CURVES IN THREE-DIMENSIONAL EUCLIDEAN SPACE \mathbb{R}^{3}

MATANIA BEN-ARTZI

June 2015

NOTATION:

- If $a \in \mathbb{R}^{3}$ then $|a|$ is its Euclidean norm.
- For $a, b \in \mathbb{R}^{3}$, the scalar product is denoted by $a \cdot b$.
- For $a, b \in \mathbb{R}^{3}$, the vector product is denoted by $a \times b$.

We assume here that $\gamma(t):(a, b) \rightarrow \mathbb{R}^{3}$ is a C^{3} curve (in particular, no discontinuities of the derivatives) and $\gamma^{\prime}(t) \neq 0, t \in(a, b)$. We refer to such a curve as a regular curve.

Example 1. The curve

$$
\gamma(t)=\left\{\begin{array}{l}
\left(t, \exp \left(-\frac{1}{t^{2}}\right), 0\right), \quad t<0 \\
(0,0,0), \quad t=0, \\
\left(t, 0, \exp \left(-\frac{1}{t^{2}}\right)\right), \quad t>0
\end{array}\right.
$$

is regular.
Note that it "bends" from the $x-y$ plane $(t<0)$ to the $x-z$ plane $(t>0)$.
DEFINITION: Let $t_{0} \in(a, b)$. The function

$$
s(t)=\int_{t_{0}}^{t}\left|\gamma^{\prime}(u)\right| d u, \quad t \in(a, b)
$$

is an admissible change of parameter, $s \in\left(\int_{t_{0}}^{a}\left|\gamma^{\prime}(u)\right| d u, \int_{t_{0}}^{b}\left|\gamma^{\prime}(u)\right| d u\right)$.
The new parameter s is called the arc length parameter.
Note that

$$
s(t)=\text { signed length of the curve segment }\left\{\gamma(u), u \in\left[t_{0}, t\right]\right\} .
$$

Its inverse is denoted by $t(s)$.
CLAIM. The equivalent curve $\gamma^{*}(s)=\gamma(t(s))$ satisfies

$$
\left|\frac{d}{d s} \gamma^{*}(s)\right|=1, \quad s \in\left(\int_{t_{0}}^{a}\left|\gamma^{\prime}(u)\right| d u, \int_{t_{0}}^{b}\left|\gamma^{\prime}(u)\right| d u\right) .
$$

We simplify the notation and write $\gamma^{*}(s)$ as $\gamma(s)$.
DEFINITION: We refer to $\gamma(s)$ as a unit speed curve.
Note. If a regular curve $\gamma(t)$ satisfies $\left|\gamma^{\prime}(t)\right| \equiv 1$, then actually $t=s$ is the length parameter (up to a constant).

Example 2. The unit speed circular helix is

$$
\gamma(s)=(r \cos (\omega s), r \sin (\omega s), h \omega s), s \in \mathbb{R}
$$

where $\omega^{2}=\left(r^{2}+h^{2}\right)^{-1}$.
In what follows, curves are parametrized by arc length s, unless explicitly stated otherwise.
$* *$
The FRENET-SERRET System
$* *$
To simplify notation in what follows, we do not specify explicitly the domain of the parameter.

DEFINITION: Let $\gamma(s)$ be a unit speed curve. Then
$T(s)=\gamma^{\prime}(s)$ is called the unit tangent vector along the curve.
The function $\kappa(s)=\left|T^{\prime}(s)\right|$ is called the curvature along the curve.
CLAIM 1. The curvature $\kappa(s) \equiv 0$ if and only if $\gamma(s)$ is a (segment of a) straight line.

Proof. A straight line is of the form $\gamma(s)=\alpha s+\beta$, where $\alpha, \beta \in \mathbb{R}^{3}$ and $|\alpha|=1$. Thus $T(s)=\alpha=$ constant .

Conversely, $\kappa(s) \equiv 0 \Rightarrow T^{\prime}(s) \equiv 0 \Rightarrow T(s)=$ constant $=\alpha$, hence $\gamma(s)=$ $\alpha s+\beta$.

The following example complements this claim by giving a typical case where the curvature never vanishes.

