SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE \mathbb{R}^{3}

MATANIA BEN-ARTZI

June 2016

NOTATION:

- If $a \in \mathbb{R}^{3}$ then $|a|$ is its Euclidean norm.
- For $a, b \in \mathbb{R}^{3}$, the scalar product is denoted by $a \cdot b$.
- For $a, b \in \mathbb{R}^{3}$, the vector product is denoted by $a \times b$.
- For $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ denote $\Psi_{u_{i}}=\frac{\partial}{\partial u_{i}} \Psi$.

DEFINITION: Let $D \subseteq \mathbb{R}^{2}$ be an open, connected domain, and denote by $u=$ $\left(u_{1}, u_{2}\right)$ the coordinates in D.

Let $\Psi: D \rightarrow \mathbb{R}^{3}$ be a smooth (at least C^{3}) map such that:

- Ψ is one-to-one.
- $\Psi_{u_{1}} \times \Psi_{u_{i}} \neq 0$ at any point $u \in D$.

Then $S=\Psi(D)$ is called a simple (or elementary) surface. The domain D is called the parameter domain of S and the map Ψ is the parametrization of S.

Special case-Functional Graph. Let $\psi: D \rightarrow \mathbb{R}$ be a smooth scalar function. Then the map

$$
\begin{equation*}
\Psi\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}, \psi\left(u_{1}, u_{2}\right)\right), \quad\left(u_{1}, u_{2}\right) \in D \tag{1}
\end{equation*}
$$

defines a simple surface called the graph of ψ (over D).
REMARK. For any simple surface, the parameters (u_{1}, u_{2}) form a system of coordinates on the surface.

As in the case of curves, we discuss first the issue of "change of parameters."
DEFINITION: Let $\widetilde{D} \subseteq \mathbb{R}^{2}$ be an open, connected domain, and denote the coordinates there by $v=\left(v_{1}, v_{2}\right)$. A smooth map $\Phi: \widetilde{D} \rightarrow D$ is called an admissible change of parameters if:

- $\Phi=\left(\Phi_{1}(v), \Phi_{2}(v)\right)$ is one-to-one and onto.
- The Jacobian $J(\Phi)=\left(\begin{array}{cc}\frac{\partial}{\partial v_{1}} \Phi_{1} & \frac{\partial}{\partial v_{2}} \Phi_{1} \\ \frac{\partial}{\partial v_{1}} \Phi_{2} & \frac{\partial}{\partial v_{2}} \Phi_{2}\end{array}\right)$ is regular and $\operatorname{det}(J(\Phi))>0$.

CLAIM 1. Let Φ be an admissible change of parameters as above. Then

$$
(\Psi \circ \Phi)_{v_{1}} \times(\Psi \circ \Phi)_{v_{2}}=\operatorname{det}(J(\Phi))\left(\Psi_{u_{1}} \circ \Phi\right) \times\left(\Psi_{u_{2}} \circ \Phi\right) .
$$

Proof. By the chain rule

$$
(\Psi \circ \Phi)_{v_{i}}=\sum_{j=1}^{2} \frac{\partial \Phi_{j}}{\partial v_{i}}\left(\Psi_{u_{j}} \circ \Phi\right)
$$

so the claim follows from the distributive rule of vector products and $\Psi_{u_{j}} \times \Psi_{u_{j}}=$ 0 .

Notational Convention. In what follows we denote by $P=P(u)$ a point in D with coordinates u. Without risking confusion, we use " P " both for $P=P(u) \in D$ and $P=\Psi(P(u)) \in S$.

DEFINITION: The vector $n(P)=\frac{\Psi_{u_{1}}(P) \times \Psi_{u_{2}}(P)}{\left|\Psi_{u_{1}}(P) \times \Psi_{u_{2}}(P)\right|}$ is called the unit normal to S at P.

COROLLARY to the CLAIM. The unit normal is invariant under an admissible change of parameters.

Example 1. In the case of a graph (1),

$$
n=\frac{\left(-\psi_{u_{1}},-\psi_{u_{1}}, 1\right)}{\sqrt{1+\psi_{u_{1}}^{2}+\psi_{u_{2}}^{2}}}
$$

SURFACE AREA and TANGENT PLANE

**
DEFINITION: Let $E \subseteq D$ be an open domain so that $\bar{E} \Subset D$.
The surface area of $\Psi(E) \subseteq S$ is defined as

$$
\operatorname{Area}(\Psi(E))=\int_{E}\left|\Psi_{u_{1}} \times \Psi_{u_{2}}\right| d u_{1} d u_{2}
$$

REMARK. In view of Claim 1 and the formula for the change of variables in integration, if $\widetilde{E}=\Phi^{-1}(E)$, then

$$
\operatorname{Area}(\Psi \circ \Phi(\widetilde{E}))=\operatorname{Area}(\Psi(E))
$$

