m}\right)$, where $D \subseteq \mathbb{R}^{m}$ is an open set.

- We denothe by $y(t ; P)$ the (unique) solution such that $y(0 ; P)=$ $P, P \in D$.
- DEFINITION (critical point): A point $Q \in D$ is said to be critical (also equilibrium) for (A) if $f(Q)=0$.

NOTE: The unique solution passing through Q is $y(t ; Q) \equiv$ Q.

- DEFINITION (hyperbolic critical point): A critical point $Q \in D$ for (A) is said to be hyperbolic if $\Re \lambda \neq 0$ for every eigenvalue λ of the Jacobian $f^{\prime}(Q)=D f(Q)$.
- DEFINITION (infinitesimally hyperbolic matrix): A ma$\operatorname{trix} A \in \operatorname{Hom}\left(\mathcal{C}^{m}, \mathcal{C}^{m}\right)$ is said to be infinitesimally hyperbolic if $\Re \lambda \neq 0$ for every eigenvalue λ of A.
- DEFINITION (hyperbolic matrix): A matrix $A \in \operatorname{Hom}\left(\mathcal{C}^{m}, \mathcal{C}^{m}\right)$ is said to be hyperbolic if $|\lambda| \neq 1$ for every eigenvalue λ of A.
- REMARK. Note that if $B \in \operatorname{Hom}\left(\mathcal{C}^{m}, \mathcal{C}^{m}\right)$ is infinitesimally hyperbolic then $A=e^{t B}$ is hyperbolic for any $t \neq 0$.

In particular, the evolution matrix $e^{t D f(0)}$ of the linearized system

$$
\begin{equation*}
y^{\prime}(t)=D f(0) y(t), \quad t \in \mathbb{R} \tag{AL}
\end{equation*}
$$

is hyperbolic (for any $t \neq 0$) if $y=0$ is a hyperbolic critical point.

- HYPERBOLIC MATRICES and MATRIX NORMS
- LEMMA. Let $A \in \operatorname{Hom}\left(\mathcal{C}^{m}, \mathcal{C}^{m}\right)$. Let
$\rho(A):=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{m}\right|, \quad \lambda_{j}\right.$ is an eigenvalue of $\left.A, 1 \leq j \leq m\right\}$.
Then for every $\varepsilon>0$ there exists a norm $\|\cdot\|$ on \mathcal{C}^{m} such that

$$
\|A\|<\rho(A)+\varepsilon
$$

where $\|A\|$ is the operator norm induced by $\|\cdot\|$.
Note that for every norm $\|\cdot\|$ on \mathcal{C}^{m}, we have $\|A\| \geq \rho$.
$\rho(A)$ is called the spectral radius of A.

Proof. Suppose the claim holds for A upper diagonal (i.e., all elements below the diagonal $=0$). Then, for any A, let $P \in$ $\operatorname{Hom}\left(\mathcal{C}^{m}, \mathcal{C}^{m}\right)$ such that $P A P^{-1}$ is upper diagonal, and let $\|\cdot\|$ be the corresponding norm. We then define a new norm by $\|z\|_{1}=\|P z\|, z \in \mathcal{C}^{m}$, and get

$$
\begin{gathered}
\|A z\|_{1}=\|P A z\|=\left\|P A P^{-1} P z\right\| \\
\leq\left(\rho\left(P A P^{-1}\right)+\varepsilon\right)\|P z\|=(\rho(A)+\varepsilon)\|P z\|=(\rho(A)+\varepsilon)\|z\|_{1} .
\end{gathered}
$$

Thus, it suffices to deal with a Jordan block of the form

$$
A=\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda
\end{array}\right)
$$

Let

$$
Q=\left(\begin{array}{cccc}
\mu & 0 & 0 & 0 \\
0 & \mu^{2} & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \mu^{m}
\end{array}\right) .
$$

Then

$$
\left(Q A Q^{-1}\right)=\left(\begin{array}{cccc}
\lambda & \mu^{-1} & 0 & 0 \\
0 & \lambda & \mu^{-1} & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda
\end{array}\right) .
$$

The claim is now proved by taking the norm $\|z\|=\max \left\{\left|z_{1}\right|, \ldots,\left|z_{m}\right|\right\}$ and $\mu>\varepsilon^{-1}$.

