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Functions here are defined on a subset T ⊆ Rn and take values in Rm, where m
can be smaller, equal or greater than n.

The (open) ball of radius r, centered at x, is denoted by B(x, r). It will be clear
from the context what is the dimension (as in the convergence definition below).

Usually, we use the Euclidean norm. The ball depends on the norm, but all the
concepts are ”norm independent”.

CONVENTION: When we say that g is “differentiable at x0” we mean that
it is defined in some small (open) ball B(x0, η).

• DEFINITION: (directional derivative of a function at a point): Let
g(x) ∈ Rm be defined in B(x0, η) ⊆ Rn for some small η > 0 . Let u ∈ Sn−1
(i.e., u is a UNIT VECTOR in Rn). The directional derivative of g at
x0, in the u−direction, is defined by

Dug(x0) = lim
h↓0

g(x0 + hu)− g(x0)

h
.

• NOTATION: Another common notation is ∂g
∂u (x0).

• CLAIM: Suppose that g is differentiable at x0. Then its directional deriv-
ative at x0 exists (in any direction) and satisfies:

Dug(x0) = Dg(x0)u.

• REMARK: Note that the right-hand side above is an application of a linear
transformation (from Rn to Rm) to a (unit) vector in Rn, so the result is a
vector in Rm.
• REMARK: In terms of coordinates, the directional derivative is given by:

Dug(x0) = Jg(x0)u.

Now Dug(x0) and u are, respectively, the m−vector and n− vector of co-
ordinates.

*****************************************************************
THE CASE OF REAL FUNCTIONS
********************************************************************

• REMARK: If m = 1 (i.e., g is a REAL function) then

Dug(x0) = ∇g(x0) · u.
• COROLLARY: If g is a real function, differentiable at x0, the direction

of ∇g(x0) is the direction of STEEPEST INCREASE.
1
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The opposite direction, that of −∇g(x0), is that of STEEPEST DE-
CREASE.
• REMARK : If ∇g(x0) = 0 then ALL DIRECTIONAL DERIVATIVES

VANISH.
• MORE GENERALLY, suppose that

(a) g is a real function differentiable at x0 ∈ Rn.
(b) (a, b) 3 t ↪→ γ(t) ∈ Rn is a differentiable curve.
(c) γ(c) = x0, for some c ∈ (a, b).

• CLAIM: Under the above conditions, g(γ(t)) is differentiable at c and

d

dt
g(γ(t))|t=c = ∇g(x0) · γ′(t)|t=c.

• DEFINITION(derivative along a curve): The derivative d
dtg(γ(t)) is

called the derivative of g along γ.
• EXAMPLE: Let γ(t), t ∈ R, be a straight line in Rn given by

γ(t) = x0 + tu, u ∈ Sn−1.

Then
d

dt
g(γ(t))|t=0 = ∇g(x0) · u,

which is the directional derivative of g at x0, in the direction of u.
• DEFINITION (graph of a function): The graph of g is the set

{(x, g(x)) , x ∈ D} ⊆ Rn+1.

• GEOMETRICALLY, if ∇g(x0) = 0 then (x0, g(x0)) is a “flat point” of the
graph y = g(x).

On the other hand, if ∇g(x0) 6= 0, the the direction of the gradient is
the direction of “steepest increase” on the graph (at the point (x0, g(x0))).

****************************************************************************
HYPERSURFACES and LEVEL SURFACES

******************************************************************************

• DEFINITION (hypersurface) Let S ⊆ Rn+1. We say that S is an
n−dimensional hypersurface if for every y ∈ S there exists a δ > 0 such
that S ∩ B(y, δ) is a graph of a function (with respect to a set of n out of
the n+ 1 coordinates).

In the case n = 2 it is usually called a surface (two-dimensional geo-
metric object).
• DEFINITION (level surface): Let f be a real function defined in D ⊆
Rn+1, where D is open. Let y0 ∈ D and let c = f(y0). If the set Ly0 =
{y ∈ D, f(y) = c} is a hypersurface, we call it the c−level surface of f
(in D).

