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Notation

e The scalar product in R™ is denoted by (-, -).
e Euclidean norm |z|?> = Y 22 in R™.
i=1
e For every A € Hom(R™,R™) we denote by ||A|| its (operator) norm with
respect to | - |.
e Notation: B(z,r) for the OPEN ball of radius r center . The CLOSED
ball is denoted by B(z,r).
e (a) If D C R™ we denote by C'(D,R™) the set of continuous (vector) func-
tions on D into R™.
(b) We denote by Cy,(D,R™) C C(D,R™) the set of BOUNDED contin-
uous functions on D.
(c) We denote by C*(D,R™) the subset of functions in C'(D,R™) which
are continuously differentiable up to (including) order k.
(d) If m = 1 we simplify to C(D), Cy(D), C¥(D).

Kook >k ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok skook ok ok sk sk ok ok skook sk ok sk sk ok sk ok ok skook skok ok sk ok sk skook kol skok sk ok skokok skok skok skok skok ok

e REMARK: In the previous Summary (#6) we have seen a few examples of
periodic solutions for AUTONOMOUS SYSTEMS (nonlinear pendu-
lum, Lotka-Volterra system). Here we discuss examples of periodic solutions
for NON-AUTONOMOUS SYSTEMS.
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o Let f(t,y) € C(D), where D = R x I and I C R is an open (finite or
infinite) interval.
o We always assume that:
f(t,y) is Lipschitz in y.
e We consider the (scalar) equation

(P) y'(t) = f(tyt), teR,

subject to the initial condition y(t9) = yo € I.

e We know that there exists a unique solution defined for ¢ in some open
maximal interval (¢min, tmaz) containing ¢o.

e NOTATION: This solution is denoted by y(¢; to, yo)-

e LEMMA: Suppose that for some p € I we have f(¢,p) > 0 for all ¢t € R.
Then yo > p = y(t;to,y0) > p for all t € [to, tmaz). In other words, the
solution ”stays above” the line y = p.

PROOF: Otherwise there is a first point 7 € (to, tmaz) such that y(7;to, yo) =
p. Clearly at this point y'(7;t0,%0) < 0, but v/ (7;t0,y0) = f(7,p) > 0, a
contradiction.

Q.E.D.
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¢ COROLLARY: Suppose in addition to the assumption of the Lemma
that for some p < ¢ € I, we have f(t,q) < 0 for all ¢ € R. Then , if
Yo € [p, ql, the solution y(t;to,yo) exists for all ¢ > to (i.e.,tmar = 00) and

y(ta t07y0) € (pa q) for all ¢ € (t07 OO)
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¢ PERIODIC SOLUTIONS
e ASSUME f(t,p) > 0,f(t,q) < 0, |[p,q) € I and ADD THE AS-
SUMPTION:
f(t,y) is periodic in t, i.e., there exists T' > 0 such that

f(t+T7y):f(t>y)’ (t7y)€D-

e By the Corollary, yo € [p,q] = y(t;to,90) € [p, q], t = to.
e Define the map @ : [p, ¢] — [p, q] by

[P, 4] > yo — ®(yo) = y(to + T’ to, o)

e CLAIM: The function ¢ is (strictly) monotone increasing.
PROOF: Uniqueness!
e CLAIM: The solution y(t;to,yo) is periodic (with period T') if and only if

®(yo) = Yo-

Theorem. Under all the assumptions on f above (including periodicity),
the equation (P) has at least one periodic solution y(t;to,&) = y(t +
T;t0,&0), for some & € [p,q] and all t € R.

PROOF: The map @ : [p, q] — [p, q] must have a fixed point.

Theorem. : Suppose that f € C?(D) and that %;f(ty) <0 in D. Then
the periodic solution of the previous theorem is unique in R X [p, q].

Furthermore, for any initial value yo € [p,q|, the solution y(t;to,yo)
approaches the periodic solution y(t;to,&o) in the sense that

Jim [y(#: t0, y0) — y(t: o, &o)| = 0.

PROOF': The equation satisfied by the derivative of the solution with
respect to the initial data (see Summary 4, the section on ”regularity of the
solution”) is:

= (=—y(tito, v0) = — F(t,y(t;to, vo)) =—y(Ei o, o), =——(to; to,vo) = 1,
8t(8y0y( 0:%0)) 8yf( y(t;to yo))ayoy( 0:Y0) 8y0y( 05 t05 o)

so that

8 , to+T
R T' :@ = —_— ] .
o0+ Tst000) = #0) = exp (| 215yt o, 30)ds) > 0

(It was already observed above that ®(yo) is strictly monotone increasing

even without second-order differentiability of f).