- REMARK. The Lemma is true also for $A \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, simply by regarding it as a complex matrix and restricting the norm to \mathbb{R}^{m}.
**

- THE HARTMAN-GROBMAN THEOREM for DIFFEOMORPHISMS.

- ASSUMPTION: $A \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ hyperbolic, nonsingular.
- We assume (changing coordinates) that A is in "block-diagonal" form (with $m=m_{1}+m_{2}$, and one of them can be 0)

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \tag{BD}\\
0 & A_{2}
\end{array}\right)
$$

where $A_{1} \in \operatorname{Hom}\left(\mathbb{R}^{m_{1}}, \mathbb{R}^{m_{1}}\right)$ has eigenvalues inside the unit circle and $A_{2} \in \operatorname{Hom}\left(\mathbb{R}^{m_{2}}, \mathbb{R}^{m_{2}}\right)$ has eigenvalues outside the unit circle.

- We use the Lemma above to get norms $\|\cdot\|_{i}$ on $\mathbb{R}^{m_{i}}, i=1,2$ such that, with some $0<\nu<1$,

$$
(*) \quad\left\|A_{1}\right\|_{1}<\nu, \quad\left\|A_{2}^{-1}\right\|_{2}<\nu .
$$

The norm on \mathbb{R}^{m} is taken as the sum of these norms.

- CLAIM: Define a linear transformation L on $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ (into itself) by

$$
L(h)(x)=h(A x)-A h(x), \quad h \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

Then L is invertible.
REMARK: The fact that A is hyperbolic is essential in this claim.

Proof. We decompose $h=\left(h^{1}, h^{2}\right)$, where $h^{i} \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m_{i}}\right), i=$ 1,2 . Thus L can be decomposed as

$$
\begin{gathered}
\operatorname{Lh}(x)=\left(L_{1} h^{1}(x), L_{2} h^{2}(x)\right) \\
=\left(h^{1}(A x)-A_{1} h^{1}(x), h^{2}(A x)-A_{2} h^{2}(x)\right), \quad x \in \mathbb{R}^{m},
\end{gathered}
$$

where L_{i} is a linear map on $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m_{i}}\right)$ (into itself).
We use the norms introduced above, so that $(*)$ holds. Note that the linear map $T_{i}=h^{i}(A x), i=1,2$, on $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m_{i}}\right)$ is invertible with norm 1. Thus, it suffices to prove the invertibility of the map $\widetilde{L} h=\left(\left(I_{1}-T_{1}^{-1} A_{1}\right) h^{1},\left(A_{2}^{-1} T_{2}-I_{2}\right) h^{2}\right)$, where I_{i} is the identity on $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m_{i}}\right), i=1,2$. But the invertibility of \widetilde{L} follows clearly from $\left(^{*}\right)$, in view of Neumann's series. Furthermore, $\left\|\widetilde{L}_{i}^{-1}\right\| \leq \frac{1}{1-\nu}, i=1,2$, where the norm is the operator norm on $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m_{i}}\right)$. We conclude that $\left\|L_{1}^{-1}\right\|=\left\|\widetilde{L_{1}}{ }^{-1} T_{1}^{-1}\right\| \leq$ $\frac{1}{1-\nu}$ and $\left\|L_{2}^{-1}\right\|=\left\|{\widetilde{L_{1}}}^{-1} A_{2}^{-1}\right\| \leq \frac{\nu}{1-\nu} \leq \frac{1}{1-\nu}$, so that

$$
\left\|L^{-1}\right\| \leq \frac{2}{1-\nu}
$$

- A FUNCTIONAL EQUATION.