REMARK: We can define the local c−level surface by restricting to Lδy0 =
Ly0 ∩B(y0, δ) for some small δ > 0.
• RESTRICTION: We assume always that the function expressing the

hypersurface as a graph is continuously differentiable.
• EXAMPLE: For any real continuously differentiable function g : T ↪→
R, T ⊆ Rn (T open set) the graph of g is the 0− level surface (in T ×R ⊆
Rn+1) of the function (of the n+ 1 coordinates x, y) f(x, y) = y − g(x).
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***********************************************************************
GRADIENTS AND LEVEL SURFACES

**********************************************************************
FUNDAMENTAL QUESTION: Let D ⊆ Rn+1 be an open domain (i.e.,

connected) and f : D → R a real differentiable function.
Let x0 ∈ D. When is the set Lδx0

= {x ∈ D ∩B(x0, δ), f(x) = f(x0)} a hyper-
surface (for sufficiently small δ > 0)?

• LEMMA. Suppose that ∂f
∂x1

(x0) > 0. Then there exists a ball B(x0, δ)

such that the set {x ∈ D ∩B(x0, δ), f(x) = f(x0)} is a hypersurface.
• NOTATION: For x ∈ Rn+1 we write x = (x1, x

′), , x′ = (x2, ..., xn, xn+1) ∈
Rn.
• PROOF.
• Let c = f(x0).

• By continuity , there exists δ1 > 0 such that, ∂f
∂x1

(z) > 0, z = (z1, z
′), |z1−

(x0)1| < δ1, |z′ − (x0)′| < δ1.
• f is strictly increasing in x1, so for some θ > 0,

f((x0)1 + δ1, (x0)′) > c+ θ, f((x0)1 − δ1, (x0)′) < c− θ.

• By continuity there exists 0 < δ2 < δ1 such that

f((x0)1 + δ1, x
′) > c+ θ, f((x0)1 − δ1, x

′) < c− θ, |x′ − (x0)′| < δ2.

• CONCLUSION: Since f(x1, x
′) is continuous and strictly increasing in x1,

the intermediate value theorem implies that, for every x′ ∈ B((x0)
′
, δ2)

there exists a UNIQUE x̂1 = x̂1(x′) ∈ ((x0)1 − δ1, (x0)1 + δ1) such that

f(x̂1, x
′) = c.

• PROPOSITION: The (real) function x̂1(x′) is continuously differentiable
on B((x0)

′
, δ2).

• PROOF of the PROPOSITION.
(a) Continuity: Let ε > 0 be given. Take above 0 < δ1 < ε. Then

there is a suitable δ2 > 0. If y, z ∈ B((x0)
′
, δ2) ⊆ Rn Then x̂1(y), x̂1(z) ∈

((x0)1 − δ1, (x0)1 + δ1) so that

|x̂1(y)− x̂1(z)| ≤ 2ε.

(b) Differentiability:
Take y, z ∈ B((x0)

′
, δ2) ⊆ Rn so that only their first coordinates are

different, namely,

y = (x2, x3, ..., xn+1), z = (x2 + h, x3, ..., xn+1).

Then by definition

f(x̂1(y), y)− f(x̂1(z), z) = c− c = 0.

On the other hand

f(x̂1(z), z)− f(x̂1(y), y) = [f(x̂1(z), z)− f(x̂1(y), z)]

+[f(x̂1(y), z)− f(x̂1(y), y)].

Denote

∆x̂1 = x̂1(z)− x̂1(y).
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Then from the mean value theorem

f(x̂1(z), z)− f(x̂1(y), z) =
∂f

∂x1
(ξ1, z)∆x̂1,

where ξ1 is between x̂1(z) and x̂1(y).
Similarly

f(x̂1(y), z)− f(x̂1(y), y) =
∂f

∂x2
(x̂1(y), ξ2, x3, ..., xn+1)h,

where ξ2 ∈ (x2, x2 + h) (assuming h > 0).
Hence

0 =
∂f

∂x1
(ξ1, z)∆x̂1 +

∂f

∂x2
(x̂1(y), ξ2, x3, ..., xn+1)h.

