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NOTATION:

• If a ∈ R3 then |a| is its Euclidean norm.
• For a, b ∈ R3, the scalar product is denoted by a · b.
• For a, b ∈ R3, the vector product is denoted by a× b.
• For Ψ : R2 → R3 denote Ψui

= ∂
∂ui

Ψ.

DEFINITION: Let D ⊆ R2 be an open, connected domain, and denote by u =
(u1, u2) the coordinates in D.

Let Ψ : D → R3 be a smooth (at least C3) map such that:

• Ψ is one-to-one.
• Ψu1

×Ψui
6= 0 at any point u ∈ D.

Then S = Ψ(D) is called a simple (or elementary) surface. The domain D
is called the parameter domain of S and the map Ψ is the parametrization of
S.

Special case–Functional Graph. Let ψ : D → R be a smooth scalar function.
Then the map

(1) Ψ(u1, u2) = (u1, u2, ψ(u1, u2)), (u1, u2) ∈ D,
defines a simple surface called the graph of ψ (over D).

REMARK. For any simple surface, the parameters (u1, u2) form a system of
coordinates on the surface.

As in the case of curves, we discuss first the issue of “change of parameters.”

DEFINITION: Let D̃ ⊆ R2 be an open, connected domain, and denote the co-

ordinates there by v = (v1, v2). A smooth map Φ : D̃ → D is called an admissible
change of parameters if:

• Φ = (Φ1(v),Φ2(v)) is one-to-one and onto.

• The Jacobian J(Φ) =

 ∂
∂v1

Φ1
∂
∂v2

Φ1

∂
∂v1

Φ2
∂
∂v2

Φ2

 is regular and det(J(Φ)) > 0.

CLAIM 1. Let Φ be an admissible change of parameters as above. Then

(Ψ ◦ Φ)v1 × (Ψ ◦ Φ)v2 = det(J(Φ))(Ψu1 ◦ Φ)× (Ψu2 ◦ Φ).
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Proof. By the chain rule

(Ψ ◦ Φ)vi =

2∑
j=1

∂Φj
∂vi

(Ψuj ◦ Φ),

so the claim follows from the distributive rule of vector products and Ψuj
×Ψuj

=
0. �

Notational Convention. In what follows we denote by P = P (u) a point in D
with coordinates u. Without risking confusion, we use “P” both for P = P (u) ∈ D
and P = Ψ(P (u)) ∈ S.

DEFINITION: The vector n(P ) =
Ψu1

(P )×Ψu2
(P )

|Ψu1
(P )×Ψu2

(P )| is called the unit normal to

S at P.
COROLLARY to the CLAIM. The unit normal is invariant under an ad-

missible change of parameters.
Example 1. In the case of a graph (1),

n =
(−ψu1

,−ψu1
, 1)√

1 + ψ2
u1

+ ψ2
u2

.

************************************************************************
SURFACE AREA and TANGENT PLANE
**********************************************************************
DEFINITION: Let E ⊆ D be an open domain so that E b D.
The surface area of Ψ(E) ⊆ S is defined as

Area(Ψ(E)) =

∫
E

|Ψu1 ×Ψu2 |du1du2.

REMARK. In view of Claim 1 and the formula for the change of variables in

integration, if Ẽ = Φ−1(E), then

Area(Ψ ◦ Φ(Ẽ)) = Area(Ψ(E)).

Thus, the area is well defined under admissible change of parameters.
Example 1-revisited. In the case of a graph

Area(Ψ(E)) =

∫
E

√
1 + ψ2

u1
+ ψ2

u2
du1du2.

The vectors Ψu1
, Ψu2

are linearly independent at every point P (u1, u2) ∈ D.
DEFINITION: Let P = (u1, u2) ∈ D. The plane spanned by Ψu1

(P ), Ψu2
(P ) is

called the tangent plane to the surface at P and denoted by TPS.
REMARK. By our convention, P ∈ S is identified with its coordinates P (u) ∈

D.
DEFINITION: Let {α(t), t ∈ (a, b)} ⊆ D ⊆ R2 be a smooth curve in the param-

eter domain. Then the curve γ(t) = Ψ(α(t)) is called a curve on the surface
S.

