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NOTATION:

• If a ∈ R3 then |a| is its Euclidean norm.
• For a, b ∈ R3, the scalar product is denoted by a · b.
• For a, b ∈ R3, the vector product is denoted by a× b.

We assume here that γ(t) : (a, b) → R3 is a C3 curve (in particular, no discon-
tinuities of the derivatives) and γ′(t) ̸= 0, t ∈ (a, b). We refer to such a curve as a
regular curve.

Example 1. The curve

γ(t) =


(t, exp(− 1

t2 ), 0), t < 0,

(0, 0, 0), t = 0,

(t, 0, exp(− 1
t2 )), t > 0,

is regular.
Note that it “bends” from the x− y plane (t < 0) to the x− z plane (t > 0).
DEFINITION: Let t0 ∈ (a, b). The function

s(t) =

∫ t

t0

|γ′(u)|du, t ∈ (a, b),

is an admissible change of parameter, s ∈ (
∫ a

t0
|γ′(u)|du,

∫ b

t0
|γ′(u)|du).

The new parameter s is called the arc length parameter.
Note that

s(t) = signed length of the curve segment {γ(u), u ∈ [t0, t]} .

Its inverse is denoted by t(s).
CLAIM. The equivalent curve γ∗(s) = γ(t(s)) satisfies∣∣∣ d

ds
γ∗(s)

∣∣∣ = 1, s ∈ (

∫ a

t0

|γ′(u)|du,
∫ b

t0

|γ′(u)|du).

We simplify the notation and write γ∗(s) as γ(s).
DEFINITION: We refer to γ(s) as a unit speed curve.
Note. If a regular curve γ(t) satisfies |γ′(t)| ≡ 1, then actually t = s is the

length parameter (up to a constant).
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Example 2. The unit speed circular helix is

γ(s) = (r cos(ωs), r sin(ωs), hωs), s ∈ R,

where ω2 = (r2 + h2)−1.
In what follows, curves are parametrized by arc length s, unless explicitly stated

otherwise.
***************************************************************
The FRENET-SERRET System
***************************************************************
To simplify notation in what follows, we do not specify explicitly the domain of

the parameter.
DEFINITION: Let γ(s) be a unit speed curve. Then
T (s) = γ′(s) is called the unit tangent vector along the curve.
The function κ(s) = |T ′(s)| is called the curvature along the curve.
CLAIM 1. The curvature κ(s) ≡ 0 if and only if γ(s) is a (segment of a)

straight line.

Proof. A straight line is of the form γ(s) = αs + β, where α, β ∈ R3 and |α| = 1.
Thus T (s) = α = constant.

Conversely, κ(s) ≡ 0 ⇒ T ′(s) ≡ 0 ⇒ T (s) = constant = α, hence γ(s) =
αs+ β. �

The following example complements this claim by giving a typical case where
the curvature never vanishes.

Example 3. Let γ(s) be a regular unit speed curve, and assume that it lies on
a sphere |x− x0| = r. Then κ(s) ̸= 0 for all s.

Indeed, the condition means that |γ(s)−x0|2 ≡ r2, and by two successive differ-
entiations

T (s) · (γ(s)− x0) ≡ 0 ⇒ T ′(s) · (γ(s)− x0) + |T (s)|2 = T ′(s) · (γ(s)− x0) + 1 ≡ 0.

From now on we assume that κ(s) ̸= 0.

We regard s → T (s) ∈ R3 as a curve . Note that it lies on the unit sphere, but
s is not the arc length parameter of this curve.

CLAIM 2 (generalizing Example 3). Let δ(t) ⊆ R3 be a smooth curve with
|δ(t)| ≡ 1. Then δ′(t) · δ(t) ≡ 0, namely, δ′(t) ⊥ δ(t) for all t.

(Observe that here t is in general not the arc length parameter).

Proof. Differentiate the equation δ(t) · δ(t) ≡ 0. �

DEFINITION: The unit vector N(s) = κ(s)−1T ′(s) is called the normal along
the curve.

By Claim 2, N(s) ⊥ T (s) for all s.
DEFINITION: The unit vector B(s) = T (s) × N(s) is called the binormal

along the curve.
DEFINITION: The orthonormal system T (s), N(s), B(s) is calledThe Frenet-

Serret frame. It is clearly a basis for R3 that varies along the curve, following the
“twists” of the curve in space.

DEFINITION: The scalar function τ(s) = −B′(s) · N(s) is called the torsion
of the curve.
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DEFINITION: The Frenet-Serret system T (s), N(s), B(s) combined with the
two scalar functions κ(s), τ(s), is called the Frenet-Serret apparatus of the
curve.

