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NOTATION:

If a € R3 then |a] is its Euclidean norm.
For a,b € R?, the scalar product is denoted by a - b.
For a,b € R3, the vector product is denoted by a x b.

For ¥ : R? — R? denote ¥,,, = 5.

DEFINITION: Let D C R? be an open, connected domain, and denote by u =
(u1,usz) the coordinates in D.

Let U : D — R? be a smooth (at least C3) map such that:

e U is one-to-one.
o ¥, x WV, #0 atany point u € D.

Then S = U(D) is called a simple (or elementary) surface. The domain D
is called the parameter domain of S and the map V¥ is the parametrization of
S.

Special case—Functional Graph. Let ¢ : D — R be a smooth scalar function.
Then the map

(1) W(uy,uz) = (ur,uz,P(u1,u2)), (ur,u2) €D,

defines a simple surface called the graph of ¥ (over D).
REMARK. For any simple surface, the parameters (u1,us) form a system of
coordinates on the surface.

As in the case of curves, we discuss first the issue of “change of parameters.”

DEFINITION: Let D C R? be an open, connected domain, and denote the co-
ordinates there by v = (v1, v2). A smooth map & : D — D is called an admissible
change of parameters if:

e & = (Py(v),Py(v)) is one-to-one and onto.
d

B an®
e The Jacobian J(®) = is regular and det(J(®)) > 0.
B2 522

CLAIM 1. Let ® be an admissible change of parameters as above. Then
(W o ®),, x (Vo0 d), = det(J(®))(¥,, 0 ®) x (¥,, o ).
1
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Proof. By the chain rule

(¥ o ®), Z D),

so the claim follows from the dlstrlbutlve rule of vector products and ¥, x ¥,,, =
0. O

Notational Convention. In what follows we denote by P = P(u) a point in D
with coordinates u. Without risking confusion, we use “P” both for P = P(u) € D
and P = ¥(P(u)) € S.

DEFINITION: The vector n(P) =
S at P.

COROLLARY to the CLAIM. The unit normal is invariant under an ad-
missible change of parameters.

Example 1. In the case of a graph (1),

_ (_'(/)ula _wup 1)
VIF9Z +42,

Wy, (P)X W, (P)

T (P XU (P)] is called the unit normal to
uq ug
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SURFACE AREA and TANGENT PLANE

>k ok sk ok ok sk ok ok ok sk sk sk ok sk ok skook sk sk skok sk sk ok sk ok skook sk sk sk ok sk sk sk skook sk sk skosk sk sk skosko sk skoskoskosk skoskosksk sk ok skokoskoskok skok skokokokkok

DEFINITION: Let E C D be an open domain so that E € D.
The surface area of ¥(F) C S is defined as

Area(¥(E)) :/ |, X Uy, |dugdus.
E

REMARK. In view of Claim 1 and the formula for the change of variables in
integration, if £ = ®~!(E), then

Area(V o ®(E)) = Area(¥(E)).

Thus, the area is well defined under admissible change of parameters.
Example 1-revisited. In the case of a graph

Area(V(E)) = /E \1+92 + 42 duidus.

The vectors ¥,,,, ¥,, are linearly independent at every point P(uy,uz2) € D.

DEFINITION: Let P = (uy,uz2) € D. The plane spanned by ¥, (P), ¥,,(P) is
called the tangent plane to the surface at P and denoted by TpS.

REMARK. By our convention, P € S is identified with its coordinates P(u) €
D.

DEFINITION: Let {a(t), t € (a,
eter domain. Then the curve ~(¢)
S.

We refer to a(t) as the coordinates of the curve.

CLAIM 2. Let P € S. Then the tangent plane TpS is equal to the plane
spanned by all tangents of curves y(t) on S passing through P.

TpS = {¥'(0), v(0) = P} .