We refer to α(t) as the coordinates of the curve.
CLAIM 2. Let P ∈ S. Then the tangent plane TPS is equal to the plane

spanned by all tangents of curves γ(t) on S passing through P.

TPS = {γ′(0), γ(0) = P} .
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Proof. If γ(t) = Ψ(α(t)) is a curve on S, with γ(0) = P, then

γ′(0) = α′1(0)Ψu1(P ) + α′2(0)Ψu2(P ) ∈ TPS.

Conversely, let X = λ1Ψu1(P ) + λ2Ψu2(P ) ∈ TPS. Take the straight line segment
α(t) = α(0) + t(λ1, λ2) ⊆ D, with α(0) = P (recall that we identify P ∈ S with
its coordinates P (α(0)) ∈ D) . Then γ(t) = Ψ(α(t)) satisfies γ′(0) = λ1Ψu1

(P ) +
λ2Ψu2

(P ) = X. �

COROLLARY. The tangent plane TPS is the two-dimensional space spanned
by the (linearly independent) vectors Ψu1(P ), Ψu2(P ).

************************************************************************
THE FIRST FUNDAMENTAL FORM = THE METRIC
**********************************************************************
Let P ∈ S and let X,Y ∈ TPS. We express both of them in terms of the “basis

vectors” Ψu1
(P ),Ψu2

(P ). Then

(2) X · Y =

2∑
i,j=1

XiYj Ψui
(P ) ·Ψuj

(P ).

DEFINITION: The four numbers{
gij(P ) = Ψui

(P ) ·Ψuj
(P ), 1 ≤ i, j ≤ 2, P ∈ S

}
are called the metric coefficients on S.

CLAIM 3. The symmetric matrix {gij(P )}2i,j=1 is positive definite, for every

P ∈ S.
In particular

(3) det {gij(P )} = |Ψu1
(P )×Ψu2

(P )|2.

Proof. It is the matrix of the scalar product on TPS.
If θ is the angle between Ψu1

(P ) and Ψu2
(P ) then

|Ψu1
(P )×Ψu2

(P )|2 = |Ψu1
(P )|2|Ψu2

(P )|2 sin2(θ)

= |Ψu1
(P )|2|Ψu2

(P )|2 − |Ψu1
(P ) ·Ψu2

(P )|2 = det(gij(P )).

�

DEFINITION: The positive bilinear form

X · Y =

2∑
i,j=1

gij(P )XiYj , X, Y ∈ TPS

is called the first fundamental form.

NOTATION

• The inverse matrix to {gij(P )}2i,j=1 is denoted by
{
gij(P )

}2

i,j=1
.

• g(P ) = det {gij(P )} .

Example 1-re-revisited. In the case of a graph

Ψu1
(P ) = (1, 0, ψu1

), Ψu1
(P ) = (0, 1, ψu2

),
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hence, at the point P = (u1, u2, ψ(u1, u2)),

g11 = 1 + ψ2
u1
, g22 = 1 + ψ2

u2
,

g12 = g21 = ψu1ψu2 .

************************************************************************
THE SECOND FUNDAMENTAL FORM and the CHRISTOFFEL

SYMBOLS
**********************************************************************
By assumption the triple {Ψu1(P ),Ψu2(P ), n(P )} is a basis to R3 at every point

P ∈ S. In particular, we can write

(4) Ψuiuj
(P ) = Lij(P )n(P ) +

2∑
k=1

Γkij(P )Ψuk
(P ).

THEOREM. In Equation (4), known as the Gauss Formula, we have

Lij(P ) = Ψuiuj
(P ) · n(P ).

Γkij(P ) =
1

2

2∑
l=1

gkl(P )
(∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
(P ).

Proof. The first equation is clear, since n(P ) is orthogonal to Ψu1
(P ), Ψu2

(P ).
Concerning the second equation, we show first that (we omit the “P” for sim-

plicity)

Γkij =

2∑
l=1

glkΨuiuj ·Ψul
.

Indeed,

Ψuiuj ·Ψul
=

2∑
m=1

Γmij gml,

so multiplying by glk and summing over l,

2∑
l=1

Ψuiuj ·Ψul
glk =

2∑
m=1

Γmij δkm = Γkij .