Thus, the area is well defined under admissible change of parameters.
Example 1-revisited. In the case of a graph

$$
\operatorname{Area}(\Psi(E))=\int_{E} \sqrt{1+\psi_{u_{1}}^{2}+\psi_{u_{2}}^{2}} d u_{1} d u_{2}
$$

The vectors $\Psi_{u_{1}}, \Psi_{u_{2}}$ are linearly independent at every point $P\left(u_{1}, u_{2}\right) \in D$.
DEFINITION: Let $P=\left(u_{1}, u_{2}\right) \in D$. The plane spanned by $\Psi_{u_{1}}(P), \Psi_{u_{2}}(P)$ is called the tangent plane to the surface at P and denoted by $T_{P} S$.

REMARK. By our convention, $P \in S$ is identified with its coordinates $P(u) \in$ D.

DEFINITION: Let $\{\alpha(t), t \in(a, b)\} \subseteq D \subseteq \mathbb{R}^{2}$ be a smooth curve in the parameter domain. Then the curve $\gamma(t)=\Psi(\alpha(t))$ is called a curve on the surface S.

We refer to $\alpha(t)$ as the coordinates of the curve.
CLAIM 2. Let $P \in S$. Then the tangent plane $T_{P} S$ is equal to the plane spanned by all tangents of curves $\gamma(t)$ on S passing through P.

$$
T_{P} S=\left\{\gamma^{\prime}(0), \gamma(0)=P\right\}
$$

Proof. If $\gamma(t)=\Psi(\alpha(t))$ is a curve on S, with $\gamma(0)=P$, then

$$
\gamma^{\prime}(0)=\alpha_{1}^{\prime}(0) \Psi_{u_{1}}(P)+\alpha_{2}^{\prime}(0) \Psi_{u_{2}}(P) \in T_{P} S
$$

Conversely, let $X=\lambda_{1} \Psi_{u_{1}}(P)+\lambda_{2} \Psi_{u_{2}}(P) \in T_{P} S$. Take the straight line segment $\alpha(t)=\alpha(0)+t\left(\lambda_{1}, \lambda_{2}\right) \subseteq D$, with $\alpha(0)=P$ (recall that we identify $P \in S$ with its coordinates $P(\alpha(0)) \in D)$. Then $\gamma(t)=\Psi(\alpha(t))$ satisfies $\gamma^{\prime}(0)=\lambda_{1} \Psi_{u_{1}}(P)+$ $\lambda_{2} \Psi_{u_{2}}(P)=X$.

COROLLARY. The tangent plane $T_{P} S$ is the two-dimensional space spanned by the (linearly independent) vectors $\Psi_{u_{1}}(P), \Psi_{u_{2}}(P)$.

THE FIRST FUNDAMENTAL FORM = THE METRIC

Let $P \in S$ and let $X, Y \in T_{P} S$. We express both of them in terms of the "basis vectors" $\Psi_{u_{1}}(P), \Psi_{u_{2}}(P)$. Then

$$
\begin{equation*}
X \cdot Y=\sum_{i, j=1}^{2} X_{i} Y_{j} \Psi_{u_{i}}(P) \cdot \Psi_{u_{j}}(P) \tag{2}
\end{equation*}
$$

DEFINITION: The four numbers

$$
\left\{g_{i j}(P)=\Psi_{u_{i}}(P) \cdot \Psi_{u_{j}}(P), \quad 1 \leq i, j \leq 2, P \in S\right\}
$$

are called the metric coefficients on S.
CLAIM 3. The symmetric matrix $\left\{g_{i j}(P)\right\}_{i, j=1}^{2}$ is positive definite, for every $P \in S$.

In particular

$$
\begin{equation*}
\operatorname{det}\left\{g_{i j}(P)\right\}=\left|\Psi_{u_{1}}(P) \times \Psi_{u_{2}}(P)\right|^{2} . \tag{3}
\end{equation*}
$$

Proof. It is the matrix of the scalar product on $T_{P} S$.
If θ is the angle between $\Psi_{u_{1}}(P)$ and $\Psi_{u_{2}}(P)$ then

$$
\begin{array}{r}
\left|\Psi_{u_{1}}(P) \times \Psi_{u_{2}}(P)\right|^{2}=\left|\Psi_{u_{1}}(P)\right|^{2}\left|\Psi_{u_{2}}(P)\right|^{2} \sin ^{2}(\theta) \\
=\left|\Psi_{u_{1}}(P)\right|^{2}\left|\Psi_{u_{2}}(P)\right|^{2}-\left|\Psi_{u_{1}}(P) \cdot \Psi_{u_{2}}(P)\right|^{2}=\operatorname{det}\left(g_{i j}(P)\right) .
\end{array}
$$

DEFINITION: The positive bilinear form

$$
X \cdot Y=\sum_{i, j=1}^{2} g_{i j}(P) X_{i} Y_{j}, \quad X, Y \in T_{P} S
$$

is called the first fundamental form.

