REMARKS ON PERIODIC SOLUTIONS

MATANIA BEN-ARTZI

June 2008

Notation

- The scalar product in \mathbb{R}^{m} is denoted by (\cdot, \cdot).
- Euclidean norm $|x|^{2}=\sum_{i=1}^{m} x_{i}^{2}$ in \mathbb{R}^{m}.
- For every $A \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ we denote by $\|A\|$ its (operator) norm with respect to $|\cdot|$.
- Notation: $B(x, r)$ for the OPEN ball of radius r center x. The CLOSED ball is denoted by $\bar{B}(x, r)$.
- (a) If $D \subseteq \mathbb{R}^{n}$ we denote by $C\left(D, \mathbb{R}^{m}\right)$ the set of continuous (vector) functions on D into \mathbb{R}^{m}.
(b) We denote by $C_{b}\left(D, \mathbb{R}^{m}\right) \subseteq C\left(D, \mathbb{R}^{m}\right)$ the set of BOUNDED continuous functions on D.
(c) We denote by $C^{k}\left(D, \mathbb{R}^{m}\right)$ the subset of functions in $C\left(D, \mathbb{R}^{m}\right)$ which are continuously differentiable up to (including) order k.
(d) If $m=1$ we simplify to $C(D), \quad C_{b}(D), \quad C^{k}(D)$.
$* *$
- REMARK: In the previous Summary (\#6) we have seen a few examples of periodic solutions for AUTONOMOUS SYSTEMS (nonlinear pendulum, Lotka-Volterra system). Here we discuss examples of periodic solutions for NON-AUTONOMOUS SYSTEMS.
$* *$
- Let $f(t, y) \in C(D)$, where $D=\mathbb{R} \times I$ and $I \subseteq \mathbb{R}$ is an open (finite or infinite) interval.
- We always assume that:
$f(t, y)$ is Lipschitz in y .
- We consider the (scalar) equation

$$
\begin{equation*}
y^{\prime}(t)=f(t, y(t)), \quad t \in \mathbb{R} \tag{P}
\end{equation*}
$$

subject to the initial condition $y\left(t_{0}\right)=y_{0} \in I$.

- We know that there exists a unique solution defined for t in some open maximal interval $\left(t_{\min }, t_{\max }\right)$ containing t_{0}.
- NOTATION: This solution is denoted by $y\left(t ; t_{0}, y_{0}\right)$.
- LEMMA: Suppose that for some $p \in I$ we have $f(t, p)>0$ for all $t \in \mathbb{R}$. Then $y_{0}>p \Rightarrow y\left(t ; t_{0}, y_{0}\right)>p$ for all $t \in\left[t_{0}, t_{\max }\right)$. In other words, the solution "stays above" the line $y=p$.

PROOF: Otherwise there is a first point $\tau \in\left(t_{0}, t_{\text {max }}\right)$ such that $y\left(\tau ; t_{0}, y_{0}\right)=$ p. Clearly at this point $y^{\prime}\left(\tau ; t_{0}, y_{0}\right) \leq 0$, but $y^{\prime}\left(\tau ; t_{0}, y_{0}\right)=f(\tau, p)>0$, a contradiction.
Q.E.D.

- COROLLARY: Suppose in addition to the assumption of the Lemma that for some $p<q \in I$, we have $f(t, q)<0$ for all $t \in \mathbb{R}$. Then , if $y_{0} \in[p, q]$, the solution $y\left(t ; t_{0}, y_{0}\right)$ exists for all $t \geq t_{0}$ (i.e., $\left.t_{\max }=\infty\right)$ and $y\left(t ; t_{0}, y_{0}\right) \in(p, q)$ for all $t \in\left(t_{0}, \infty\right)$.
**

- PERIODIC SOLUTIONS

- ASSUME $f(t, p)>0, f(t, q)<0, \quad[p, q] \subseteq I$ and ADD THE ASSUMPTION:
$f(t, y)$ is periodic in t, i.e., there exists $T>0$ such that

$$
f(t+T, y)=f(t, y), \quad(t, y) \in D
$$

- By the Corollary, $y_{0} \in[p, q] \Rightarrow y\left(t ; t_{0}, y_{0}\right) \in[p, q], t \geq t_{0}$.
- Define the map $\Phi:[p, q] \hookrightarrow[p, q]$ by

$$
[p, q] \ni y_{0} \rightarrow \Phi\left(y_{0}\right)=y\left(t_{0}+T ; t_{0}, y_{0}\right)
$$

- CLAIM: The function ϕ is (strictly) monotone increasing.

PROOF: Uniqueness!

- CLAIM: The solution $y\left(t ; t_{0}, y_{0}\right)$ is periodic (with period T) if and only if

$$
\Phi\left(y_{0}\right)=y_{0} .
$$

\bullet
Theorem. Under all the assumptions on f above (including periodicity), the equation (P) has at least one periodic solution $y\left(t ; t_{0}, \xi_{0}\right)=y(t+$ $\left.T ; t_{0}, \xi_{0}\right)$, for some $\xi \in[p, q]$ and all $t \in \mathbb{R}$.