- Consider the equation

$$
(F E) \quad h(A x)-A h(x)=p(x+h(x)) .
$$

The function $p \in C_{b}^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ is given (with $p(0)=0$) and we look for a solution $h \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ such that $h(0)=0$.

REMARK: The solution to this equation is the main ingredient in the proof of the Hartman-Grobman Theorem below.

- PROPOSITION: Fix $0<\alpha<1$. There exists $\varepsilon>0$ with the following property:

For every $p \in C_{b}^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ such that $p(0)=0$ and $\|p\|_{C_{b}^{1}}<$ ε there exists a unique function $h \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ such that $\|h\|_{C_{b}}<\alpha, h(0)=0$ and (FE) is satisfied.

Proof. Define a map on $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ by $\Phi(h)(x)=p(x+h(x))-$ $p(x)$. The equation (FE) can then be rewritten as $\operatorname{Lh}(x)=$ $\Phi(h)(x)+p(x)$ or

$$
(* *) \quad h=L^{-1} \Phi(h)+L^{-1} p
$$

where L is the linear operator in the above Claim. From the estimate at the end of the proof of that Claim we get

$$
\left\|L^{-1} \Phi(h)+L^{-1} p\right\|_{C_{b}} \leq \frac{2}{1-\nu}\|\Phi(h)+p\|_{C_{b}} .
$$

Using the definition of the norm in $C_{b}^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ we get

$$
\|\Phi(h)\|_{C_{b}} \leq\|p\|_{C_{b}^{1}}\|h\|_{C_{b}} .
$$

Taking $\varepsilon>0$ such that

$$
\frac{2 \varepsilon}{1-\nu}(1+\alpha)<\alpha
$$

we see that for any p such that $\|p\|_{C_{b}^{1}}<\varepsilon$ the right-hand side of $\left({ }^{* *}\right)$ maps the ball of radius α in $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ into itself.

Furthermore, for any h, \tilde{h} in this ball

$$
\begin{array}{r}
\left\|L^{-1} \Phi(h)-L^{-1} \Phi(\tilde{h})\right\|_{C_{b}} \leq \frac{2}{1-\nu}\|p\|_{C_{b}^{1}}\|h-\tilde{h}\|_{C_{b}} \\
\leq \frac{2 \varepsilon}{1-\nu}\|h-\tilde{h}\|_{C_{b}} \leq \alpha\|h-\tilde{h}\|_{C_{b}}
\end{array}
$$

so that the map in the right-hand side of $\left({ }^{(*)}\right)$ is a contraction on the ball of radius α in $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.

We conclude that in the ball there is exactly one fixed point of the map (for every $\|p\|_{C_{b}^{1}}<\varepsilon$), which is the unique solution of $\left({ }^{* *}\right)$.

- DEFINITION (hyperbolic fixed point of a smooth map): Let $\Omega \subseteq \mathbb{R}^{m}$ be open and $0 \in \Omega$. Let $\Psi \in C^{1}\left(\Omega, \mathbb{R}^{m}\right)$ and assume that $\Psi(0)=0$. We say that 0 is a hyperbolic fixed point if
$\Psi^{\prime}(0)=D \Psi(0)$ is hyperbolic (i.e., has no eigenvalues on the unit circle).

Theorem (THE HARTMAN-GROBMAN THEOREM-diffeomorphism). Let $F: B(0, a) \subseteq \mathbb{R}^{m} \hookrightarrow \mathbb{R}^{m}$ for some $a>0$. Suppose that,
(i) $\quad F \in C^{1}\left(B(0, a), \mathbb{R}^{m}\right)$.
(ii) $\quad x=0$ is a hyperbolic fixed point of F and the Jacobian $D F(0)$ is nonsingular.

Then there are $0<c<b<a$ and an open set $U \subseteq \mathbb{R}^{m}$, such that,
(1) There exists a homeomorphism H mapping $B(0, b)$ onto U, and $H(0)=0 \in U$.
(2) \quad Both H and $D F(0)$ map $B(0, c)$ into $B(0, b)$.
(3) $\quad F(H(x))=H(D F(0) x), \quad x \in B(0, c)$.

