RIEMANN INTEGRATION ON A MULTIDIMENSIONAL RECTANGULAR BOX

MATANIA BEN-ARTZI

March 2013

Functions here are real, bounded, defined on a closed rectangular box

$$
Q=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \ldots \times\left[a_{n}, b_{n}\right] .
$$

All rectangular boxes have sides parallel to the axes.
The (open) ball of radius r, centered at x, is denoted by $B(x, r)$. It will be clear from the context what is the dimension .

We use the Euclidean norm.

- DEFINITION(Partition of a real interval): A partition P of $[a, b] \subseteq \mathbb{R}$ is a finite set of points:

$$
P: \quad a=t_{0}<t_{1}<\ldots<t_{m}=b .
$$

- DEFINITION: The intervals $\left[t_{i}, t_{i+1}\right], \quad 0 \leq i \leq m-1$ are called the partition intervals.
- DEFINITION (Multidimensional partition): A partition P of Q is a product $P=P_{1} \times \ldots \times P_{n}$, where P_{j} is a partition of $\left[a_{j}, b_{j}\right], \quad 1 \leq j \leq n$.
- DEFINITION (Partition boxes): A rectangular box (closed) such that its side on the j-th axis is a P_{j} partition interval $(1 \leq j \leq n)$ is called a partition box (of P).
- NOTATION: We use the simplified notation $S \in P$ for a partition box S.
- DEFINITION (Volume of a box): The volume $v(S)$ is the product of its (n) sides.
- DEFINITION:Let f be a real, bounded function on Q. Given a partition P of Q, we define for every $S \in P$,

$$
M_{S}(f)=\sup _{S} f, \quad m_{S}(f)=\inf _{S} f
$$

-
- DEFINITION (Upper and Lower Sums): Given the function f and partition P as above, we define:

$$
L(f, P)=\sum_{S \in P} m_{S}(f) v(S), \quad U(f, P)=\sum_{S \in P} M_{S}(f) v(S) .
$$

- DEFINITION (Refinement of a partition): The partition $P^{\prime}=P_{1}^{\prime} \times$ $\ldots \times P_{n}^{\prime}$ is a refinement of $P=P_{1} \times \ldots \times P_{n}$ if $P_{i}^{\prime} \supseteq P_{i}, \quad 1 \leq i \leq n$.
- CLAIM: If f is a real bounded function and P^{\prime} is a refinement of P, then

$$
L(f, P) \leq L\left(f, P^{\prime}\right), \quad U(f, P) \geq U\left(f, P^{\prime}\right)
$$

- CLAIM: For any two partitions (not necessarily refinements of each other) P, P^{\prime},

$$
L(f, P) \leq U\left(f, P^{\prime}\right)
$$

- DEFINITION (Integral and Integrability): f is real, bounded on Q. We say that f is (Riemann-) integrable on Q if

$$
\sup _{P} L(f, P)=\inf _{P} U(f, P)=I
$$

The number I is called the integral of f (on Q). It is denoted by $I(f)=$ $\int f$.

- REMARK: If the "domain of integration" needs to be specified, we write $I_{Q}(f)=\int_{Q} f$.
- LEMMA: f is integrable iff for every ε there exists a partition P such that

$$
U(f, P)-L(f, P) \leq \varepsilon .
$$

- BASIC PROPERTIES OF THE INTEGRAL
- The set of integrable functions is a linear space. On this space I is a linear functional.
- The integral is order preserving. If $f \geq g$ (and both are integrable) then $I(f) \geq I(g)$.
- If f, g are integrable then also the product $f g$, as well as $\max (f, g)$ and $\min (f, g)$ are integrable.
- If f is integrable then so are $|f|, f^{ \pm}=\frac{1}{2}(|f| \pm f)$.
- LEMMA: (a) Let Q_{0} be a rectangular box contained in Q. If f is integrable on Q then it is integrable on Q_{0}.
(b) Let $Q=\bigcup_{l=1}^{m} Q_{l}$ be a union of rectangular boxes with no common interior points $\left(\stackrel{\circ}{Q}_{j} \cap \stackrel{\circ}{Q}_{k}=\emptyset, j \neq k\right)$. Suppose that f is integrable over each Q_{l}. Then it is integrable over Q and

$$
I_{Q}(f)=\sum_{l=1}^{m} I_{Q_{l}}(f) .
$$

- THEOREM: If f is continuous on Q then it is integrable on Q.
- THE BASIC NECESSARY AND SUFFICIENT CONDITION FOR INTEGRABILITY

```
**************************************************************************
```

- THE INTERIOR LEMMA Let P be a partition of a box Q. Let $\left\{Q_{l}\right\}_{l=1}^{m}$ be a finite collection of rectangular boxes with no common interior points, such that, for every $1 \leq l \leq m$,

$$
Q_{l} \subseteq S, \quad \text { for some } S \in P
$$

Then

$$
\sum_{l=1}^{m}\left(M_{Q_{l}}(f)-m_{Q_{l}}(f)\right) v\left(Q_{l}\right) \leq U(f, P)-L(f, P)
$$