Example 3. Let $\gamma(s)$ be a regular unit speed curve, and assume that it lies on a sphere $\left|x-x_{0}\right|=r$. Then $\kappa(s) \neq 0$ for all s.

Indeed, the condition means that $\left|\gamma(s)-x_{0}\right|^{2} \equiv r^{2}$, and by two successive differentiations
$T(s) \cdot\left(\gamma(s)-x_{0}\right) \equiv 0 \Rightarrow T^{\prime}(s) \cdot\left(\gamma(s)-x_{0}\right)+|T(s)|^{2}=T^{\prime}(s) \cdot\left(\gamma(s)-x_{0}\right)+1 \equiv 0$.
From now on we assume that $\kappa(s) \neq 0$.
We regard $s \rightarrow T(s) \in \mathbb{R}^{3}$ as a curve . Note that it lies on the unit sphere, but s is not the arc length parameter of this curve.

CLAIM 2 (generalizing Example 3). Let $\delta(t) \subseteq \mathbb{R}^{3}$ be a smooth curve with $|\delta(t)| \equiv 1$. Then $\delta^{\prime}(t) \cdot \delta(t) \equiv 0$, namely, $\delta^{\prime}(t) \perp \delta(t)$ for all t.
(Observe that here t is in general not the arc length parameter).
Proof. Differentiate the equation $\delta(t) \cdot \delta(t) \equiv 0$.
DEFINITION: The unit vector $N(s)=\kappa(s)^{-1} T^{\prime}(s)$ is called the normal along the curve.

By Claim 2, $N(s) \perp T(s)$ for all s.
DEFINITION: The unit vector $B(s)=T(s) \times N(s)$ is called the binormal along the curve.

DEFINITION: The orthonormal system $T(s), N(s), B(s)$ is called The FrenetSerret frame. It is clearly a basis for \mathbb{R}^{3} that varies along the curve, following the "twists" of the curve in space.

DEFINITION: The scalar function $\tau(s)=-B^{\prime}(s) \cdot N(s)$ is called the torsion of the curve.

DEFINITION: The Frenet-Serret system $T(s), N(s), B(s)$ combined with the two scalar functions $\kappa(s), \tau(s)$, is called the Frenet-Serret apparatus of the curve.

THEOREM (The Frenet-Serret Equations). Given a regular unit speed curve $\gamma(s)$, with $\kappa(s) \neq 0$, the following equations are satisfied:

$$
\begin{aligned}
T^{\prime}(s) & =\kappa(s) N(s) \\
N^{\prime}(s) & =-\kappa(s) T(s)+\tau(s) B(s) \\
B^{\prime}(s) & =-\tau(s) N(s)
\end{aligned}
$$

Proof. The first equation follows from the definition of $N(s)$.
For the second equation, note first that by Claim $2, N^{\prime}(s) \perp N(s)$.
For the other coefficients of $N^{\prime}(s)$ in the T, N, B system we have:

$$
0=\frac{d}{d s}(T(s) \cdot N(s))=T^{\prime}(s) \cdot N(s)+T(s) \cdot N^{\prime}(s)=\kappa(s)+T(s) \cdot N^{\prime}(s)
$$

and

$$
0=\frac{d}{d s}(B(s) \cdot N(s))=B^{\prime}(s) \cdot N(s)+B(s) \cdot N^{\prime}(s)=-\tau(s)+B(s) \cdot N^{\prime}(s)
$$

For the third equation, similarly,

$$
\frac{d}{d s}(T(s) \cdot B(s))=T^{\prime}(s) \cdot B(s)+T(s) \cdot B^{\prime}(s)=0+T(s) \cdot B^{\prime}(s)
$$

since $T^{\prime}(s) \cdot B(s)=\kappa(s) N(s) \cdot B(s)=0$.
Finally, $N(s) \cdot B^{\prime}(s)=-\tau(s)$ by definition.

The geometric meaning of $\tau(s)$ is made clear by the following claim, which complements Claim 1.

CLAIM 3. Let $\gamma(s)$ be a regular unit speed curve. Then the following three conditions are equivalent:
(1) It is a planar curve (namely, there exists a plane containing it).
(2) $B(s) \equiv B_{0}$, where $B_{0} \in \mathbb{R}^{3}$ is a constant vector.
(3) $\tau(s) \equiv 0$.