REMARK: Writing $H^{-1}(F(H(x)))=D F(0) x, \quad x \in B(0, c)$, we see that the restriction of F to the image of $B(0, c)$ by H is "similar" to the action of $D F(0)$ on this ball.

Proof. (1) We denote $A=D F(0)$. Fix $0<\alpha<1$, and let $\varepsilon>0$ be given by the above Proposition. Replacing $a>0$ by a smaller radius if necessary, we can assume that

$$
\|F(x)-A x\|_{C_{b}^{1}(B(0, a))}<\frac{\varepsilon}{3} .
$$

In particular,

$$
\|F(x)-A x\|_{C_{b}(B(0, a))}<\frac{\varepsilon}{3} a .
$$

(2) Let $\phi \in C_{0}^{\infty}(B(0, a))$, be such that, for a suitable $b<a$,
$0 \leq \phi(x) \leq 1, x \in B(0, a), \phi(x)=1, x \in B(0, b),\|\phi\|_{C_{b}^{1}(B(0, a))}<\frac{2}{a}$.
(3) Define $p(x)=\phi(x)(F(x)-A x)$. Then p is supported in $B(0, a)$ and

$$
\|p\|_{C_{b}^{1}\left(\mathbb{R}^{m}\right)} \leq \frac{2}{a} \frac{\varepsilon}{3} a+\frac{\varepsilon}{3}=\varepsilon .
$$

(4) In addition, we take $\varepsilon>0$ sufficiently small (this might involve a smaller radius a) so that

$$
\left\|A^{-1} p\right\|_{C_{b}^{1}\left(\mathbb{R}^{m}\right)}<1
$$

This means that

$$
\left\|\left(I+A^{-1} p\right)(x)-\left(I+A^{-1} p\right)(y)\right\| \geq\left(1-\left\|A^{-1} p\right\|_{C_{b}^{1}\left(\mathbb{R}^{m}\right)}\right)\|x-y\|,
$$

so that,
$(* * *) \quad(A+p)(x) \neq(A+p)(y) \quad$ if $x \neq y$.
(Note: $(A+p)(x)=A x+p(x))$.
(5) The Proposition implies that there exists $h \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, with $\|h\|_{C_{b}}<\alpha, h(0)=0$, such that (see (FE)),

$$
h(A x)-A h(x)=p(x+h(x)), \quad x \in \mathbb{R}^{m}
$$

Defining $H(x)=x+h(x)$, this can be written as

$$
(* * * *) \quad(A+p)(H(x))=H(A x)
$$

(6) There exists $0<c<b$ such that $x \in B(0, c) \Rightarrow x+h(x) \in B(0, b) \Rightarrow(A+p)(H(x))=F(H(x))$.

We can decrease (if needed) c so that also $x \in B(0, c) \Rightarrow$ $A x \in B(0, b)$, and we obtain assertions (2) and (3) of the theorem.
(7) It remains to check that H is a homeomorphism on $B(0, b)$. Suppose first that for some $x \neq y \in \mathbb{R}^{m}$, we have $H(x)=$ $H(y)$. By $\left({ }^{* * * *}\right)$ we have $H(A x)=H(A y)$. Continuing like that we get

$$
H\left(A^{k} x\right)=H\left(A^{k} y\right), \quad k=1,2, \ldots
$$

Replacing x by $A^{-1} x$ in $\left({ }^{* * * *}\right)$ and noting $\left({ }^{* * *}\right)$ we have also $H\left(A^{-1} x\right)=H\left(A^{-1} y\right)$ and continuing like that we get

$$
H\left(A^{k} x\right)=H\left(A^{k} y\right), \quad k=-1,-2, \ldots
$$

(8) The definition of H now yields

$$
\left\|A^{k} x-A^{k} y\right\|=\left\|h\left(A^{k} x\right)-h\left(A^{k} y\right)\right\| \leq 2\|h\|_{C_{b}\left(\mathbb{R}^{m}\right)}
$$