We therefore need to compute Ψuiuj ·Ψul
in terms of the metric g.

To do this we write

∂gil
∂uj

=
∂

∂uj
Ψui
·Ψul

= Ψuiuj
·Ψul

+ Ψuluj
·Ψui

,

and similarly
∂gjl
∂ui

= Ψuiuj ·Ψul
+ Ψului ·Ψuj ,

∂gji
∂ul

= Ψuluj
·Ψui

+ Ψului
·Ψuj

.

Thus
∂gil
∂uj

+
∂gjl
∂ui
− ∂gji
∂ul

= 2Ψuiuj
·Ψul

.
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�

DEFINITION: The matrix {Lij(P )}2i,j=1 is symmetric. Its elements are called

the coefficients of the second fundamental form.

REMARK. In the classical notation the coefficients (at a point P ∈ S) of the
first and second fundamental forms are designated as

E = g11, F = g12 = g21, G = g22,

L = L11, M = L12 = L21, N = L22,

DEFINITION: The coefficients
{

Γkij , 1 ≤ i, j, k ≤ 2
}

are called the Christoffel
symbols (of the second kind).

DEFINITION: We say that a quantity is intrinsic (to the surface) if it de-
pends (in addition to the local coordinates) only on the metric (gij) (as function of
the coordinates u).

COROLLARY. The Christoffel symbols
{

Γkij , 1 ≤ i, j, k ≤ 2
}

are intrinsic.

************************************************************************
CURVATURE OF A CURVE ON THE SURFACE
**********************************************************************
Length parameter of a curve. Let {α(t), t ∈ (a, b)} ⊆ D ⊆ R2 be a smooth

curve in the parameter domain , and let γ(t) = Ψ(α(t)) be the corresponding curve
on the surface S (so that α(t) are its coordinates). Then, with P = γ(t),

γ′(t) = α′1(t)Ψu1
(P ) + α′2(t)Ψu2

(P ) ∈ TPS,

Length of arc of γ from t0 to t :

(5) s(t) =

t∫
t0

|γ′(σ)|dσ =

t∫
t0

√√√√ 2∑
i,j=1

gij(γ(σ))α′i(σ)α′j(σ) dσ.

COROLLARY. The arc length is an intrinsic property of the curve.

We can use the arc length parameter s also for the coordinates α(s).
Let γ(s) be a unit speed curve on the surface S.We denote by α(s) = (α1(s), α2(s))

its coordinates; γ(s) = Ψ(α(s)).
T (s), N(s), B(s), κ(s), τ(s), is the Frenet-Serret apparatus of the curve.
Note that T (s) ∈ Tγ(s)S.
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DEFINITION: Let n(s) be the unit normal to S at γ(s). Then the intrinsic
normal to the curve is defined by

m(s) = n(s)× T (s).

Note. Since m(s) is orthogonal to n(s), it follows that m(s) ∈ Tγ(s)S, and
m(s), n(s) form a basis to the plane orthogonal to T (s) at γ(s).

CLAIM 4. The derivative of the tangent T (s) along the curve can be written
as a linear combination of n(s) and m(s) :

(6) γ′′(s) = T ′(s) = κn(s)n(s) + κg(s)m(s).

Also, in terms of the coordinates α(s),

(7) T ′(s) =

2∑
i,j=1

α′i(s)α
′
j(s)Ψuiuj (α(s)) +

2∑
k=1

α′′k(s)Ψuk
(α(s)).

Proof. Since |T (s)| ≡ 1, the derivative T ′(s) is orthogonal to T (s), hence a linear
combination of n(s) and m(s).

To prove Equation (7) we differentiate (with respect to s) the equation

T (s) = γ′(s) =

2∑
i=1

α′i(s)Ψui
(α(s)).

�

Using the Frenet-Serret system, T ′(s) = κ(s)N(s), so

γ′′(s) = κ(s)N(s) = κn(s)n(s) + κg(s)m(s).

DEFINITION: κn(s) is the normal curvature of the curve.
κg(s) is the geodesic curvature of the curve.

