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Notation
• The scalar product in Rm is denoted by (·, ·).
• Euclidean norm |x|2 =

m∑
i=1

x2
i in Rm.

• For every A ∈ Hom(Rm,Rm) we denote by ‖A‖ its (operator) norm with
respect to | · |.

• Notation: B(x, r) for the OPEN ball of radius r center x. The CLOSED
ball is denoted by B(x, r).

• (a) If D ⊆ Rn we denote by C(D,Rm) the set of continuous (vector) func-
tions on D into Rm.

(b) We denote by Cb(D,Rm) ⊆ C(D,Rm) the set of BOUNDED contin-
uous functions on D.

(c) We denote by Ck(D,Rm) the subset of functions in C(D,Rm) which
are continuously differentiable up to (including) order k.

(d) If m = 1 we simplify to C(D), Cb(D), Ck(D).
*************************************************************************

• REMARK: In the previous Summary (#6) we have seen a few examples of
periodic solutions for AUTONOMOUS SYSTEMS (nonlinear pendu-
lum, Lotka-Volterra system). Here we discuss examples of periodic solutions
for NON-AUTONOMOUS SYSTEMS.

**********************************************************************
• Let f(t, y) ∈ C(D), where D = R × I and I ⊆ R is an open (finite or

infinite) interval.
• We always assume that:

f(t, y) is Lipschitz in y.
• We consider the (scalar) equation

(P ) y′(t) = f(t, y(t)), t ∈ R,

subject to the initial condition y(t0) = y0 ∈ I.
• We know that there exists a unique solution defined for t in some open

maximal interval (tmin, tmax) containing t0.
• NOTATION: This solution is denoted by y(t; t0, y0).
• LEMMA: Suppose that for some p ∈ I we have f(t, p) > 0 for all t ∈ R.

Then y0 > p ⇒ y(t; t0, y0) > p for all t ∈ [t0, tmax). In other words, the
solution ”stays above” the line y = p.

PROOF: Otherwise there is a first point τ ∈ (t0, tmax) such that y(τ ; t0, y0) =
p. Clearly at this point y′(τ ; t0, y0) ≤ 0, but y′(τ ; t0, y0) = f(τ, p) > 0, a
contradiction.

Q.E.D.
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• COROLLARY: Suppose in addition to the assumption of the Lemma
that for some p < q ∈ I, we have f(t, q) < 0 for all t ∈ R. Then , if
y0 ∈ [p, q], the solution y(t; t0, y0) exists for all t ≥ t0 (i.e.,tmax = ∞) and
y(t; t0, y0) ∈ (p, q) for all t ∈ (t0,∞).

****************************************************************
• PERIODIC SOLUTIONS
• ASSUME f(t, p) > 0, f(t, q) < 0, [p, q] ⊆ I and ADD THE AS-

SUMPTION:
f(t, y) is periodic in t, i.e., there exists T > 0 such that

f(t + T, y) = f(t, y), (t, y) ∈ D.

• By the Corollary, y0 ∈ [p, q] ⇒ y(t; t0, y0) ∈ [p, q], t ≥ t0.
• Define the map Φ : [p, q] ↪→ [p, q] by

[p, q] 3 y0 → Φ(y0) = y(t0 + T ; t0, y0).

• CLAIM: The function φ is (strictly) monotone increasing.
PROOF: Uniqueness!

• CLAIM: The solution y(t; t0, y0) is periodic (with period T ) if and only if

Φ(y0) = y0.

•
Theorem. Under all the assumptions on f above (including periodicity),
the equation (P) has at least one periodic solution y(t; t0, ξ0) = y(t +
T ; t0, ξ0), for some ξ ∈ [p, q] and all t ∈ R.

PROOF: The map Φ : [p, q] ↪→ [p, q] must have a fixed point.
•

Theorem. : Suppose that f ∈ C2(D) and that ∂2

∂y2 f(t, y) < 0 in D. Then
the periodic solution of the previous theorem is unique in R× [p, q].

Furthermore, for any initial value y0 ∈ [p, q], the solution y(t; t0, y0)
approaches the periodic solution y(t; t0, ξ0) in the sense that

lim
t→∞

|y(t; t0, y0)− y(t; t0, ξ0)| = 0.

PROOF: The equation satisfied by the derivative of the solution with
respect to the initial data (see Summary 4, the section on ”regularity of the
solution”) is:

∂

∂t
(

∂

∂y0
y(t; t0, y0)) =

∂

∂y
f(t, y(t; t0, y0))

∂

∂y0
y(t; t0, y0),

∂

∂y0
y(t0; t0, y0) = 1,

so that

∂

∂y0
y(t0 + T ; t0, y0) = Φ′(y0) = exp (

∫ t0+T

t0

∂

∂y
f(s, y(s; t0, y0))ds) > 0.

(It was already observed above that Φ(y0) is strictly monotone increasing
even without second-order differentiability of f).