where the norm is as introduced above (before the Claim).
(9) Now we use the hyperbolic structure of A (which was also essential for the Claim above). Using the block-diagonal form (BD), we decompose

$$
x-y=(x-y)_{1}+(x-y)_{2} \in \mathbb{R}^{m}=\mathbb{R}^{m_{1}} \oplus \mathbb{R}^{m_{1}}
$$

and note that

$$
\left\|(x-y)_{1}\right\|=\left\|A_{1}^{k} A_{1}^{-k}(x-y)_{1}\right\| \leq 2 \nu^{k}\|h\|_{C_{b}\left(\mathbb{R}^{m}\right)} \underset{k \rightarrow \infty}{ } 0
$$

with a similar argument for $(x-y)_{2}$ (with $\left.k \rightarrow-\infty\right)$.
We conclude that $x=y$.
(10) We know that H is one-to-one on $\bar{B}(x, b)$ and hence (since the closed ball is compact) a homeomorphism onto its image. In particular, the restriction of H^{-1} to the image $U=H(B(0, b))$ is continuous. Finally, the set U is open by the theorem on Invariance of Domain [2, Chapter 18].

- THE HARTMAN-GROBMAN THEOREM for DIFFERENTIAL EQUATIONS.

- We turn back to the autonomous system

$$
\begin{equation*}
y^{\prime}(t)=f(y(t)), \quad t \in I \subseteq \mathbb{R} \tag{A}
\end{equation*}
$$

$f(y) \in C^{1}\left(D, \mathbb{R}^{m}\right)$, where $D \subseteq \mathbb{R}^{m}$ is an open set, and its linearization

$$
\begin{equation*}
y^{\prime}(t)=D f(0) y(t), \quad t \in \mathbb{R} \tag{AL}
\end{equation*}
$$

- ASSUMPTION: $y=0 \in D$ is a hyperbolic critical point, namely, $D f(0)$ has no pure imaginary eigenvalues.

We also assume that $D f(0)$ is regular.

- Our goal is to construct a local homeomorphism that "transforms" the flow of (A) to the flow of (AL) near the critical point.
- As in the case of diffeomorphisms above, we start with a certain functional equation, related to a hyperbolic matrix A.
- ASSUMPTION: $A \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ hyperbolic, nonsingular.
- We assume (changing coordinates) that A is in "block-diagonal" form (with $m=m_{1}+m_{2}$, and one of them can be 0)

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \tag{BD}\\
0 & A_{2}
\end{array}\right)
$$

where $A_{1} \in \operatorname{Hom}\left(\mathbb{R}^{m_{1}}, \mathbb{R}^{m_{1}}\right)$ has eigenvalues inside the unit circle and $A_{2} \in \operatorname{Hom}\left(\mathbb{R}^{m_{2}}, \mathbb{R}^{m_{2}}\right)$ has eigenvalues outside the unit circle.

- CLAIM: Let $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a homeomorphism (i.e., continuous onto, with continuous inverse).

Define a linear transformation M on $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ (into itself) by

$$
M(h)(x)=A h(x)-h(F(x)), \quad h \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

Then M is invertible.

- REMARK. The operator M is slightly more general than the operator L in the previous Claim (for diffeomorphisms), which corresponds here to $F(x)=x$. However, the linear operator $h \rightarrow h(F(x))$ is of unit norm and the proof is identical.

Theorem (THE HARTMAN-GROBMAN THEOREM-differential equations). Consider the system (A), where $y=0$ is a hyperbolic fixed point and $D f(0)$ is regular.

Let Φ_{t} be the flow of (A) and Ψ_{t} the flow of the linear system (AL).