NOTATION

- The inverse matrix to $\left\{g_{i j}(P)\right\}_{i, j=1}^{2}$ is denoted by $\left\{g^{i j}(P)\right\}_{i, j=1}^{2}$.
- $g(P)=\operatorname{det}\left\{g_{i j}(P)\right\}$.

Example 1-re-revisited. In the case of a graph

$$
\Psi_{u_{1}}(P)=\left(1,0, \psi_{u_{1}}\right), \Psi_{u_{1}}(P)=\left(0,1, \psi_{u_{2}}\right),
$$

hence, at the point $P=\left(u_{1}, u_{2}, \psi\left(u_{1}, u_{2}\right)\right)$,

$$
\begin{array}{r}
g_{11}=1+\psi_{u_{1}}^{2}, g_{22}=1+\psi_{u_{2}}^{2} \\
g_{12}=g_{21}=\psi_{u_{1}} \psi_{u_{2}}
\end{array}
$$

THE SECOND FUNDAMENTAL FORM and the CHRISTOFFEL

 SYMBOLSBy assumption the triple $\left\{\Psi_{u_{1}}(P), \Psi_{u_{2}}(P), n(P)\right\}$ is a basis to \mathbb{R}^{3} at every point $P \in S$. In particular, we can write

$$
\begin{equation*}
\Psi_{u_{i} u_{j}}(P)=L_{i j}(P) n(P)+\sum_{k=1}^{2} \Gamma_{i j}^{k}(P) \Psi_{u_{k}}(P) \tag{4}
\end{equation*}
$$

THEOREM. In Equation (4), known as the Gauss Formula, we have

$$
\begin{gathered}
L_{i j}(P)=\Psi_{u_{i} u_{j}}(P) \cdot n(P) \\
\Gamma_{i j}^{k}(P)=\frac{1}{2} \sum_{l=1}^{2} g^{k l}(P)\left(\frac{\partial g_{i l}}{\partial u_{j}}+\frac{\partial g_{j l}}{\partial u_{i}}-\frac{\partial g_{i j}}{\partial u_{l}}\right)(P)
\end{gathered}
$$

Proof. The first equation is clear, since $n(P)$ is orthogonal to $\Psi_{u_{1}}(P), \Psi_{u_{2}}(P)$.
Concerning the second equation, we show first that (we omit the " P " for simplicity)

$$
\Gamma_{i j}^{k}=\sum_{l=1}^{2} g^{l k} \Psi_{u_{i} u_{j}} \cdot \Psi_{u_{l}}
$$

Indeed,

$$
\Psi_{u_{i} u_{j}} \cdot \Psi_{u_{l}}=\sum_{m=1}^{2} \Gamma_{i j}^{m} g_{m l}
$$

so multiplying by $g^{l k}$ and summing over l,

$$
\sum_{l=1}^{2} \Psi_{u_{i} u_{j}} \cdot \Psi_{u l} g^{l k}=\sum_{m=1}^{2} \Gamma_{i j}^{m} \delta_{k m}=\Gamma_{i j}^{k} .
$$

We therefore need to compute $\Psi_{u_{i} u_{j}} \cdot \Psi_{u_{l}}$ in terms of the metric g.
To do this we write

$$
\frac{\partial g_{i l}}{\partial u_{j}}=\frac{\partial}{\partial u_{j}} \Psi_{u_{i}} \cdot \Psi_{u_{l}}=\Psi_{u_{i} u_{j}} \cdot \Psi_{u_{l}}+\Psi_{u_{l} u_{j}} \cdot \Psi_{u_{i}}
$$

and similarly

$$
\begin{aligned}
& \frac{\partial g_{j l}}{\partial u_{i}}=\Psi_{u_{i} u_{j}} \cdot \Psi_{u_{l}}+\Psi_{u_{l} u_{i}} \cdot \Psi_{u_{j}} \\
& \frac{\partial g_{j i}}{\partial u_{l}}=\Psi_{u_{l} u_{j}} \cdot \Psi_{u_{i}}+\Psi_{u_{l} u_{i}} \cdot \Psi_{u_{j}}
\end{aligned}
$$

Thus

$$
\frac{\partial g_{i l}}{\partial u_{j}}+\frac{\partial g_{j l}}{\partial u_{i}}-\frac{\partial g_{j i}}{\partial u_{l}}=2 \Psi_{u_{i} u_{j}} \cdot \Psi_{u_{l}} .
$$

DEFINITION: The matrix $\left\{L_{i j}(P)\right\}_{i, j=1}^{2}$ is symmetric. Its elements are called the coefficients of the second fundamental form.