9%y(tsto,yo)
oy2

Now the second-order derivative w(t;tg,y0) = satisfies (see

Summary 4, the section on "regularity of the solution” )
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dy(t; to, o)

D st ton o) = s £ 8,y 0, y0))(
y 105y Yo 2 s Yl tos Yo 8y()

ot SOy
w(to;to, Yo) = 0.
By the assumption,

0
)2 + aiyf(tay(t tO)Z/O))w(t;th ZJO)7

0 0
&w(f; to,yo) < @f(t,y(t;toayo))w(t;to,yo),

and since w(to; to, yo) =0

t
0
wltsto ) expl | 4o (s, usito,i))ds) < 0= w(tito, ) <0, ¢ o,
to

In particular
2

—y
Iyt

Thus, ®(yo) cannot have two fixed points (it is a concave, increasing
function that can intersect the diagonal only once—give an analytic proof!).

Finally, we prove the convergence of any solution y(¢;t, y0), %o € [p, ql,
to the periodic one y(t;tg, &p).

Note that kli_)n;o ®F (o) = & (Prove this!).

By the theorem on continuous dependence on initial data, given € > 0,
we can find > 0 such that

[vo — &o| <1 = |y(t;to,vo) — y(t;to, &) <e, tE [to,to+ T
For this n > 0, there is a K such that
k> K = |9"(yo) — &o| <.
Hence, by the periodicity,
ly(t;to + kT, ®%(yo)) —y(t;to + kT, &)| <&, te[to+kT to+ (k+1)T], k> K,
that is
ly(t;to,yo) — y(t;to, o) < e, t€to+ kT, to+ (k+1)T], k>K.
Q.E.D.
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¢ A TIME PERIODIC LOGISTIC EQUATION

(See Summary 2 for the logistic equation with constant coeflicients).
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(to + T3 to,y0) = ®"(yo) < 0.

e We consider

(LP) y'(t) = ay(t)(b(t) —y(t), (t,y) eRxR.
where @ > 0 is a constant and b(t) > 0 is a continuous periodic function ,
b(t+T) = b(t).
All the assumptions above (including the fact that the second-order
derivative of f(t,y) with respect to y is negative) are satisfied here with

f(t,y) = ay(b(t) — y). In addition, if
0<p< rtrélﬂgb(t) <q,

then f(t,q) <0 < f(t,p). We have therefore:
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Theorem. Equation (LP) has a unique periodic solution ¢(t). For any
to, yo) € Rx(0,00), the solution y(t; to, yo) converges to the periodic solution

Jim ly(t;to, y0) — ¢(t)| = 0.

PROOF: We can apply the previous theorem with any yg > 0, since we
can take very small p and very large ¢. For some tg, let y(¢; to, &o) be the pe-
riodic solution given by the previous theorem. Since all solutions (starting
with yo > 0) converge to it, it is independent of the choice of ¢y, and we are
justified in calling it ¢(¢). Q.E.D.
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EXAMPLE OF NONUNIQUE PERIODIC SOLUTIONS
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e Consider the equation
(NUP) y'(t) = y(t) — y(t)* +b(t),
Where b(t) is continuous, periodic (b(t) = b(t + T')) and
2
b(t)| < —=, teR.
bl <
e CLAIM: Equation (NUP) has at least three different periodic (with period
T) solutions, ¢=(t), ¢°(t), such that
1 1 1
) > —, ¢ (t) < ———, o) < —, teR.
¢ (t) 7 ¢~ (1) 7 |07(%)] 7
PROOF: Set f(t,y) =y — y> + b(t). Take p = %,q = 2. Then
2
t,p) = ——= +b(t) >0, t,q) <0, teR.
ftp) =3 7 (t) f(t,q9)

Thus, by the general theorem, we have the existence of a periodic solution
ot(t)>p= % Similarly,

ft,—p)=———=+bt) <0, f(t,—¢) >0, teR.

Thus, by the general theorem, we have the existence of a periodic solution
¢~ (t) < —p=—1-
Finally, the function g(t) = y(—t) satisfies the equation

7(t) = —5(t) +5(t)° = b(~1).

Set f(t,5) = —3 + §° — b(—1).
We have

f(ta _p> >Oa f(tvp) < 0) t GR,
so by the general theorem there exists a periodic solution () to this equa-
tion , with |¢(¢)| < p. Then ¢°(t) = ¢(—t) is a third periodic solution to
(NUP).
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