Then there is an open neighborhood $0 \in U \subseteq D$, and a homeomorphism $G: U \rightarrow G(U) \subseteq D$, so that

$$
G\left(\Phi_{t}(x)\right)=\Psi_{t}(G(x))
$$

for all $(t, x) \in \mathbb{R} \times U$, such that $\Phi_{t}(x) \in U$.
Proof. In this proof we refer to the above theorem (HARTMANGROBMAN for diffeomorphisms) as the "previous theoerm" (and its proof).
(1) Let $B(0, b) \subseteq B(0, a) \subseteq D$ and a cutoff function
$0 \leq \phi(x) \leq 1, x \in B(0, a), \phi(x)=1, x \in B(0, b),\|\phi\|_{C_{b}^{1}(B(0, a))}<\frac{2}{a}$.
We now define

$$
f^{*}(x)=\phi(x) f(x)+(1-\phi(x)) D f(0)(x),
$$

and replace the system (A) by

$$
\begin{equation*}
y^{\prime}(t)=f^{*}(y(t)), \quad t \in \mathbb{R} \tag{*}
\end{equation*}
$$

We denote its (global) flow by Φ_{t}^{*}.
(2) We denote

$$
F(x)=\Phi_{1}^{*}(x), \quad A=e^{D f(0)}=\Psi_{1} .
$$

and set

$$
p(x)=F(x)-A x
$$

so that

$$
p(x)=\int_{0}^{1}\left[f^{*}\left(\Phi_{t}^{*}(x)\right)-D f(0) \Psi_{t}(x)\right] d t
$$

Note that

$$
\begin{array}{r}
\Phi_{t}^{*}(x)-\Psi_{t}(x)=\int_{0}^{t}\left[f^{*}\left(\Phi_{s}^{*}(x)\right)-D f(0) \Psi_{s}(x)\right] d s= \\
\int_{0}^{t}\left[f^{*}\left(\Phi_{s}^{*}(x)\right)-f^{*}\left(\Psi_{s}(x)\right)\right] d s+\int_{0}^{t}\left[f^{*}\left(\Psi_{s}(x)\right)-D f(0) \Psi_{s}(x)\right] d s .
\end{array}
$$

For any $\varepsilon>0$ we can choose $0<a<1$ sufficiently small, so that $\left|f^{*}(z)-D f(0) z\right|<\varepsilon \min (1,|z|)$ for all $z \in \mathbb{R}$. Thus

$$
\left.\left|\Phi_{t}^{*}(x)-\Psi_{t}(x)\right| \leq \beta \int_{0}^{t} \mid \Phi_{s}^{*}(x)\right)-\Psi_{s}(x)\left|d s+\varepsilon e^{|t|\|D f(0)\|}, \quad\right| t \mid \leq 1
$$

where $\beta>0$ is a Lipschitz constant for f^{*}. Gronwall's inequality now yields

$$
(* * * * *) \quad\left|\Phi_{t}^{*}(x)-\Psi_{t}(x)\right| \leq \varepsilon e^{\mid t(\|(\|D f(0)\|+\beta)}
$$

(3) In particular it follows that $p=\Phi_{1}^{*}(x)-\Psi_{1}(x) \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, so by the above Claim we have a unique solution $g \in$ $C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ to the equation $M g=p$, i.e.,

$$
A g(x)-g(F(x))=p(x), \quad x \in \mathbb{R}^{m}
$$

Denoting $G(x) x+g(x)$ we can rewrite the last equation as

$$
G(F(x))=A G(x), \quad x \in \mathbb{R}^{m} .
$$

(4) Define

$$
\mathcal{G}(x)=\int_{0}^{1} \Psi_{-s}\left(G\left(\Phi_{s}^{*}(x)\right)\right) d s, \quad x \in \mathbb{R}^{m}
$$