REMARK. In the classical notation the coefficients (at a point $P \in S$) of the first and second fundamental forms are designated as

$$
\begin{gathered}
E=g_{11}, \quad F=g_{12}=g_{21}, \quad G=g_{22}, \\
L=L_{11}, \quad M=L_{12}=L_{21}, \quad N=L_{22},
\end{gathered}
$$

DEFINITION: The coefficients $\left\{\Gamma_{i j}^{k}, 1 \leq i, j, k \leq 2\right\}$ are called the Christoffel symbols (of the second kind).

DEFINITION: We say that a quantity is intrinsic (to the surface) if it depends (in addition to the local coordinates) only on the metric ($g_{i j}$) (as function of the coordinates u).

COROLLARY. The Christoffel symbols $\left\{\Gamma_{i j}^{k}, 1 \leq i, j, k \leq 2\right\}$ are intrinsic.

CURVATURE OF A CURVE ON THE SURFACE

**
Length parameter of a curve. Let $\{\alpha(t), t \in(a, b)\} \subseteq D \subseteq \mathbb{R}^{2}$ be a smooth curve in the parameter domain, and let $\gamma(t)=\Psi(\alpha(t))$ be the corresponding curve on the surface S (so that $\alpha(t)$ are its coordinates). Then, with $P=\gamma(t)$,

$$
\gamma^{\prime}(t)=\alpha_{1}^{\prime}(t) \Psi_{u_{1}}(P)+\alpha_{2}^{\prime}(t) \Psi_{u_{2}}(P) \in T_{P} S,
$$

Length of arc of γ from t_{0} to t :

$$
\begin{equation*}
s(t)=\int_{t_{0}}^{t}\left|\gamma^{\prime}(\sigma)\right| d \sigma=\int_{t_{0}}^{t} \sqrt{\sum_{i, j=1}^{2} g_{i j}(\gamma(\sigma)) \alpha_{i}^{\prime}(\sigma) \alpha_{j}^{\prime}(\sigma)} d \sigma . \tag{5}
\end{equation*}
$$

COROLLARY. The arc length is an intrinsic property of the curve.

We can use the arc length parameter s also for the coordinates $\alpha(s)$.
Let $\gamma(s)$ be a unit speed curve on the surface S. We denote by $\alpha(s)=\left(\alpha_{1}(s), \alpha_{2}(s)\right)$ its coordinates; $\gamma(s)=\Psi(\alpha(s))$.
$T(s), N(s), B(s), \kappa(s), \tau(s)$, is the Frenet-Serret apparatus of the curve.
Note that $T(s) \in T_{\gamma(s)} S$.

DEFINITION: Let $n(s)$ be the unit normal to S at $\gamma(s)$. Then the intrinsic normal to the curve is defined by

$$
m(s)=n(s) \times T(s)
$$

Note. Since $m(s)$ is orthogonal to $n(s)$, it follows that $m(s) \in T_{\gamma(s)} S$, and $m(s), n(s)$ form a basis to the plane orthogonal to $T(s)$ at $\gamma(s)$.

CLAIM 4. The derivative of the tangent $T(s)$ along the curve can be written as a linear combination of $n(s)$ and $m(s)$:

$$
\begin{equation*}
\gamma^{\prime \prime}(s)=T^{\prime}(s)=\kappa_{n}(s) n(s)+\kappa_{g}(s) m(s) \tag{6}
\end{equation*}
$$

Also, in terms of the coordinates $\alpha(s)$,

$$
\begin{equation*}
T^{\prime}(s)=\sum_{i, j=1}^{2} \alpha_{i}^{\prime}(s) \alpha_{j}^{\prime}(s) \Psi_{u_{i} u_{j}}(\alpha(s))+\sum_{k=1}^{2} \alpha_{k}^{\prime \prime}(s) \Psi_{u_{k}}(\alpha(s)) \tag{7}
\end{equation*}
$$

Proof. Since $|T(s)| \equiv 1$, the derivative $T^{\prime}(s)$ is orthogonal to $T(s)$, hence a linear combination of $n(s)$ and $m(s)$.

To prove Equation (7) we differentiate (with respect to s) the equation

$$
T(s)=\gamma^{\prime}(s)=\sum_{i=1}^{2} \alpha_{i}^{\prime}(s) \Psi_{u_{i}}(\alpha(s))
$$

Using the Frenet-Serret system, $T^{\prime}(s)=\kappa(s) N(s)$, so

$$
\gamma^{\prime \prime}(s)=\kappa(s) N(s)=\kappa_{n}(s) n(s)+\kappa_{g}(s) m(s)
$$

DEFINITION: $\kappa_{n}(s)$ is the normal curvature of the curve. $\kappa_{g}(s)$ is the geodesic curvature of the curve.