• We conclude that

∆x̂1
h

= −
∂f
∂x2

(x̂1(y), ξ2, x3, ..., xn+1)
∂f
∂x1

(ξ1, z)
.

By the continuity property of x̂1 we have

ξ1 → x̂1(y), ξ2 → x2, as h→ 0.

• We therefore obtain in the limit (as h → 0), since the partial derivatives
are continuous,

∂x̂1
∂x2

(y) = −
[ ∂f
∂x1

(x̂1(y), y)
]−1 ∂f

∂x2
(x̂1(y), y), y ∈ B((x0)

′
, δ2).

• Replacing x2 by any xj , 3 ≤ j ≤ n + 1, we see that all partial derivatives

of x̂1(x′) exist and are continuous for x′ ∈ B((x0)
′
, δ2).

• THIS CONCLUDES THE PROOF OF THE PROPOSITION
AND THEREFORE THE LEMMA IS PROVED.

***********************************************************************
GEOMETRIC INTERPRETATION OF THE GRADIENT

**********************************************************************

• DEFINITION (orthogonality to a hypersurface): Let S ⊆ Rn+1 be a
hypersurface and y0 ∈ S. We say that a vector N ∈ Rn+1 is orthogonal
to S at y0 if the following condition is satisfied:

For every curve {γ(t), −ε < t < ε} ⊆ S such that γ(0) = y0, the tangent
γ′(0) is orthogonal to N, namely, N · γ′(0) = 0.
• THEOREM (the gradient as normal to level surfaces): Let f be a

real continuously differentiable function in a neighborhood of y0 ∈ Rn+1,
and assume that ∇f(y0) 6= 0.

Let Lδy0 = {y ∈ B(y0, δ), f(y) = f(y0)} be the level surface through

y0, for some sufficiently small δ > 0. Then ∇f(y0) is orthogonal to Lδy0 (at
y0).
• PROOF: Let {γ(t), −ε < t < ε} ⊆ Ly0 be a curve such that γ(0) = y0.

Then f(γ(t)) ≡ f(y0) (why?) so that by the chain rule

0 =
d

dt
f(γ(t)) = ∇f(γ(t)) · γ′(t), t ∈ (−ε, ε).

In particular, this is true at t = 0, so that ∇f(y0) is orthogonal to γ′(0).
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• EXAMPLE(tangent plane of a surface in R3): Let f(x, y, z) be a con-
tinuously differentiable function in a ball B(P0, δ) ⊆ R3, P0 = (x0, y0, z0).
If ∇f(P0) 6= 0, then the equation f(x, y, z) = f(P0) defines a surface in a
small neighborhood of P0, and the equation of the tangent plane to this
surface, at P0, is given by

∇f(P0)·(x−x0, y−y0, z−z0) =
∂f

∂x
(P0)(x−x0)+

∂f

∂y
(P0)(y−y0)+

∂f

∂z
(P0)(z−z0) = 0.

***************************************************************************
EXTREMUM

***************************************************************************

• We assume that T ⊆ Rn is an open domain and g is a real continuous
function defined in T.
• DEFINITION (critical point): If the real function g(x) is differentiable

at x0, and ∇g(x0) = 0 we say that x0 is a critical point of g.
• DEFINITION (local extremum): Let g be a real function defined in
T ⊆ Rn. We say that g has a local maximum (resp. minimum) at
x0 ∈ T if there exists δ > 0 such that

g(x0) ≥ g(y), y ∈ T ∩B(x0, δ)

(resp. g(x0) ≤ g(y), y ∈ T ∩B(x0, δ)).
• THEOREM: Let g be a real function defined in B(x0, δ) ⊆ Rn and differ-

entiable at x0. If g has a local extremum at x0, then x0 is a critical point
of g.
• PROOF. In particular, for every j = 1, 2, ..., n, the function has an ex-

tremum (at x0) along the xj−direction (i.e., the one-dimensional function
g(x0 + tej) has extremum at t = 0). It follows that

∂g

∂xj
(x0) = 0, j = 1, 2, ..., n.