Using the linearity of Ψ_{t} we have

$$
\begin{array}{r}
\Psi_{-t}\left(\mathcal{G}\left(\Phi_{t}^{*}(x)\right)\right)=\int_{0}^{1} \Psi_{-t-s}\left(G\left(\Phi_{t+s}^{*}(x)\right)\right) d s=\int_{t-1}^{t} \Psi_{-\tau}\left(\Psi_{-1}\left(G\left(\Phi_{1}^{*}\left(\Phi_{\tau}^{*} x\right)\right)\right)\right) d \tau \\
=\int_{t-1}^{t} \Psi_{-\tau}\left(A^{-1}\left(G\left(F\left(\Phi_{\tau}^{*} x\right)\right)\right)\right) d \tau=\int_{t-1}^{t} \Psi_{-\tau}\left(G\left(\Phi_{\tau}^{*} x\right)\right) d \tau= \\
\int_{t}^{1} \Psi_{t-\tau}\left(G\left(\Phi_{\tau}^{*} x\right)\right) d \tau+\int_{0}^{t} \Psi_{-\tau}\left(G\left(\Phi_{\tau}^{*} x\right)\right) d \tau= \\
\int_{t}^{1} \Psi_{1-\tau}\left(G\left(\Phi_{\tau-1}^{*} x\right)\right) d \tau+\int_{0}^{t} \Psi_{-\tau}\left(G\left(\Phi_{\tau}^{*} x\right)\right) d \tau= \\
\int_{0}^{1} \Psi_{-\tau}\left(G\left(\Phi_{\tau}^{*} x\right)\right) d \tau=\mathcal{G}(x)
\end{array}
$$

(5) We conclude

$$
\Psi_{-t}\left(\mathcal{G}\left(\Phi_{t}^{*}(x)\right)\right)=\mathcal{G}(x), \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{m}
$$

and in particular (with $t=1$),

$$
\mathcal{G}(F(x))=A \mathcal{G}(x)
$$

This is the same equation satisfied by $G(x)=x+g(x)$ and by the uniqueness of g we conclude that $\mathcal{G}(x)=G(x)$ if

$$
\mathcal{G}(x)-x \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

(6) To prove it we write

$$
\begin{array}{r}
\mathcal{G}(x)-x=\int_{0}^{1} \Psi_{-s}\left(G\left(\Phi_{s}^{*}(x)\right)\right) d s-x=\int_{0}^{1} \Psi_{-s}\left(G\left(\Phi_{s}^{*}(x)\right)-\Psi_{s}(x)\right) d s= \\
\\
\int_{0}^{1} \Psi_{-s}\left(G\left(\Phi_{s}^{*}(x)\right)-\Phi_{s}^{*}(x)+\Phi_{s}^{*}(x)-\Psi_{s}(x)\right) d s
\end{array}
$$

so that, using $\left({ }^{* * * * *}\right)$ above (see (2)),

$$
\begin{array}{r}
|\mathcal{G}(x)-x| \leq e^{\|D f(0)\|} \sup _{0 \leq s \leq 1}\left[\left|G\left(\Phi_{s}^{*}(x)\right)-\Phi_{s}^{*}(x)\right|+\left|\Phi_{s}^{*}(x)-\Psi_{s}(x)\right|\right] \\
\leq e^{\|D f(0)\|}\left[\|g\|_{C_{b}}+\sup _{0 \leq s \leq 1}\left|\Phi_{s}^{*}(x)-\Psi_{s}(x)\right|\right] \\
\leq e^{\|D f(0)\|}\left[\|g\|_{C_{b}}+\varepsilon e^{\|D f(0)\|} e^{\beta}\right] .
\end{array}
$$

Thus $\mathcal{G}=G$.
(7) Next we note that (${ }^{* * * * *)}$) (see (2) above) implies that for any $\varepsilon>0$ we can choose $a>0$ sufficiently small so that $\|p\|_{C_{b}\left(\mathbb{R}^{m}\right)} \leq \varepsilon$.
We also have

$$
\begin{array}{r}
D \Phi_{t}^{*}(x)-D \Psi_{t}(x)=\int_{0}^{t}\left[D f^{*}\left(D \Phi_{s}^{*}(x)\right)-D f(0)\left(D \Psi_{s}(x)\right)\right] d s= \\
\int_{0}^{t}\left[D f^{*}\left(D \Phi_{s}^{*}(x)\right)-D f^{*}\left(D \Psi_{s}(x)\right)\right] d s+\int_{0}^{t}\left[D f^{*}\left(D \Psi_{s}(x)\right)-D f(0)\left(D \Psi_{s}(x)\right)\right] d s
\end{array}
$$