CLAIM 5. The tangential part of $T^{\prime}(s)$ is given by

$$
\kappa_{g}(s) m(s)=\sum_{k=1}^{2}\left(\alpha_{k}^{\prime \prime}(s)+\sum_{i, j=1}^{2} \alpha_{i}^{\prime}(s) \alpha_{j}^{\prime}(s) \Gamma_{i j}^{k}(\alpha(s))\right) \Psi_{u_{k}}(\alpha(s))
$$

Proof. In Equation (7) take the tangential part of $\Psi_{u_{i} u_{j}}(\alpha(s))$ according to Equation (4).

THEOREM. The geodesic curvature $\kappa_{g}(s)$ is intrinsic.
Proof. By definition

$$
\kappa_{g}(s)=\kappa_{g}(s) m(s) \cdot(n(s) \times T(s))
$$

From Claim 5 we get

$$
\begin{aligned}
& \kappa_{g}(s)=\sum_{k=1}^{2}\left(\alpha_{k}^{\prime \prime}(s)+\sum_{i, j=1}^{2} \alpha_{i}^{\prime}(s) \alpha_{j}^{\prime}(s) \Gamma_{i j}^{k}(\alpha(s))\right) \Psi_{u_{k}}(\alpha(s)) \cdot(n(s) \times T(s)) \\
= & \sum_{k=1}^{2}\left(\alpha_{k}^{\prime \prime}(s)+\sum_{i, j=1}^{2} \alpha_{i}^{\prime}(s) \alpha_{j}^{\prime}(s) \Gamma_{i j}^{k}(\alpha(s))\right) \Psi_{u_{k}}(\alpha(s)) \cdot\left(n(s) \times \sum_{l=1}^{2} \alpha_{l}^{\prime}(s) \Psi_{u_{l}}(\alpha(s))\right. \\
= & \sum_{l=1}^{2} \sum_{k=1}^{2}\left(\alpha_{k}^{\prime \prime}(s)+\sum_{i, j=1}^{2} \alpha_{i}^{\prime}(s) \alpha_{j}^{\prime}(s) \Gamma_{i j}^{k}(\alpha(s))\right) \alpha_{l}^{\prime}(s) \Psi_{u_{k}}(\alpha(s)) \cdot\left(n(s) \times \Psi_{u_{l}}(\alpha(s)) .\right.
\end{aligned}
$$

But
$\Psi_{u_{k}}(\alpha(s)) \cdot\left(n(s) \times \Psi_{u_{l}}(\alpha(s))=n(s) \cdot\left(\Psi_{u_{l}}(\alpha(s)) \times \Psi_{u_{k}}(\alpha(s))=\left\{\begin{array}{l}\sqrt{g(\alpha(s)}, l=1, k=2, \\ -\sqrt{g(\alpha(s)}, l=2, k=1, \\ 0, l=k .\end{array}\right.\right.\right.$
Thus, all the terms in the last expression for $\kappa_{g}(s)$ are intrinsic.

GEODESIC CURVES

DEFINITION: Let $\gamma(s) \subseteq S$ be a unit speed curve. It is called geodesic if its geodesic curvature $\kappa_{g}(s)$ is identically equal to zero.

COROLLARY. A necessary and sufficient condition for $\gamma(s)$ to be geodesic is that $\gamma^{\prime \prime}(s)$ is orthogonal to the surface at every point (i.e., a scalar multiple of $n(\gamma(s))$.

Proof. See Claim 4, Equation (6).

NORMAL CURVATURE and WEINGARTEN MAP

**
We continue to consider unit speed curves $\gamma(s)$ on the surface S (so that s is the arc length parameter).

We turn to the normal curvature $\kappa_{n}(s)$ of a curve $\gamma(s)$ on the surface S. Recall that the unit speed curve $\gamma(s))$ is expressed as $\gamma(s)=\Psi(\alpha(s))$, with coordinates $\alpha(s) \in D)$.

CLAIM 6. The normal curvature satisfies, in terms of the second fundamental form, the equation

$$
\begin{equation*}
\kappa_{n}(s)=\sum_{i, j=1}^{2} L_{i j}(\gamma(s)) \alpha_{i}^{\prime}(s) \alpha_{j}^{\prime}(s) \tag{8}
\end{equation*}
$$

where

$$
\left|\gamma^{\prime}(s)\right|^{2}=\sum_{i, j=1}^{2} g_{i j}(\gamma(s)) \alpha_{i}^{\prime}(s) \alpha_{j}^{\prime}(s) \equiv 1
$$

Proof. In Equation (7) we put the normal (to the surface) part of $\Psi_{u_{i} u_{j}}(\alpha(s))$, which is by definition $L_{i j}$ (see Equation (4)).