2

b)} € D C R? be a smooth curve in the param-
= U(a(t)) is called a curve on the surface



SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE R? 3

Proof. If v(t) = (a(t)) is a curve on S, with v(0) = P, then

7'(0) = @1 (0)¥y, (P) + a5(0) W, (P) € TpS.
Conversely, let X = AU, (P) + AV, (P) € TpS. Take the straight line segment
a(t) = a(0) + t(A1, A\2) € D, with «(0) = P (recall that we identify P € S with
its coordinates P(«(0)) € D) . Then ~(t) = U(«(t)) satisfies v'(0) = AW, (P) +
AV, (P) = X. O

COROLLARY. The tangent plane TpS is the two-dimensional space spanned

by the (linearly independent) vectors U,,, (P), ¥, (P).
Fok kR R R KRR R R R R R R R SRR R R R

THE FIRST FUNDAMENTAL FORM = THE METRIC
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Let P € S and let X,Y € TpS. We express both of them in terms of the “basis
vectors” W, (P), U, (P). Then

2
(2) XY =) XY;U, (P) T, (P).
i,j=1
DEFINITION: The four numbers
{9:5(P) = W, (P) - W, (P), 1<i,j<2 PeS}

are called the metric coefficients on S.
CLAIM 3. The symmetric matrix {gij(P)}?jzl
Pes. ’
In particular

(3) det {gij (P)} = [V, (P) x Wy (P)[*.

is positive definite, for every

Proof. 1t is the matrix of the scalar product on TpS.
If 0 is the angle between ¥, (P) and V,,(P) then

Wy (P) X Wy (P)? = [Wy, (P)|?|We, (P)| sin®(0)
= |V, (P)P[ Wy (P)|* — W, (P) - oy (P)|* = det(gi; (P)).

DEFINITION: The positive bilinear form

2
X V= Z 9i;(P)X;Y;, X,Y € TpS
ij=1
is called the first fundamental form.

NOTATION
e The inverse matrix to {gij(P)}?jzl is denoted by {g% (P)}jj:1 .
o g(P) = det{g;;(P)} .

Example 1-re-revisited. In the case of a graph

\Ijul(P) = (17071/)111)’ \I]u1(P) = (07 1awu2)a
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hence, at the point P = (uy,ug, ¥ (ug, uz)),

= 1+¢u17 922 = 1+wu27
912 = g21 = Yuy YVuy-
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THE SECOND FUNDAMENTAL FORM and the CHRISTOFFEL
SYMBOLS
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By assumption the triple {U,, (P), ¥,,(P),n(P)} is a basis to R? at every point
P € S. In particular, we can write

2
(4) Vo, (P) = Li(P)n(P) + YTl (P) ¥y, (P).
k=1
THEOREM. In Equation (4), known as the Gauss Formula, we have
Li(P) = Vu, () (P
1 gl 5gjz 39@')
== - P).
) Z: ( Bul Oouy (P)
Proof. The first equation is clear, since n(P) is orthogonal to ¥, (P), ¥, (P).

Concerning the second equation, we show first that (we omit the “P” for sim-
plicity)

2
= g Wy, Uy,
=1

Indeed,
ulu] . Z szgmla
so multiplying by ¢'* and summing over I,
2 2
=1 m=1

We therefore need to compute Vysu, - Py, in terms of the metric g.
To do this we write

dgu 0
= Ly, U, =Wy Uy 4Ty U,
87.Lj 8uj ‘ ¢ ket T LU i
and similarly

dg;i

31;]1 = \Iluiujv . \I]ul + \Ilului . \IIij

393‘1‘

oy = \I/uluj ' \I/ui + \I/ului : \Iluj-

Thus
Oga . Ogj1 _ 9gji

=20, ., - U
ou; Ou; ouy vty T

1
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DEFINITION: The matrix {Lij(P)}?jzl is symmetric. Its elements are called
the coefficients of the second fundamental form.

REMARK. In the classical notation the coefficients (at a point P € S) of the
first and second fundamental forms are designated as

E=gu, F=g12=gn, G=gn,
L =1Ly, M = L1z = Lo, N = Lo,

DEFINITION: The coefficients {Ffj, 1<4,5,k< 2} are called the Christoffel
symbols (of the second kind).

DEFINITION: We say that a quantity is intrinsic (to the surface) if it de-
pends (in addition to the local coordinates) only on the metric (g;;) (as function of
the coordinates u).