CLAIM 5. The tangential part of T ′(s) is given by

κg(s)m(s) =

2∑
k=1

(
α′′k(s) +

2∑
i,j=1

α′i(s)α
′
j(s)Γ

k
ij(α(s))

)
Ψuk

(α(s)).

Proof. In Equation (7) take the tangential part of Ψuiuj (α(s)) according to Equa-
tion (4). �

THEOREM. The geodesic curvature κg(s) is intrinsic.

Proof. By definition

κg(s) = κg(s)m(s) · (n(s)× T (s)).
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From Claim 5 we get

κg(s) =

2∑
k=1

(
α′′k(s) +

2∑
i,j=1

α′i(s)α
′
j(s)Γ

k
ij(α(s))

)
Ψuk

(α(s)) · (n(s)× T (s))

=

2∑
k=1

(
α′′k(s) +

2∑
i,j=1

α′i(s)α
′
j(s)Γ

k
ij(α(s))

)
Ψuk

(α(s)) ·
(
n(s)×

2∑
l=1

α′l(s)Ψul
(α(s)

)

=

2∑
l=1

2∑
k=1

(
α′′k(s) +

2∑
i,j=1

α′i(s)α
′
j(s)Γ

k
ij(α(s))

)
α′l(s)Ψuk

(α(s)) · (n(s)×Ψul
(α(s)).

But

Ψuk
(α(s))·(n(s)×Ψul

(α(s)) = n(s)·(Ψul
(α(s))×Ψuk

(α(s)) =


√
g(α(s), l = 1, k = 2,

−
√
g(α(s), l = 2, k = 1,

0, l = k.

Thus, all the terms in the last expression for κg(s) are intrinsic. �

******************************************************************
GEODESIC CURVES

***************************************************************
DEFINITION: Let γ(s) ⊆ S be a unit speed curve. It is called geodesic if its

geodesic curvature κg(s) is identically equal to zero.
COROLLARY. A necessary and sufficient condition for γ(s) to be geodesic

is that γ′′(s) is orthogonal to the surface at every point (i.e., a scalar multiple of
n(γ(s)).

Proof. See Claim 4, Equation (6). �

************************************************************************
NORMAL CURVATURE and WEINGARTEN MAP

**********************************************************************
We continue to consider unit speed curves γ(s) on the surface S (so that s is the

arc length parameter).

We turn to the normal curvature κn(s) of a curve γ(s) on the surface S. Recall
that the unit speed curve γ(s)) is expressed as γ(s) = Ψ(α(s)), with coordinates
α(s) ∈ D).

CLAIM 6. The normal curvature satisfies, in terms of the second fundamental
form, the equation

(8) κn(s) =

2∑
i,j=1

Lij(γ(s))α′i(s)α
′
j(s),

where

|γ′(s)|2 =

2∑
i,j=1

gij(γ(s))α′i(s)α
′
j(s) ≡ 1.
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Proof. In Equation (7) we put the normal (to the surface) part of Ψuiuj (α(s)),
which is by definition Lij (see Equation (4)).

�

CLAIM 7. Fix P ∈ S. Then the set of all possible normal curvatures of
curves passing through P is equal to the following set of values, computed by the
second funadamental form:

2∑
i,j=1

LijXiXj , X =

2∑
i=1

XiΨui(P ) ∈ TPS, |X| = 1

 .

Proof. Any unit vector X = X1Ψu1(P ) + X2Ψu2(P ) ∈ TPS is a tangent vector
X = γ′(0) of some unit speed curve γ(s) so that γ(0) = P.

Indeed, if P = Ψ(u0), take α̃(t) = u0 + t(X1, X2), and let γ̃(t) = Ψ(α̃(t)) be the
corresponding curve on the surface.

Its length (from P ) is given by

s(t) =

t∫
0

√√√√ 2∑
i,j=1

gij(γ̃(σ))α̃′i(σ)α̃′j(σ) dσ.

Express t = t(s) and take the unit speed curve

γ(s) = γ̃(t(s)).

then ds
dt

∣∣∣
t=0

= 1 and

γ′(s)s=0 = γ̃′(t)t=0 = X1Ψu1(P ) +X2Ψu2(P ).