CLAIM 7. Fix $P \in S$. Then the set of all possible normal curvatures of curves passing through P is equal to the following set of values, computed by the second funadamental form:

$$
\left\{\sum_{i, j=1}^{2} L_{i j} X_{i} X_{j}, \quad X=\sum_{i=1}^{2} X_{i} \Psi_{u_{i}}(P) \in T_{P} S,|X|=1\right\}
$$

Proof. Any unit vector $X=X_{1} \Psi_{u_{1}}(P)+X_{2} \Psi_{u_{2}}(P) \in T_{P} S$ is a tangent vector $X=\gamma^{\prime}(0)$ of some unit speed curve $\gamma(s)$ so that $\gamma(0)=P$.

Indeed, if $P=\Psi\left(u^{0}\right)$, take $\widetilde{\alpha}(t)=u^{0}+t\left(X_{1}, X_{2}\right)$, and let $\widetilde{\gamma}(t)=\Psi(\widetilde{\alpha}(t))$ be the corresponding curve on the surface.

Its length (from P) is given by

$$
s(t)=\int_{0}^{t} \sqrt{\sum_{i, j=1}^{2} g_{i j}(\widetilde{\gamma}(\sigma)) \widetilde{\alpha}_{i}^{\prime}(\sigma) \widetilde{\alpha}_{j}^{\prime}(\sigma)} d \sigma .
$$

Express $t=t(s)$ and take the unit speed curve

$$
\gamma(s)=\widetilde{\gamma}(t(s))
$$

then $\left.\frac{d s}{d t}\right|_{t=0}=1$ and

$$
\gamma^{\prime}(s)_{s=0}=\widetilde{\gamma}^{\prime}(t)_{t=0}=X_{1} \Psi_{u_{1}}(P)+X_{2} \Psi_{u_{2}}(P)
$$

From linear algebra we know that every bilinear form defines a linear map. In the case of the second fundamental form we have:

DEFINITION: Let $P \in S$. The Weingarten map $\mathcal{L}_{P}: T_{P} S \rightarrow T_{P} S$ is given by

$$
\begin{array}{r}
\mathcal{L}_{P} X \cdot Y=\sum_{i, j=1}^{2} L_{i j}(P) X_{i} Y_{j}, \quad X, Y \in T_{P} S, \\
X=\sum_{i=1}^{2} X_{i} \Psi_{u_{i}}(P), \quad Y=\sum_{i=1}^{2} Y_{i} \Psi_{u_{i}}(P) .
\end{array}
$$

From Claim 7 we get

THEOREM. For any $P \in S$ there are two orthonormal vectors $Z^{1}(P), Z^{2}(P) \in$ $T_{P} S$ so that

- $Z^{1}(P), Z^{2}(P)$ are eigenvectors of \mathcal{L}_{P}, with corresponding eigenvalues $\kappa_{1}(P) \leq$ $\kappa_{2}(P)$.
- The eigenvalues $\kappa_{1}(P), \kappa_{2}(P)$ are the minimal and maximal normal curvatures at P.

DEFINITION: The eigenvalues $\kappa_{1}(P), \kappa_{2}(P)$ are called the principal curvatures of the surface S at P.

CLAIM 8. Let

$$
\mathcal{L}_{P} \Psi_{u_{j}}(P)=\sum_{l=1}^{2} L_{j}^{l} \Psi_{u_{l}}(P), \quad j=1,2,
$$

then

$$
L_{j}^{i}=\sum_{k=1}^{2} L_{j k} g^{k i}
$$

where all the above quantities are computed at P.
Proof. Taking the scalar product with $\Psi_{u_{k}}(P)$ we have

$$
\begin{equation*}
L_{j k}=\mathcal{L}_{P} \Psi_{u_{j}}(P) \cdot \Psi_{u_{k}}(P)=\sum_{l=1}^{2} L_{j}^{l} g_{l k} \tag{9}
\end{equation*}
$$

so the result is obtained by multiplying by $g^{k i}$ and summing over k.

COROLLARY. At every point $P \in S$ the product $K(P)=\kappa_{1}(P) \kappa_{2}(P)$ of the principal curvatures satisfies
$K(P)=\operatorname{det}\left\{L_{j}^{l}\right\}_{l, j=1}=\operatorname{det}\left\{L_{i j}\right\}_{i, j=1} \operatorname{det}\left\{g^{i j}\right\}_{i, j=1}=\frac{L_{11}(P) L_{22}(P)-L_{12}(P) L_{21}(P)}{g(P)}$.