COROLLARY. The Christoffel symbols {F’-" 1<4,5,k< 2} are intrinsic.

150
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CURVATURE OF A CURVE ON THE SURFACE
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Length parameter of a curve. Let {a(t), t € (a,b)} € D C R? be a smooth
curve in the parameter domain , and let y(¢) = ¥(«(t)) be the corresponding curve
on the surface S (so that «(t) are its coordinates). Then, with P = ~(¢),

V(1) = 01 (1) Vu, (P) + ()W, (P) € TpS,

Length of arc of vy from ¢y to ¢ :

t

2
/ > 9 (3(0)(0)a) (o) do.

to 1,j=1

(5) s(t) = / /() dor =

’ COROLLARY. The arc length is an intrinsic property of the curve. ‘

We can use the arc length parameter s also for the coordinates a(s).

Let v(s) be a unit speed curve on the surface S. We denote by a(s) = (a1(s), aa(s))
its coordinates; y(s) = ¥(a(s)).

T(s), N(s), B(s), k(s), 7(s), is the Frenet-Serret apparatus of the curve.

Note that T'(s) € T, (s)S.
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DEFINITION: Let n(s) be the unit normal to S at 7(s). Then the intrinsic
normal to the curve is defined by

m(s) = n(s) x T(s).

Note. Since m(s) is orthogonal to n(s), it follows that m(s) € TS, and
m(s), n(s) form a basis to the plane orthogonal to T'(s) at v(s).

CLAIM 4. The derivative of the tangent T'(s) along the curve can be written
as a linear combination of n(s) and m(s) :

(6) V"(s) = T'(s) = kn(s)n(s) + rg(s)m(s).

Also, in terms of the coordinates «(s),
2 2
(7) T'(s) = ) ai(s)af(s)Wusu,(a(s) + D afl(s) W, (als)).
ij=1 k=1

Proof. Since |T(s)| = 1, the derivative T"(s) is orthogonal to T'(s), hence a linear
combination of n(s) and m(s).
To prove Equation (7) we differentiate (with respect to s) the equation

Using the Frenet-Serret system, 77(s) = k(s)N(s), so

7"(s) = K(s)N(5) = kin(s)n(s) + Kg(s)m(s).

DEFINITION: £, (s) is the normal curvature of the curve.
Kg4(s) is the geodesic curvature of the curve.

CLAIM 5. The tangential part of T'(s) is given by
sy()m(s) = 3~ (of(s) + 3 al(«)aj(o)lh (a(s)) T, (a(s)).

Proof. In Equation (7) take the tangential part of W, (a(s)) according to Equa-
tion (4). O

’ THEOREM. The geodesic curvature r4(s) is intrinsic. ‘

Proof. By definition
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From Claim 5 we get

ro(s) = D (af(s) + D al(s)aj(s)Th (a(s)) ) Wy (a(s)) - (n(s) x T(s))
k=1 i,j=1
2 2
=3 (afs) + Y ai(9)af ()T (@(9) ) Wu, (als)) - (nls) x I af(s) Wy (a(s))
k=1 3,j=1 =1
2 2
=35 (afls) + Y- ails)a) ()T (as) ) a(s) W (a(s)) - (n(s) x Wy, (als))
=1 k=1 i,7=1
But
gla(s), I=1,k=2,
W, (0(5)):(n(5) X W, ((5)) = 1(8)-(La, () X Wy ((s)) = § —/g(als), 1= 2,k =1,
0, 1=k
Thus, all the terms in the last expression for k,4(s) are intrinsic. (]
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GEODESIC CURVES
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DEFINITION: Let v(s) C S be a unit speed curve. It is called geodesic if its
geodesic curvature k,4(s) is identically equal to zero.

COROLLARY. A necessary and sufficient condition for (s) to be geodesic
is that 4" (s) is orthogonal to the surface at every point (i.e., a scalar multiple of

n(31(5)):
Proof. See Claim 4, Equation (6). d
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NORMAL CURVATURE and WEINGARTEN MAP
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We continue to consider unit speed curves v(s) on the surface S (so that s is the
arc length parameter).