REMARK. Note that in view of Claim 1, if $\kappa(s) \equiv 0$, then the curve is a straight segment, hence planar. Thus, we can assume $\kappa(s) \neq 0$.

Proof of Claim 3. - (1) $\Rightarrow(2)$. In this case $T(s)$, hence also $N(s)$, are in this plane so $B(s)=($ constant $)$ unit normal to the plane, which is B_{0}.

- $(2) \Leftrightarrow(3)$. Both directions follow from the third F-S equation.
- $(2) \Rightarrow(1)$. Both $T(s), N(s)$ are in the plane P perpendicular to B_{0}, and we can assume it contains some point on the curve, say $\gamma(0)$. Then

$$
\gamma(s)-\gamma(0)=\int_{0}^{s} T(\tau) d \tau \in P
$$

The following claim asserts that the two scalar functions $\kappa(s), \tau(s)$, determine the curve $\gamma(s)$.

CLAIM 4. Let $\gamma^{1}(s), \gamma^{2}(s), s \in(l, L)$, be two regular curves with Frenet-Serret apparatus $T^{1}(s), N^{1}(s), B^{1}(s), \kappa^{1}(s), \tau^{1}(s)$, and $T^{2}(s), N^{2}(s), B^{2}(s), \kappa^{2}(s), \tau^{2}(s)$, respectively, and such that:

$$
\kappa^{1}(s)=\kappa^{2}(s), \quad \tau^{1}(s)=\tau^{2}(s), s \in(l, L),
$$

$$
\gamma^{1}\left(s_{0}\right)=\gamma^{2}\left(s_{0}\right), T^{1}\left(s_{0}\right)=T^{2}\left(s_{0}\right), N^{1}\left(s_{0}\right)=N^{2}\left(s_{0}\right) B^{1}\left(s_{0}\right)=B^{2}\left(s_{0}\right)
$$

for some $s_{0} \in(l, L)$.
Then $\gamma^{1}(s)=\gamma^{2}(s), s \in(l, L)$.
Proof. Define a scalar function

$$
f(s)=\left|T^{1}(s)-T^{2}(s)\right|^{2}+\left|N^{1}(s)-N^{2}(s)\right|^{2}+\left|B^{1}(s)-B^{2}(s)\right|^{2}
$$

Differentiating and using the F-S equations (note that curvatures and torsions are equal) it is easy to see that

$$
\frac{d}{d s} f(s)=0, s \in(l, L)
$$

Thus $f(s)=$ const, and by assumption $f\left(s_{0}\right)=0$, so $f(s) \equiv 0$.
It follows that $T^{1}(s) \equiv T^{2}(s)$, so

$$
\gamma^{1}(s)=\gamma^{1}\left(s_{0}\right)+\int_{s_{0}}^{s} T^{1}(\xi) d \xi=\gamma^{2}\left(s_{0}\right)+\int_{s_{0}}^{s} T^{2}(\xi) d \xi=\gamma^{2}(s)
$$

REMARK. The claim says that if two curves intersect at some point s_{0}, and they have there the same Frenet-Serret frame $T\left(s_{0}\right), N\left(s_{0}\right), B\left(s_{0}\right)$, and if their curvatures and torsions are identical (for all s), then they coincide.

Note that if $\gamma^{1}(s), \gamma^{2}(s)$, are two regular curves, then by rigid translation and rotation we can "align" them at a given point, namely, they intersect at this point and their Frenet-Serret systems are equal there. Such transformations do not change the curvature and torsion (why?), so the claim can be rephrased:

CLAIM 4'. The curvature and torsion of a curve determine it uniquely, up to translation and rotation.

Note. The question if, for a given pair of continuous functions $\kappa(s), \tau(s)$, there exists a curve $\gamma(s)$ so that these functions are, respectively, its curvature and torsion, is a question of existence of a solution to the linear system of the Frenet-Serret differential equations. The claim says that we can find at most one such curve.

[^0]
[^0]: Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
 E-mail address: mbartzi@math.huji.ac.il

