HIGHER ORDER DERIVATIVES, TAYLOR'S THEOREM

MATANIA BEN-ARTZI

May 2015

Functions here are **real**, defined on an open domain $T \subseteq \mathbb{R}^n$ and **continuously** differentiable (i.e., in $C^1(T)$).

The (open) ball of radius r, centered at x, is denoted by B(x, r). It will be clear from the context what is the dimension .

We use the Euclidean norm. The corresponding operator norm is denoted by $\|\cdot\|$.

- Let $f \in C^1(T)$ be a real function.
- <u>DEFINITION</u>: (Second Order Derivatives): If $\frac{\partial f}{\partial x_j}$, has a partial deriv-ative with respect to x_k , for some $k \in \{1, 2, ..., n\}$, at $x^{(0)} \in T$, we denote this derivative by $\frac{\partial^2 f}{\partial x_k \partial x_j}(x^{(0)})$.
- We call it the "mixed" (k, j) second order derivative (at x⁽⁰⁾).
 REMARK: For the mixed derivative to exist at x₀ it is necessary that the first derivative ∂f/∂x_j exist in some ball B(x⁽⁰⁾, δ).
- NOTATION: The "pure" second order derivative is denoted by $\frac{\partial^2 f}{\partial x^2}(x^{(0)})$.

THEOREM. Let $f \in C^1(T)$ be a real function. Suppose that the mixed derivatives $\frac{\partial^2 f}{\partial x_k \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_k}$, $j, k \in \{1, 2, ..., n\}$,

exist in some ball $B(x^{(0)}, \delta)$.

If they are continuous at $x^{(0)}$ then

$$\frac{\partial^2 f}{\partial x_k \partial x_j}(x^{(0)}) = \frac{\partial^2 f}{\partial x_j \partial x_k}(x^{(0)}).$$

• **PROOF.** It is enough to prove for a function of two variables, f(x, y), $(x, y) \in$ $T \subseteq \mathbb{R}^2$.

Fix $(x_0, y_0) \in T$ and let $\delta > 0$ be sufficiently small so that if $|h|, |k| < \delta$ then the rectangle Q whose vertices are the four points four points

$$(x_0, y_0), (x_0 + h, y_0), (x_0 + h, y_0 + k), (x_0, y_0 + k)$$

satisfies $\overline{Q} \subseteq T$.

Define the functions (of a single variable):

$$\phi(x) = f(x, y_0 + k) - f(x, y_0), \quad \psi(y) = f(x_0 + h, y) - f(x_0, y).$$

Then

Т

$$\phi(x_0 + h) - \phi(x_0) = \psi(y_0 + k) - \psi(y_0).$$

But by the Mean Value Theorem:

$$\phi(x_0+h) - \phi(x_0) = h\phi'(\xi) = h \Big[\frac{\partial f(x, y_0+k)}{\partial x} - \frac{\partial f(x, y_0)}{\partial x} \Big] \Big|_{x=\xi},$$

$$\psi(y_0+k) - \psi(y_0) = k\psi'(\eta) = k \Big[\frac{\partial f(x_0+h, y)}{\partial y} - \frac{\partial f(x_0, y)}{\partial y} \Big] \Big|_{y=\eta}.$$

where ξ is a point between x_0 , $x_0 + h$ and η is a point between y_0 , $y_0 + k$.

Using again the mean value theorem we get, $\partial^2 f(x,y) = \partial^2 f(x,y)$

$$\begin{split} \phi(x_0+h) - \phi(x_0) &= hk \frac{\partial f(x,y)}{\partial y \partial x} \Big|_{x=\xi, y=\eta_1}, \\ \psi(y_0+k) - \psi(y_0) &= hk \frac{\partial^2 f(x,y)}{\partial x \partial y} \Big|_{x=\xi_1, y=\eta}, \end{split}$$

where ξ_1 is a point between x_0 , $x_0 + h$ and η_1 is a point between y_0 , $y_0 + k$. Clearly

$$\phi(x_0 + h) - \phi(x_0) = \psi(y_0 + k) - \psi(y_0),$$

so that

$$\frac{\partial^2 f(x,y)}{\partial y \partial x}\Big|_{x=\xi,y=\eta_1} = \frac{\partial^2 f(x,y)}{\partial x \partial y}\Big|_{x=\xi_1,y=\eta}.$$