For any $\varepsilon>0$ we can choose $0<a<1$ sufficiently small, so that $\left\|D f^{*}(z)-D f(0)\right\|<\varepsilon$ for all $z \in \mathbb{R}$. Also note that $D \Psi_{s}(x)=\Psi_{s}(x)$. Let γ be a Lipschitz constant for $D f^{*}$. We obtain, for $|t| \leq 1$,

$$
\left.\left|D \Phi_{t}^{*}(x)-D \Psi_{t}(x)\right| \leq \gamma \int_{0}^{t} \mid D \Phi_{s}^{*}(x)\right)-D \Psi_{s}(x) \mid d s+\varepsilon e^{|t|| | D f(0) \|}
$$

Gronwall's inequality now yields, as in $\left({ }^{* * * * *)}\right.$,

$$
\left|D \Phi_{t}^{*}(x)-D \Psi_{t}(x)\right| \leq \varepsilon e^{|t|(\|D f(0)\|+\gamma)}, \quad|t| \leq 1 .
$$

Combined with the above estimate for $p=\Phi_{1}^{*}(x)-\Psi_{1}(x)$ we conclude that for any $\varepsilon>0$ we can choose $a>0$ sufficiently small so that $\|p\|_{C_{b}^{1}\left(\mathbb{R}^{m}\right)} \leq \varepsilon$.
(8) In particular, by the above Proposition, we have a unique function $h \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ such that $\|h\|_{C_{b}}<1, h(0)=0$ and (FE) is satisfied:

$$
\begin{equation*}
h(A x)-A h(x)=p(x+h(x)) . \tag{FE}
\end{equation*}
$$

Letting $H(x)=x+h(x)$ it can be rewritten as

$$
F(H(x))=H(A x) .
$$

H is a $G L O B A L$ homeomorphism on \mathbb{R}^{m}.
(Note the difference between this and $\left({ }^{* * * *}\right)$ in the proof of the theorem for diffeomorphisms, where $A+p=F$ only for "small" x.).
(9) We get

$$
G(H(A x))=G(F(H(x)))=A G(H(x))
$$

and denoting $K=G \circ H$ it gives $K(A x)=A K(x)$. But $K(x)=x+h(x)+g(H(x))=x+h(x)+g(x+h(x))$ so, with $r(x)=h(x)+g(x+h(x)) \in C_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ we have

$$
0=K(A x)-A K(x)=r(A x)-A r(x)
$$

and the Claim above (with $M(r)(x)=\operatorname{Ar}(x)-r(A(x)))$ yields $r(x) \equiv 0$. So $K=G \circ H=I$, the identity, and $G=H^{-1}$ is a homeomorphism on \mathbb{R}^{m}.
(10) From $\mathcal{G}=G$ proved above and the result of (4)

$$
\Psi_{-t}\left(\mathcal{G}\left(\Phi_{t}^{*}(x)\right)\right)=\mathcal{G}(x), \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{m}
$$

we obtain,

$$
G\left(\Phi_{t}^{*}(x)\right)=\Psi_{t}(G(x)), \quad x \in \mathbb{R}^{m}
$$

(11) Finally, if $x \in B(0, b)$ (see the beginning of the proof), we have the equality of the flows $\Phi_{t}^{*}(x)=\Phi_{t}(x)$ in some interval $t \in(-\delta(x), \delta(x))$.

References

[1] C. Chicone ,"Ordinary Differential Equations with Applications", 2-nd Edition, Springer 2006.
[2] M.J. Greenberg and J. R. Harper, "Algebraic Topology, A First Course", Addison-Wesley 1981.

Institute of Mathematics, Hebrew University, Jerusalem 91904, IsRAEL

E-mail address: mbartzi@math.huji.ac.il