�

From linear algebra we know that every bilinear form defines a linear map. In
the case of the second fundamental form we have:

DEFINITION: Let P ∈ S. The Weingarten map LP : TPS → TPS is given by

LPX · Y =

2∑
i,j=1

Lij(P )XiYj , X, Y ∈ TPS,

X =

2∑
i=1

XiΨui
(P ), Y =

2∑
i=1

YiΨui
(P ).

From Claim 7 we get

THEOREM. For any P ∈ S there are two orthonormal vectors Z1(P ), Z2(P ) ∈
TPS so that

• Z1(P ), Z2(P ) are eigenvectors of LP , with corresponding eigenvalues κ1(P ) ≤
κ2(P ).
• The eigenvalues κ1(P ), κ2(P ) are the minimal and maximal normal curva-

tures at P.

DEFINITION: The eigenvalues κ1(P ), κ2(P ) are called the principal curva-
tures of the surface S at P.
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CLAIM 8. Let

LPΨuj (P ) =

2∑
l=1

LljΨul
(P ), j = 1, 2,

then

Lij =

2∑
k=1

Ljkg
ki,

where all the above quantities are computed at P.

Proof. Taking the scalar product with Ψuk
(P ) we have

(9) Ljk = LPΨuj
(P ) ·Ψuk

(P ) =

2∑
l=1

Lljglk,

so the result is obtained by multiplying by gki and summing over k. �

COROLLARY. At every point P ∈ S the product K(P ) = κ1(P )κ2(P ) of the
principal curvatures satisfies
(10)

K(P ) = det
{
Llj
}
l,j=1

= det {Lij}i,j=1 det
{
gij
}
i,j=1

=
L11(P )L22(P )− L12(P )L21(P )

g(P )
.

REMARK. In the classical notation the coefficients (at a point P ∈ S) of the
first and second fundamental forms are designated as

E = g11, F = g12 = g21, G = g22,

L = L11, M = L12 = L21, N = L22,

so that the formula for K(P ) can be rewritten as

K(P ) = LN−M2

EG−F 2 .

If X ∈ TPS is a unit vector, the normal curvature in the direction of X is given
by κX(P ) = LPX ·X. Expressing X in terms of the basis vectors in the direction
of the principal curvatures we obtain:

EULER’s THEOREM. If X = cos(θ)Z1(P ) + sin(θ)Z2(P ), then

κX(P ) = LPX ·X = cos2(θ)κ1(P ) + sin2(θ)κ2(P ).

****************************************************************************
GAUSS MAP and the GEOMETRIC MEANING of the WEINGARTEN

MAP.
******************************************************

Now note that the unit normal n(P ), as function of P ∈ S,) can be viewed as
valued in S2, the unit sphere.
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DEFINITION: The map S 3 P → n(P ) ∈ S2 is called the Gauss Map.
The tangent plane to S2 at n(P ) is denoted by Tn(P )S

2, and is normal to n(P ).
However, by definition, also the tangent plane TPS (to S at P ) is perpendicular to
n(P ). Therefore, the tangent planes Tn(P )S

2 and TPS are parallel and can
be identified.

COROLLARY. The differential Dn(P ) is a linear map of TPS into itself.
CLAIM 9. The Weingarten map, in TPS, satisfies:

LP = −Dn(P ).

Proof. Note first that, by definition of the directional derivative,

Dn(p)Ψui(P ) =
∂n

∂ui
(P ), i = 1, 2, P ∈ S.

On the other hand, for 1 ≤ i, j ≤ 2 we have, by definition of the coefficients of
the second fundamental form,

0 =
∂

∂ui
(n·Ψuj

)(P ) =
∂n

∂ui
(P )·Ψuj

(P )+n(P )·Ψujui
(P ) =

∂n

∂ui
(P )·Ψuj

(P )+Lij(P ).

By definition of the Weingarten map,

LPΨui
(P ) ·Ψuj

(P ) = Lij(P ), 1 ≤ i, j ≤ 2,

so the previous equality can be written as

0 =
∂n

∂ui
(P )·Ψuj

(P )+LPΨui
(P )·Ψuj

(P ) =
( ∂n
∂ui

(P )+LPΨui
(P )
)
·Ψuj

(P ), 1 ≤ i, j ≤ 2.