PROOF: The map $\Phi:[p, q] \hookrightarrow[p, q]$ must have a fixed point.

Theorem. : Suppose that $f \in C^{2}(D)$ and that $\frac{\partial^{2}}{\partial y^{2}} f(t, y)<0$ in D. Then the periodic solution of the previous theorem is unique in $\mathbb{R} \times[p, q]$.

Furthermore, for any initial value $y_{0} \in[p, q]$, the solution $y\left(t ; t_{0}, y_{0}\right)$ approaches the periodic solution $y\left(t ; t_{0}, \xi_{0}\right)$ in the sense that

$$
\lim _{t \rightarrow \infty}\left|y\left(t ; t_{0}, y_{0}\right)-y\left(t ; t_{0}, \xi_{0}\right)\right|=0
$$

PROOF: The equation satisfied by the derivative of the solution with respect to the initial data (see Summary 4, the section on "regularity of the solution") is:
$\frac{\partial}{\partial t}\left(\frac{\partial}{\partial y_{0}} y\left(t ; t_{0}, y_{0}\right)\right)=\frac{\partial}{\partial y} f\left(t, y\left(t ; t_{0}, y_{0}\right)\right) \frac{\partial}{\partial y_{0}} y\left(t ; t_{0}, y_{0}\right), \quad \frac{\partial}{\partial y_{0}} y\left(t_{0} ; t_{0}, y_{0}\right)=1$,
so that
$\frac{\partial}{\partial y_{0}} y\left(t_{0}+T ; t_{0}, y_{0}\right)=\Phi^{\prime}\left(y_{0}\right)=\exp \left(\int_{t_{0}}^{t_{0}+T} \frac{\partial}{\partial y} f\left(s, y\left(s ; t_{0}, y_{0}\right)\right) d s\right)>0$.
(It was already observed above that $\Phi\left(y_{0}\right)$ is strictly monotone increasing even without second-order differentiability of f).

Now the second-order derivative $w\left(t ; t_{0}, y_{0}\right)=\frac{\partial^{2} y\left(t ; t_{0}, y_{0}\right)}{\partial y_{0}^{2}}$ satisfies (see Summary 4, the section on "regularity of the solution"):

$$
\begin{gathered}
\frac{\partial}{\partial t} w\left(t ; t_{0}, y_{0}\right)=\frac{\partial^{2}}{\partial y^{2}} f\left(t, y\left(t ; t_{0}, y_{0}\right)\right)\left(\frac{\partial y\left(t ; t_{0}, y_{0}\right)}{\partial y_{0}}\right)^{2}+\frac{\partial}{\partial y} f\left(t, y\left(t ; t_{0}, y_{0}\right)\right) w\left(t ; t_{0}, y_{0}\right) \\
w\left(t_{0} ; t_{0}, y_{0}\right)=0
\end{gathered}
$$

By the assumption,

$$
\frac{\partial}{\partial t} w\left(t ; t_{0}, y_{0}\right)<\frac{\partial}{\partial y} f\left(t, y\left(t ; t_{0}, y_{0}\right)\right) w\left(t ; t_{0}, y_{0}\right)
$$

and since $w\left(t_{0} ; t_{0}, y_{0}\right)=0$

$$
w\left(t ; t_{0}, y_{0}\right) \exp \left(\int_{t_{0}}^{t} \frac{\partial}{\partial y} f\left(s, y\left(s ; t_{0}, y_{0}\right)\right) d s\right)<0 \Rightarrow w\left(t ; t_{0}, y_{0}\right)<0, \quad t>t_{0}
$$

In particular

$$
\frac{\partial^{2}}{\partial y_{0}^{2}} y\left(t_{0}+T ; t_{0}, y_{0}\right)=\Phi^{\prime \prime}\left(y_{0}\right)<0
$$

Thus, $\Phi\left(y_{0}\right)$ cannot have two fixed points (it is a concave, increasing function that can intersect the diagonal only once-give an analytic proof!).

Finally, we prove the convergence of any solution $y\left(t ; t_{0}, y_{0}\right), y_{0} \in[p, q]$, to the periodic one $y\left(t ; t_{0}, \xi_{0}\right)$.