We turn to the normal curvature y(s) of a curve v(s) on the surface S. Recall
that the unit speed curve 7(s)) is expressed as v(s) = ¥(«(s)), with coordinates
a(s) € D).

CLAIM 6. The normal curvature satisfies, in terms of the second fundamental
form, the equation

(8) ru(s) = ) Lij(v(s))ai(s)a(s),

where
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Proof. In Equation (7) we put the normal (to the surface) part of W, (a(s)),
which is by definition L;; (see Equation (4)).
(]

CLAIM 7. Fix P € S. Then the set of all possible normal curvatures of
curves passing through P is equal to the following set of values, computed by the
second funadamental form:

2 2
Z LijX:X;, X= ZXZ»\IIW (P) e TpS, |X|=1
=1

ij=1

Proof. Any unit vector X = X;0,, (P) + X2V,,(P) € TpS is a tangent vector
X =+/(0) of some unit speed curve v(s) so that v(0) = P.

Indeed, if P = ¥(u?), take a(t) = u® + (X1, X2), and let 5(t) = ¥(a(t)) be the
corresponding curve on the surface.

Its length (from P) is given by

t 2
s)= [ | 3 i) ) do
!
Express t = t(s) and take the unit speed curve
v(s) = 7(t(s)).

then 2& =1 and
dt |,_q

V' (8)s=0 =7 (=0 = X1V, (P) + X5 Wu, (P).
(]

From linear algebra we know that every bilinear form defines a linear map. In
the case of the second fundamental form we have:
DEFINITION: Let P € S. The Weingarten map Lp : TpS — TpS is given by
2
LpX Y = Z Lij(P)X:Y;, X,Y € TpS,

4,j=1

2 2
X =Y XU, (P), Y=> Y;U,(P).
i=1 =1

From Claim 7 we get

THEOREM. For any P € S there are two orthonormal vectors Z1(P), Z%(P) €
TpS so that
e Z1(P), Z%(P) are eigenvectors of L p, with corresponding eigenvalues 1 (P) <
KZQ(P).
e The eigenvalues k1(P), ko(P) are the minimal and maximal normal curva-
tures at P.

DEFINITION: The eigenvalues k1 (P), k2(P) are called the principal curva-
tures of the surface S at P.
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CLAIM 8. Let
2
LpW,,(P)=> L0, (P), j=1,2,
1=1
then
2
Ly =Y Lixg",
k=1

where all the above quantities are computed at P.

Proof. Taking the scalar product with ¥,,, (P) we have

2
(9) ij = ‘CP\I/UJ' (P) : \I’uk (P) = ZLéglk,
1=1
so the result is obtained by multiplying by ¢** and summing over k. (I

COROLLARY. At every point P € S the product K(P) = k1(P)ka(P) of the
principal curvatures satisfies
(10)

K(P) = det {Lé}l,jzl = det {Lij}i,jzl det {gij} = In(P)lan(P) - Lu(P)LQl(P)'

=1 9(P)

REMARK. In the classical notation the coefficients (at a point P € S) of the
first and second fundamental forms are designated as

E =g, F=g2=g2, G= g,
L =1Ly, M = Liz = Lo, N = Lo,
so that the formula for K(P) can be rewritten as

_aAr2
K(P) = L4

If X € TpS is a unit vector, the normal curvature in the direction of X is given
by kx(P) = LpX - X. Expressing X in terms of the basis vectors in the direction
of the principal curvatures we obtain:

EULER’s THEOREM. If X = cos(0)Z*(P) + sin(0) Z*(P), then
kx(P) = LpX - X = cos*(0)k1(P) + sin®(0)k2(P).
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GAUSS MAP and the GEOMETRIC MEANING of the WEINGARTEN
MAP.
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Now note that the unit normal n(P), as function of P € S)) can be viewed as
valued in S2, the unit sphere.
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DEFINITION: The map S > P — n(P) € S? is called the Gauss Map.