Letting $h, k \to 0$ and using the assumed continuity we finally obtain

$$\frac{\partial^2 f(x,y)}{\partial y \partial x}\Big|_{x=x_0,y=y_0} = \frac{\partial^2 f(x,y)}{\partial x \partial y}\Big|_{x=x_0,y=y_0}$$

- REMARK: It is sufficient to assume that only *one* of the mixed derivatives is continuous at x_0 . See R. Courant and F. John, Introduction to Calculus and Analysis, vol. 2, Ch. 1.4.d, p.36.
- Going to higher order, it should be clear what we mean by the "l-th order mixed derivative" $\frac{\partial^l f}{\partial x_{i_1}...\partial x_{i_l}}$, $(i_1,...,i_l) \in \{1,2,...,n\}$.
- <u>DEFINITION</u>: The space $C^{l}(T)$ is the space of functions whose derivatives of all orders $\leq l$ exist and are continuous in T.
- Equality of Mixed Derivatives : If $f \in C^{l}(T)$ then the value of $\frac{\partial^{l} f}{\partial x_{i_{1}} \dots \partial x_{i_{l}}}$ remains invariant under any permutation of the indices $i_{1}, i_{2}, \dots, i_{l}$.

TAYLOR'S THEOREM IN DIMENSION ≥ 2

• **TAYLOR'S THEOREM**: Let $f \in C^{l+1}(B(x, \delta))$ be a real function, for some $l \ge 1$. Then, for any $y \in B(x, \delta)$,

$$\begin{split} f(y) &= f(x) + \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_{i}} (y_{i} - x_{i}) + \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} (y_{i} - x_{i}) (y_{j} - x_{j}) + \ldots + \\ & \frac{1}{l!} \sum_{i_{1},\ldots,i_{l}=1}^{n} \frac{\partial^{l} f(x)}{\partial x_{i_{1}} \ldots \partial x_{i_{l}}} (y_{i_{1}} - x_{i_{1}}) (y_{i_{2}} - x_{i_{2}}) \ldots (y_{i_{l}} - x_{i_{l}}) \\ & + \frac{1}{(l+1)!} \sum_{i_{1},\ldots,i_{l,i_{l+1}=1}}^{n} \frac{\partial^{l+1} f(\xi)}{\partial x_{i_{1}} \ldots \partial x_{i_{l+1}}} (y_{i_{1}} - x_{i_{1}}) (y_{i_{2}} - x_{i_{2}}) \ldots (y_{i_{l}} - x_{i_{l}}) (y_{i_{l+1}} - x_{i_{l+1}}), \end{split}$$

where $\xi \in B(x, \delta)$ (actually, on the line segment connecting x to y).

• **PROOF.** Define the function of one variable

$$g(t) = f(x + t(y - x)), \quad 0 \le t \le 1,$$

and apply Taylor's theorem for a single variable

$$g(1) = g(0) + g'(0) + \frac{1}{2}g''(0) + \dots + \frac{1}{l!}g^{(l)}(0) + \frac{1}{(l+1)!}g^{(l+1)}(\tau), \quad 0 \le \tau \le 1.$$

Now express the derivatives of g in terms of the partial derivatives of f, using the chain rule:

$$g^{(k)}(0) = \sum_{i_1,\dots,i_k=1}^n \frac{\partial^k f(x)}{\partial x_{i_1}\dots\partial x_{i_k}} (y_{i_1} - x_{i_1})(y_{i_2} - x_{i_2})\dots(y_{i_k} - x_{i_k}).$$

The **HESSIAN**

• DEFINITION (**HESSIAN**): The symmetric matrix

$$H(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{1 \le i,j \le n}$$

is called the **Hessian** matrix (at x) of f.

- REMARK: H is actually the Jacobian matrix of the map $D(Df)(x) \in Hom(\mathbb{R}^n, \mathbb{R}^n)$.
- SUFFICIENT CONDITIONS FOR LOCAL EXTREMUM OF A C^2 FUNCTION.

THEOREM. Let $f \in C^2(T)$ be a real function. Suppose that $x^{(0)} \in T$ is a critical point of f. Then:

- (a) If $H(x^{(0)})$ is positive definite-the point $x^{(0)}$ is a local minimum of f.
- (b) If $H(x^{(0)})$ is negative definite-the point $x^{(0)}$ is a local maximum of f.

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM 91904, ISRAEL *E-mail address*: mbartzi@math.huji.ac.il