• DEFINITION (local extremum with constraints): Let g be a real func-
tion defined in T ⊆ Rn. Let φ be another real function defined in T ⊆ Rn,
such that φ(x0) = 0 at x0 ∈ T. We say that g has a local maximum (resp.
minimum) at x0, subject to the constraint φ = 0, if there exists δ > 0
such that

g(x0) ≥ g(y), y ∈ T ∩B(x0, δ) ∩ {φ(y) = 0}

(resp. g(x0) ≤ g(y), y ∈ T ∩B(x0, δ) ∩ {φ(y) = 0}).
• THEOREM: Let g, φ be real functions defined in a ball B(x0, δ) ⊆ Rn.

Suppose that
(1) g is differentiable at x0.
(2) φ is continuously differentiable in B(x0, δ) ⊆ Rn, φ(x0) = 0 and
∇φ(x0) 6= 0.

Then:
If g has a local extremum at x0, subject to the constraint φ = 0, then

there exists a constant µ ∈ R such that ∇g(x0) = µ∇φ(x0).
• PROOF.

(a) By the conditions on φ we know that the level surface φ(x) = 0
exists in a neighborhood of x0, and without loss of generality we may assume
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that it is given as

xn = ψ(x′), x′ = (x1, ..., xn−1),

where (x0)n = ψ(x′0).
(b) Recall that

∂ψ

∂xj
(x′0) = −

∂φ
∂xj

(x0)

∂φ
∂xn

(x0)
, j = 1, 2, ..., n− 1.

(c) Thus, in a neighborhood of x0, the function g, subject to the con-
straint, can be expressed as a function of the n− 1 coordinates x′,

h(x′) = g(x′, ψ(x′)), x′ in a neighborhood of x′0.

(d) The function h has an extremum at x′0, so its gradient vanishes
there. By the chain rule,

0 =
∂h

∂xj
(x′0) =

∂g

∂xj
(x0) +

∂g

∂xn
(x0)

∂ψ

∂xj
(x′0), j = 1, 2, ..., n− 1,

so that

∂g

∂xj
(x0) =

∂g

∂xn
(x0)

∂φ
∂xj

(x0)

∂φ
∂xn

(x0)
= µ

∂φ

∂xj
(x0), j = 1, 2, ..., n− 1,

where

µ =

∂g
∂xn

(x0)
∂φ
∂xn

(x0)
.

(e) Of course also

∂g

∂xn
(x0) = µ

∂φ

∂xn
(x0).

�
• DEFINITION (Lagrange multiplier): The constant µ in the theorem is

called the Lagrange multiplier of the constrained extremal problem.
**************************************************************

• THE GRADIENT CAN BE USED TO ESTIMATE FUNCTIONAL
DIFFERENCES.

********************************************************************
• THEOREM: Let g be a real differentiable function in an open set T ⊆
Rn. Let a, b ∈ T be such that the line segment l(a, b) connecting them is
contained in T. Then

|g(b)− g(a)| ≤ sup
x∈l(a,b)

|∇g(x)| · |b− a|.

• PROOF. Consider the function f(t) = g(a+ t(b− a)), defined on the real
interval t ∈ [0, 1].

By the chain rule it is differentiable with derivative given by

f ′(t) = ∇g(a+ t(b− a)) · (b− a).

Now apply the mean value theorem and the Cauchy-Schwarz inequality.
�
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• HOWEVER, IT IS NOT NECESSARY FOR g TO HAVE A CRITICAL
POINT ON l EVEN IF g(b) = g(a) (different from Rolle’s Theorem in one
dimension).
• EXAMPLE: Take n = 2 and consider T = {(x, y), 1 < x2 +y2 < 17} and
g(x, y) = x2 + y2.
• THEOREM: Let T ⊆ Rn be open and connected and let g be a real

differentiable function in T. Suppose that ∇g ≡ 0 in T. Then g ≡ constant
in T.
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