The tangent plane to S? at n(P) is denoted by T,,L(p)Sz, and is normal to n(P).
However, by definition, also the tangent plane TpS (to S at P) is perpendicular to
n(P). Therefore, the tangent planes Tn(p)S2 and TpS are parallel and can
be identified.

COROLLARY. The differential Dn(P) is a linear map of TpS into itself.

CLAIM 9. The Weingarten map, in Tp.S, satisfies:

Ep = 7Dn(P)
Proof. Note first that, by definition of the directional derivative,
0
Dn(p) ¥, (P) = 5 (P), i=12 P€S.

On the other hand, for 1 < i,j < 2 we have, by definition of the coefficients of
the second fundamental form,

0 on on

By definition of the Weingarten map,

0

(P)- Wy, (P)+Li;(P).

so the previous equality can be written as

on on
_ o PV (P) — ) v, <ij<o2.
0= o (P) W, (PYHLPT, (P)-W.,, (P) ( Gu (PIHLPT, (P)) W, (P), 1<ij<?2
It follows that
(11) Low (P)=—2(P), i=12 Pes

(]
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GAUSS CURVATURE and THEOREMA EGREGIUM
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DEFINITION: The product K(P) = k1(P)k2(P) of the principal curvatures at
a point P € S is called the Gaussian curvature of the surface at P.

We introduce

DEFINITION: (the Riemann curvature tensor). At every point P € S we
define:

ort, or, ., . o

= 3126 - ij + n;(rikrﬁnj —T0T ), 1<ij k<2

REMARK. Note that by its definition the Riemann tensor is intrinsic.

We now express the tensor in terms of the coefficients of the second fundamental
form (and their related coefficients of the Weingarten map).

CLAIM 10. Let {Lij, LL} be, respectively, the coefficients of the second fun-
damental form (see Equation (4)) and the Weingarten map (see Claim 8). Then
we have the Gauss equation:

(13) R = LiLh — LijLy,, 1<i,j,k1<2.

(12) R
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Proof. We differentiate Equation (4) with respect to uy :

Voruyun (P) = 5 Ly (P ZF W, (P)]

0 0 N (D e l
_ (MLij)n+Lijaw€n+;(Mrij)\pw + Z Tl v, +;Filekn,

I,m=1

where in the second line we have omitted the point P.
Now we use Equation (11) and the expression in Claim 8 to write

0

2
Twn_ ‘CP\IJuk = —EL%C\I/u”

so that
(14)

T [ Ly + ZFUle}n + Z {(—Fl )-1L Z ToTh g | W

Now we interchange the indices j, k; in this equality and obtain
(15)

P 2 2 P 2 N

Voupu; = [aTLij + Z FékLlj} n+ Z {(T%Fik) — Ly L + Z Fikrinj}\p
1=1 1=1 m=1

Since the mixed derivatives are equal, we can compare the coefficients of ¥,,,,

0

d
aTkFl +Zrmrmk_ _I‘i — Lip L} +ZF b

which is exactly the required equality (13), if we take into account the definition (12)
of the Riemann tensor.
O

THEOREMA EGREGIUM of GAUSS:

The Gaussian curvature K (P) of a surface is intrinsic.

Proof. By the Remark following Equation (12) we know that Rﬁjk is intrinsic.
We now multiply Equation (13) by g;,, and sum over [ :
(16)

ZR”kglm = Z |Lin Ly = Lig L] gom = LixLjm = LisLim, 1<, j,kym <2,
=1
where we used Equation (9).
Since the left-hand side is intrinsic, this is true also for the right-hand side.
In particular, if we take i = kK = 1 and j = m = 2 we conclude that Lqi Loy —
Ly3Lo; is intrinsic. In view of the formula (10) the proof is complete (note that of
course g(P) is intrinsic!). O
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REMARK; In the proof of the Gauss Equation (13) we compared the coeffi-
cients of ¥,, in Equations (14), (15). If we compare the coefficient of n in the two
equations we obtain the

Codazzi-Mainardi Equations:

0 2 0 e
(17) ——Lij+ > ThLp =5 L+ » Thly, 1<ijk<2
duy, — Ou; —
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