It follows that

(11) LPΨui(P ) = − ∂n
∂ui

(P ), i = 1, 2, P ∈ S.

�

*********************************************************************
GAUSS CURVATURE and THEOREMA EGREGIUM

***********************************************************************
DEFINITION: The product K(P ) = κ1(P )κ2(P ) of the principal curvatures at

a point P ∈ S is called the Gaussian curvature of the surface at P.

We introduce
DEFINITION: (the Riemann curvature tensor). At every point P ∈ S we

define:

(12) Rlijk =
∂Γlik
∂uj

−
∂Γlij
∂uk

+

2∑
m=1

(ΓmikΓlmj − ΓmijΓ
l
mk), 1 ≤ i, j, k, l ≤ 2.

REMARK. Note that by its definition the Riemann tensor is intrinsic.
We now express the tensor in terms of the coefficients of the second fundamental

form (and their related coefficients of the Weingarten map).
CLAIM 10. Let

{
Lij , L

l
k

}
be, respectively, the coefficients of the second fun-

damental form (see Equation (4)) and the Weingarten map (see Claim 8). Then
we have the Gauss equation:

(13) Rlijk = LikL
l
j − LijLlk, 1 ≤ i, j, k, l ≤ 2.
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Proof. We differentiate Equation (4) with respect to uk :

Ψuiujuk
(P ) =

∂

∂uk

[
Lij(P )n(P ) +

2∑
m=1

Γmij (P )Ψum
(P )
]

=
( ∂

∂uk
Lij

)
n+ Lij

∂

∂uk
n+

2∑
l=1

( ∂

∂uk
Γlij

)
Ψul

+

2∑
l,m=1

ΓmijΓ
l
mkΨul

+

2∑
l=1

ΓlijLlkn,

where in the second line we have omitted the point P.
Now we use Equation (11) and the expression in Claim 8 to write

∂

∂uk
n = −LPΨuk

= −
2∑
l=1

LlkΨul
,

so that

(14)

Ψuiujuk
=
[ ∂

∂uk
Lij +

2∑
l=1

ΓlijLlk

]
n+

2∑
l=1

{( ∂

∂uk
Γlij

)
− LijLlk +

2∑
m=1

ΓmijΓ
l
mk

}
Ψul

.

Now we interchange the indices j, k in this equality and obtain
(15)

Ψuiukuj
=
[ ∂

∂uj
Lik +

2∑
l=1

ΓlikLlj

]
n+

2∑
l=1

{( ∂

∂uj
Γlik

)
− LikLlj +

2∑
m=1

ΓmikΓlmj

}
Ψul

.

Since the mixed derivatives are equal, we can compare the coefficients of Ψul
,

∂

∂uk
Γlij − LijLlk +

2∑
m=1

ΓmijΓ
l
mk =

∂

∂uj
Γlik − LikLlj +

2∑
m=1

ΓmikΓlmj ,

which is exactly the required equality (13), if we take into account the definition (12)
of the Riemann tensor.

�

THEOREMA EGREGIUM of GAUSS:

The Gaussian curvature K(P ) of a surface is intrinsic.

Proof. By the Remark following Equation (12) we know that Rlijk is intrinsic.

We now multiply Equation (13) by glm and sum over l :
(16)

2∑
l=1

Rlijkglm =

2∑
l=1

[
LikL

l
j − LijLlk

]
glm = LikLjm − LijLkm, 1 ≤ i, j, k,m ≤ 2,

where we used Equation (9).
Since the left-hand side is intrinsic, this is true also for the right-hand side.
In particular, if we take i = k = 1 and j = m = 2 we conclude that L11L22 −

L12L21 is intrinsic. In view of the formula (10) the proof is complete (note that of
course g(P ) is intrinsic!). �
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REMARK¿ In the proof of the Gauss Equation (13) we compared the coeffi-
cients of Ψul

in Equations (14), (15). If we compare the coefficient of n in the two
equations we obtain the

Codazzi-Mainardi Equations:

(17)
∂

∂uk
Lij +

2∑
l=1

ΓlijLlk =
∂

∂uj
Lik +

2∑
l=1

ΓlikLlj , 1 ≤ i, j, k ≤ 2.
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