Now the second-order derivative w(t; t0, y0) = ∂2y(t;t0,y0)
∂y2

0
satisfies (see

Summary 4, the section on ”regularity of the solution”):
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∂

∂t
w(t; t0, y0) =

∂2

∂y2
f(t, y(t; t0, y0))(

∂y(t; t0, y0)
∂y0

)2 +
∂

∂y
f(t, y(t; t0, y0))w(t; t0, y0),

w(t0; t0, y0) = 0.

By the assumption,
∂

∂t
w(t; t0, y0) <

∂

∂y
f(t, y(t; t0, y0))w(t; t0, y0),

and since w(t0; t0, y0) = 0

w(t; t0, y0) exp(
∫ t

t0

∂

∂y
f(s, y(s; t0, y0))ds) < 0 ⇒ w(t; t0, y0) < 0, t > t0.

In particular

∂2

∂y2
0

y(t0 + T ; t0, y0) = Φ′′(y0) < 0.

Thus, Φ(y0) cannot have two fixed points (it is a concave, increasing
function that can intersect the diagonal only once–give an analytic proof!).

Finally, we prove the convergence of any solution y(t; t0, y0), y0 ∈ [p, q],
to the periodic one y(t; t0, ξ0).

Note that lim
k→∞

Φk(y0) = ξ0 (Prove this!).

By the theorem on continuous dependence on initial data, given ε > 0,
we can find η > 0 such that

|v0 − ξ0| < η ⇒ |y(t; t0, v0)− y(t; t0, ξ0)| < ε, t ∈ [t0, t0 + T ].

For this η > 0, there is a K such that

k > K ⇒ |Φk(y0)− ξ0| < η.

Hence, by the periodicity,

|y(t; t0 + kT, Φk(y0))− y(t; t0 + kT, ξ0)| < ε, t ∈ [t0 + kT, t0 + (k + 1)T ], k > K,

that is

|y(t; t0, y0)− y(t; t0, ξ0)| < ε, t ∈ [t0 + kT, t0 + (k + 1)T ], k > K.

Q.E.D.
******************************************************

• A TIME PERIODIC LOGISTIC EQUATION
(See Summary 2 for the logistic equation with constant coefficients).
*******************************************************

• We consider

(LP ) y′(t) = ay(t)(b(t)− y(t)), (t, y) ∈ R× R.

where a > 0 is a constant and b(t) > 0 is a continuous periodic function ,
b(t + T ) = b(t).

All the assumptions above (including the fact that the second-order
derivative of f(t, y) with respect to y is negative) are satisfied here with
f(t, y) = ay(b(t)− y). In addition, if

0 < p < min
t∈R

b(t) < q,

then f(t, q) < 0 < f(t, p). We have therefore:
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•
Theorem. Equation (LP) has a unique periodic solution φ(t). For any
t0, y0) ∈ R×(0,∞), the solution y(t; t0, y0) converges to the periodic solution

lim
t→∞

|y(t; t0, y0)− φ(t)| = 0.

PROOF: We can apply the previous theorem with any y0 > 0, since we
can take very small p and very large q. For some t0, let y(t; t0, ξ0) be the pe-
riodic solution given by the previous theorem. Since all solutions (starting
with y0 > 0) converge to it, it is independent of the choice of t0 and we are
justified in calling it φ(t). Q.E.D.

************************************************************
EXAMPLE OF NONUNIQUE PERIODIC SOLUTIONS
************************************************************

• Consider the equation

(NUP ) y′(t) = y(t)− y(t)3 + b(t),

Where b(t) is continuous, periodic (b(t) = b(t + T )) and

|b(t)| < 2
3
√

3
, t ∈ R.

• CLAIM: Equation (NUP) has at least three different periodic (with period
T ) solutions, φ±(t), φ0(t), such that

φ+(t) >
1√
3
, φ−(t) < − 1√

3
, |φ0(t)| < 1√

3
, t ∈ R.

PROOF: Set f(t, y) = y − y3 + b(t). Take p = 1√
3
, q = 2. Then

f(t, p) =
2

3
√

3
+ b(t) > 0, f(t, q) < 0, t ∈ R.

Thus, by the general theorem, we have the existence of a periodic solution
φ+(t) > p = 1√

3
. Similarly,

f(t,−p) = − 2
3
√

3
+ b(t) < 0, f(t,−q) > 0, t ∈ R.

Thus, by the general theorem, we have the existence of a periodic solution
φ−(t) < −p = − 1√

3
.

Finally, the function ỹ(t) = y(−t) satisfies the equation

ỹ′(t) = −ỹ(t) + ỹ(t)3 − b(−t).

Set f̃(t, ỹ) = −ỹ + ỹ3 − b(−t).
We have

f̃(t,−p) > 0, f̃(t, p) < 0, t ∈ R,

so by the general theorem there exists a periodic solution ψ(t) to this equa-
tion , with |ψ(t)| < p. Then φ0(t) = ψ(−t) is a third periodic solution to
(NUP).
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