THEOREM(The Frenet-Serret Equations). Given a regular unit speed
curve γ(s), with κ(s) ̸= 0, the following equations are satisfied:

T ′(s) =κ(s)N(s),

N ′(s) =− κ(s)T (s) + τ(s)B(s),

B′(s) =− τ(s)N(s).

Proof. The first equation follows from the definition of N(s).
For the second equation, note first that by Claim 2, N ′(s) ⊥ N(s).
For the other coefficients of N ′(s) in the T,N,B system we have:

0 =
d

ds
(T (s) ·N(s)) = T ′(s) ·N(s) + T (s) ·N ′(s) = κ(s) + T (s) ·N ′(s),

and

0 =
d

ds
(B(s) ·N(s)) = B′(s) ·N(s) +B(s) ·N ′(s) = −τ(s) +B(s) ·N ′(s).

For the third equation, similarly,

d

ds
(T (s) ·B(s)) = T ′(s) ·B(s) + T (s) ·B′(s) = 0 + T (s) ·B′(s),

since T ′(s) ·B(s) = κ(s)N(s) ·B(s) = 0.
Finally, N(s) ·B′(s) = −τ(s) by definition. �

The geometric meaning of τ(s) is made clear by the following claim, which
complements Claim 1.

CLAIM 3. Let γ(s) be a regular unit speed curve. Then the following three
conditions are equivalent:

(1) It is a planar curve (namely, there exists a plane containing it).
(2) B(s) ≡ B0, where B0 ∈ R3 is a constant vector.
(3) τ(s) ≡ 0.

REMARK. Note that in view of Claim 1, if κ(s) ≡ 0, then the curve is a
straight segment, hence planar. Thus, we can assume κ(s) ̸= 0.

Proof of Claim 3. • (1) ⇒ (2). In this case T (s), hence also N(s), are in this
plane so B(s) =(constant) unit normal to the plane, which is B0.

• (2) ⇔ (3). Both directions follow from the third F-S equation.
• (2) ⇒ (1). Both T (s), N(s) are in the plane P perpendicular to B0, and
we can assume it contains some point on the curve, say γ(0). Then

γ(s)− γ(0) =

∫ s

0

T (τ)dτ ∈ P.

�
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The following claim asserts that the two scalar functions κ(s), τ(s), determine
the curve γ(s).

CLAIM 4. Let γ1(s), γ2(s), s ∈ (l, L), be two regular curves with Frenet-Serret
apparatus T 1(s), N1(s), B1(s), κ1(s), τ1(s), and T 2(s), N2(s), B2(s), κ2(s), τ2(s),
respectively, and such that:

•
κ1(s) = κ2(s), τ1(s) = τ2(s), s ∈ (l, L),

•
γ1(s0) = γ2(s0), T 1(s0) = T 2(s0), N

1(s0) = N2(s0)B
1(s0) = B2(s0)

for some s0 ∈ (l, L).

Then γ1(s) = γ2(s), s ∈ (l, L).

Proof. Define a scalar function

f(s) = |T 1(s)− T 2(s)|2 + |N1(s)−N2(s)|2 + |B1(s)−B2(s)|2.
Differentiating and using the F-S equations (note that curvatures and torsions are
equal) it is easy to see that

d

ds
f(s) = 0, s ∈ (l, L).

Thus f(s) = const, and by assumption f(s0) = 0, so f(s) ≡ 0.
It follows that T 1(s) ≡ T 2(s), so

γ1(s) = γ1(s0) +

s∫
s0

T 1(ξ)dξ = γ2(s0) +

s∫
s0

T 2(ξ)dξ = γ2(s).

�

REMARK. The claim says that if two curves intersect at some point s0, and
they have there the same Frenet-Serret frame T (s0), N(s0), B(s0), and if their
curvatures and torsions are identical (for all s), then they coincide.

Note that if γ1(s), γ2(s), are two regular curves, then by rigid translation and
rotation we can “align” them at a given point, namely, they intersect at this point
and their Frenet-Serret systems are equal there. Such transformations do not change
the curvature and torsion (why?), so the claim can be rephrased:

CLAIM 4’. The curvature and torsion of a curve determine it uniquely, up to
translation and rotation.

Note. The question if, for a given pair of continuous functions κ(s), τ(s), there
exists a curve γ(s) so that these functions are, respectively, its curvature and torsion,
is a question of existence of a solution to the linear system of the Frenet-Serret
differential equations. The claim says that we can find at most one such curve.
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