Note that $\lim _{k \rightarrow \infty} \Phi^{k}\left(y_{0}\right)=\xi_{0}$ (Prove this!).
By the theorem on continuous dependence on initial data, given $\varepsilon>0$, we can find $\eta>0$ such that

$$
\left|v_{0}-\xi_{0}\right|<\eta \Rightarrow\left|y\left(t ; t_{0}, v_{0}\right)-y\left(t ; t_{0}, \xi_{0}\right)\right|<\varepsilon, \quad t \in\left[t_{0}, t_{0}+T\right] .
$$

For this $\eta>0$, there is a K such that

$$
k>K \Rightarrow\left|\Phi^{k}\left(y_{0}\right)-\xi_{0}\right|<\eta .
$$

Hence, by the periodicity,
$\left|y\left(t ; t_{0}+k T, \Phi^{k}\left(y_{0}\right)\right)-y\left(t ; t_{0}+k T, \xi_{0}\right)\right|<\varepsilon, \quad t \in\left[t_{0}+k T, t_{0}+(k+1) T\right], \quad k>K$,
that is

$$
\left|y\left(t ; t_{0}, y_{0}\right)-y\left(t ; t_{0}, \xi_{0}\right)\right|<\varepsilon, \quad t \in\left[t_{0}+k T, t_{0}+(k+1) T\right], \quad k>K
$$

Q.E.D.

$* *$

- A TIME PERIODIC LOGISTIC EQUATION

(See Summary 2 for the logistic equation with constant coefficients). $* *$

- We consider

$$
\begin{equation*}
y^{\prime}(t)=a y(t)(b(t)-y(t)), \quad(t, y) \in \mathbb{R} \times \mathbb{R} \tag{LP}
\end{equation*}
$$

where $a>0$ is a constant and $b(t)>0$ is a continuous periodic function, $b(t+T)=b(t)$.

All the assumptions above (including the fact that the second-order derivative of $f(t, y)$ with respect to y is negative) are satisfied here with $f(t, y)=a y(b(t)-y)$. In addition, if

$$
0<p<\min _{t \in \mathbb{R}} b(t)<q
$$

then $f(t, q)<0<f(t, p)$. We have therefore:

Theorem. Equation (LP) has a unique periodic solution $\phi(t)$. For any $\left.t_{0}, y_{0}\right) \in \mathbb{R} \times(0, \infty)$, the solution $y\left(t ; t_{0}, y_{0}\right)$ converges to the periodic solution

$$
\lim _{t \rightarrow \infty}\left|y\left(t ; t_{0}, y_{0}\right)-\phi(t)\right|=0
$$

PROOF: We can apply the previous theorem with any $y_{0}>0$, since we can take very small p and very large q. For some t_{0}, let $y\left(t ; t_{0}, \xi_{0}\right)$ be the periodic solution given by the previous theorem. Since all solutions (starting with $y_{0}>0$) converge to it, it is independent of the choice of t_{0} and we are justified in calling it $\phi(t)$.
Q.E.D.
$* *$
EXAMPLE OF NONUNIQUE PERIODIC SOLUTIONS
**

- Consider the equation

$$
(N U P) \quad y^{\prime}(t)=y(t)-y(t)^{3}+b(t)
$$

Where $b(t)$ is continuous, periodic $(b(t)=b(t+T))$ and

$$
|b(t)|<\frac{2}{3 \sqrt{3}}, \quad t \in \mathbb{R}
$$

- CLAIM: Equation (NUP) has at least three different periodic (with period $T)$ solutions, $\phi^{ \pm}(t), \phi^{0}(t)$, such that

$$
\phi^{+}(t)>\frac{1}{\sqrt{3}}, \quad \phi^{-}(t)<-\frac{1}{\sqrt{3}}, \quad\left|\phi^{0}(t)\right|<\frac{1}{\sqrt{3}}, \quad t \in \mathbb{R}
$$

PROOF: Set $f(t, y)=y-y^{3}+b(t)$. Take $p=\frac{1}{\sqrt{3}}, q=2$. Then

$$
f(t, p)=\frac{2}{3 \sqrt{3}}+b(t)>0, \quad f(t, q)<0, \quad t \in \mathbb{R}
$$

Thus, by the general theorem, we have the existence of a periodic solution $\phi^{+}(t)>p=\frac{1}{\sqrt{3}}$. Similarly,

$$
f(t,-p)=-\frac{2}{3 \sqrt{3}}+b(t)<0, \quad f(t,-q)>0, \quad t \in \mathbb{R}
$$

Thus, by the general theorem, we have the existence of a periodic solution $\phi^{-}(t)<-p=-\frac{1}{\sqrt{3}}$.

Finally, the function $\tilde{y}(t)=y(-t)$ satisfies the equation

$$
\tilde{y}^{\prime}(t)=-\tilde{y}(t)+\tilde{y}(t)^{3}-b(-t)
$$

Set $\tilde{f}(t, \tilde{y})=-\tilde{y}+\tilde{y}^{3}-b(-t)$.
We have

$$
\tilde{f}(t,-p)>0, \quad \tilde{f}(t, p)<0, \quad t \in \mathbb{R}
$$

so by the general theorem there exists a periodic solution $\psi(t)$ to this equation, with $|\psi(t)|<p$. Then $\phi^{0}(t)=\psi(-t)$ is a third periodic solution to (NUP).

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail address: mbartzi@math.huji.ac.il