REMARK. In the classical notation the coefficients (at a point $P \in S$) of the first and second fundamental forms are designated as

$$
\begin{array}{r}
E=g_{11}, \quad F=g_{12}=g_{21}, \quad G=g_{22}, \\
L=L_{11}, \quad M=L_{12}=L_{21}, \quad N=L_{22},
\end{array}
$$

so that the formula for $K(P)$ can be rewritten as

$$
K(P)=\frac{L N-M^{2}}{E G-F^{2}}
$$

If $X \in T_{P} S$ is a unit vector, the normal curvature in the direction of X is given by $\kappa_{X}(P)=\mathcal{L}_{P} X \cdot X$. Expressing X in terms of the basis vectors in the direction of the principal curvatures we obtain:

EULER's THEOREM. If $X=\cos (\theta) Z^{1}(P)+\sin (\theta) Z^{2}(P)$, then

$$
\kappa_{X}(P)=\mathcal{L}_{P} X \cdot X=\cos ^{2}(\theta) \kappa_{1}(P)+\sin ^{2}(\theta) \kappa_{2}(P)
$$

GAUSS MAP and the GEOMETRIC MEANING of the WEINGARTEN MAP.

Now note that the unit normal $n(P)$, as function of $P \in S$,) can be viewed as valued in S^{2}, the unit sphere.

DEFINITION: The map $S \ni P \rightarrow n(P) \in S^{2}$ is called the Gauss Map.
The tangent plane to S^{2} at $n(P)$ is denoted by $T_{n(P)} S^{2}$, and is normal to $n(P)$. However, by definition, also the tangent plane $T_{P} S$ (to S at P) is perpendicular to $n(P)$. Therefore, the tangent planes $T_{n(P)} S^{2}$ and $T_{P} S$ are parallel and can be identified.

COROLLARY. The differential $D n(P)$ is a linear map of $T_{P} S$ into itself.
CLAIM 9. The Weingarten map, in $T_{P} S$, satisfies:

$$
\mathcal{L}_{P}=-D n(P)
$$

Proof. Note first that, by definition of the directional derivative,

$$
D n(p) \Psi_{u_{i}}(P)=\frac{\partial n}{\partial u_{i}}(P), \quad i=1,2, \quad P \in S
$$

On the other hand, for $1 \leq i, j \leq 2$ we have, by definition of the coefficients of the second fundamental form,
$0=\frac{\partial}{\partial u_{i}}\left(n \cdot \Psi_{u_{j}}\right)(P)=\frac{\partial n}{\partial u_{i}}(P) \cdot \Psi_{u_{j}}(P)+n(P) \cdot \Psi_{u_{j} u_{i}}(P)=\frac{\partial n}{\partial u_{i}}(P) \cdot \Psi_{u_{j}}(P)+L_{i j}(P)$.
By definition of the Weingarten map,

$$
\mathcal{L}_{P} \Psi_{u_{i}}(P) \cdot \Psi_{u_{j}}(P)=L_{i j}(P), \quad 1 \leq i, j \leq 2,
$$

so the previous equality can be written as
$0=\frac{\partial n}{\partial u_{i}}(P) \cdot \Psi_{u_{j}}(P)+\mathcal{L}_{P} \Psi_{u_{i}}(P) \cdot \Psi_{u_{j}}(P)=\left(\frac{\partial n}{\partial u_{i}}(P)+\mathcal{L}_{P} \Psi_{u_{i}}(P)\right) \cdot \Psi_{u_{j}}(P), \quad 1 \leq i, j \leq 2$.
It follows that

$$
\begin{equation*}
\mathcal{L}_{P} \Psi_{u_{i}}(P)=-\frac{\partial n}{\partial u_{i}}(P), \quad i=1,2, P \in S \tag{11}
\end{equation*}
$$

GAUSS CURVATURE and THEOREMA EGREGIUM

DEFINITION The $K(P)=\kappa_{1}(P) \kappa_{2}(P)$ of a point $P \in S$ is called the Gaussian curvature of the surface at P.

We introduce
DEFINITION: (the Riemann curvature tensor). At every point $P \in S$ we define:

$$
\begin{equation*}
R_{i j k}^{l}=\frac{\partial \Gamma_{i k}^{l}}{\partial u_{j}}-\frac{\partial \Gamma_{i j}^{l}}{\partial u_{k}}+\sum_{m=1}^{2}\left(\Gamma_{i k}^{m} \Gamma_{m j}^{l}-\Gamma_{i j}^{m} \Gamma_{m k}^{l}\right), \quad 1 \leq i, j, k, l \leq 2 \tag{12}
\end{equation*}
$$

REMARK. Note that by its definition the Riemann tensor is intrinsic.
We now express the tensor in terms of the coefficients of the second fundamental form (and their related coefficients of the Weingarten map).

CLAIM 10. Let $\left\{L_{i j}, L_{k}^{l}\right\}$ be, respectively, the coefficients of the second fundamental form (see Equation (4)) and the Weingarten map (see Claim 8). Then we have the Gauss equation:

$$
\begin{equation*}
R_{i j k}^{l}=L_{i k} L_{j}^{l}-L_{i j} L_{k}^{l}, \quad 1 \leq i, j, k, l \leq 2 . \tag{13}
\end{equation*}
$$

Proof. We differentiate Equation (4) with respect to u_{k} :

$$
\begin{array}{r}
\Psi_{u_{i} u_{j} u_{k}}(P)=\frac{\partial}{\partial u_{k}}\left[L_{i j}(P) n(P)+\sum_{m=1}^{2} \Gamma_{i j}^{m}(P) \Psi_{u_{m}}(P)\right] \\
=\left(\frac{\partial}{\partial u_{k}} L_{i j}\right) n+L_{i j} \frac{\partial}{\partial u_{k}} n+\sum_{l=1}^{2}\left(\frac{\partial}{\partial u_{k}} \Gamma_{i j}^{l}\right) \Psi_{u_{l}}+\sum_{l, m=1}^{2} \Gamma_{i j}^{m} \Gamma_{m k}^{l} \Psi_{u_{l}}+\sum_{l=1}^{2} \Gamma_{i j}^{l} L_{l k} n,
\end{array}
$$

where in the second line we have omitted the point P.
Now we use Equation (11) and the expression in Claim 8 to write

$$
\frac{\partial}{\partial u_{k}} n=-\mathcal{L}_{P} \Psi_{u_{k}}=-\sum_{l=1}^{2} L_{k}^{l} \Psi_{u_{l}}
$$

so that
$\Psi_{u_{i} u_{j} u_{k}}=\left[\frac{\partial}{\partial u_{k}} L_{i j}+\sum_{l=1}^{2} \Gamma_{i j}^{l} L_{l k}\right] n+\sum_{l=1}^{2}\left\{\left(\frac{\partial}{\partial u_{k}} \Gamma_{i j}^{l}\right)-L_{i j} L_{k}^{l}+\sum_{m=1}^{2} \Gamma_{i j}^{m} \Gamma_{m k}^{l}\right\} \Psi_{u_{l}}$.
Now we interchange the indices j, k in this equality and obtain
$\Psi_{u_{i} u_{k} u_{j}}=\left[\frac{\partial}{\partial u_{j}} L_{i k}+\sum_{l=1}^{2} \Gamma_{i k}^{l} L_{l j}\right] n+\sum_{l=1}^{2}\left\{\left(\frac{\partial}{\partial u_{j}} \Gamma_{i k}^{l}\right)-L_{i k} L_{j}^{l}+\sum_{m=1}^{2} \Gamma_{i k}^{m} \Gamma_{m j}^{l}\right\} \Psi_{u_{l}}$.
Since the mixed derivatives are equal, we can compare the coefficients of $\Psi_{u_{l}}$,

$$
\frac{\partial}{\partial u_{k}} \Gamma_{i j}^{l}-L_{i j} L_{k}^{l}+\sum_{m=1}^{2} \Gamma_{i j}^{m} \Gamma_{m k}^{l}=\frac{\partial}{\partial u_{j}} \Gamma_{i k}^{l}-L_{i k} L_{j}^{l}+\sum_{m=1}^{2} \Gamma_{i k}^{m} \Gamma_{m j}^{l}
$$

which is exactly the required equality (13), if we take into account the definition (12) of the Riemann tensor.

THEOREMA EGREGIUM of GAUSS:

$$
\text { The Gaussian curvature } K(P) \text { of a surface is intrinsic. }
$$

Proof. By the Remark following Equation (12) we know that $R_{i j k}^{l}$ is intrinsic.
We now multiply Equation (13) by $g_{l m}$ and sum over l :

$$
\begin{equation*}
\sum_{l=1}^{2} R_{i j k}^{l} g_{l m}=\sum_{l=1}^{2}\left[L_{i k} L_{j}^{l}-L_{i j} L_{k}^{l}\right] g_{l m}=L_{i k} L_{j m}-L_{i j} L_{k m}, \quad 1 \leq i, j, k, m \leq 2 \tag{16}
\end{equation*}
$$

where we used Equation (9).
Since the left-hand side is intrinsic, this is true also for the right-hand side.
In particular, if we take $i=k=1$ and $j=m=2$ we conclude that $L_{11} L_{22}-$ $L_{12} L_{21}$ is intrinsic. In view of the formula (10) the proof is complete (note that of course $g(P)$ is intrinsic!).

REMARK; In the proof of the Gauss Equation (13) we compared the coefficients of $\Psi_{u_{l}}$ in Equations (14), (15). If we compare the coefficient of n in the two equations we obtain the

Codazzi-Mainardi Equations:

$$
\begin{equation*}
\frac{\partial}{\partial u_{k}} L_{i j}+\sum_{l=1}^{2} \Gamma_{i j}^{l} L_{l k}=\frac{\partial}{\partial u_{j}} L_{i k}+\sum_{l=1}^{2} \Gamma_{i k}^{l} L_{l j}, \quad 1 \leq i, j, k \leq 2 . \tag{17}
\end{equation*}
$$

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail address: mbartzi@math.huji.ac.il