- DEFINITION (Parameter of a partition): If P is a partition then its parameter is defined by:

$$
\delta(P)=\sup _{S \in P} \operatorname{diam}(S)
$$

- Fix a partition P of Q.
- If P^{\prime} is another partition, we say that $S^{\prime} \in P^{\prime}$ is a boundary box (with respect to P) if there is NO $S \in P$ such that $S^{\prime} \subseteq S$.
- THE BOUNDARY LEMMA: Fix a partition P of Q and let $\varepsilon>0$ be given. Then there exists a $\eta>0$ such that for any partition P^{\prime} with $\delta\left(P^{\prime}\right)<\eta$ we have

$$
\sum_{S^{\prime} \in P^{\prime}, S^{\prime} \text { boundary box }}\left(M_{S^{\prime}}(f)-m_{S^{\prime}}(f)\right) v\left(S^{\prime}\right) \leq \varepsilon .
$$

- THEOREM: Let f be a bounded function defined in a box Q. The following condition is necessary and sufficient for f to be integrable in Q.

For any $\varepsilon>0$ there exists an $\eta>0$ so that, for every partition P^{\prime} of Q, with $\delta\left(P^{\prime}\right)<\eta$, we have

$$
U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)<\varepsilon
$$

- PROOF. It is clear that the condition is sufficient, by the definition of integrability.

To prove it is necessary, suppose f is integrable and let P be a partition so that

$$
U(f, P)-L(f, P)<\frac{\varepsilon}{2}
$$

Now take any partition P^{\prime} with $\delta\left(P^{\prime}\right)<\eta$ so that by the boundary lemma,

$$
\sum_{S^{\prime} \in P^{\prime}, S^{\prime} \text { boundary box }}\left(M_{S^{\prime}}(f)-m_{S^{\prime}}(f)\right) v\left(S^{\prime}\right) \leq \frac{\varepsilon}{2} .
$$

For the interior boxes of P^{\prime} use the interior lemma.

$$
* *
$$

- RIEMANN SUMS
- DEFINITION (RIEMANN SUM): Given f real and bounded and P a partition of Q, we choose a point $x_{S} \in S$ for every $S \in P$. The Riemann sum of f, relative to P and the choice of points is defined by:

$$
R\left(f ; P, x_{S}\right)=\sum_{S \in P} f\left(x_{S}\right) v(S)
$$

- OBSERVE:

$$
L(f, P) \leq R\left(f ; P, x_{S}\right) \leq U(f, P)
$$

- DEFINITION (THE RIEMANN CONDITION): Let f be real and bounded in Q. There exists a number \bar{I} so that for any $\varepsilon>0$, there exists $\eta>0$ such that

$$
\left|\bar{I}-R\left(f ; P, x_{S}\right)\right|<\varepsilon, \quad \forall P \quad \text { such that } \quad \delta(P)<\eta,
$$

and for all selections of points $x_{S} \in S \in P$.

- THEOREM (The Riemann Condition is Necessary and Sufficient for Integrability): A real bounded function f is integrable iff it satisfies the Riemann condition. In this case $\bar{I}=I$.
- PROOF: (a) If the Riemann condition is satisfied, then

$$
\delta(P)<\eta \Rightarrow U(f, P)-L(f, P) \leq \varepsilon
$$

(b) If f is integrable and $\varepsilon>0$ is given, take $\eta>0$ such that if P^{\prime} is any partition with

$$
\delta\left(P^{\prime}\right)<\eta \Rightarrow U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right) \leq \varepsilon
$$

Then clearly

$$
\left|R\left(f ; P^{\prime}, x_{S^{\prime}}\right)-I\right|<\varepsilon
$$

- NECESSARY AND SUFFICIENT CONDITION FOR INTEGRABILITY IN TERMS OF CONTINUITY PROPERTY
$* *$
- DEFINITION (Oscillation in a set): Let $x \in Q$. The oscillation of f (real, bounded) in $D \subseteq Q$ is

$$
o s c(f, D)=\sup _{D} f-\inf _{D} f .
$$

- DEFINITION (Oscillation at a point): The oscillation of f at $x \in Q$ is defined by:

$$
o(f, x)=\inf _{\delta>0} \operatorname{osc}(f, B(x, \delta) \cap Q)=\lim _{\delta \rightarrow 0} \operatorname{osc}(f, B(x, \delta) \cap Q)
$$

- OBSERVE: The function f is continuous at x iff $o(f, x)=0$.
- REMARK: Clearly, these definitions can be applied to functions defined in any set, not necessarily a box.
- LEMMA: Let f be real, bounded in Q. Then for every $\eta>0$ the set

$$
A_{\eta}=\{x \in Q, \quad o(f, x) \geq \eta\}
$$

is closed.

- PROOF: If a sequence $\left\{x^{k}\right\} \subseteq A_{\eta}$ converges to $x \in Q$, then clearly for every $\delta>0$

$$
\operatorname{osc}(f, B(x, \delta)) \geq \eta
$$

since there is a point $x^{k_{0}} \in B(x, \delta)$ and hence $\delta_{1}>0$ such that $B\left(x^{k_{0}}, \delta_{1}\right) \subseteq$ $B(x, \delta)$.

- REMARK: This lemma means that $o(f, x)$ is upper semicontinuous in Q.
- DEFINITION(Zero content of a subset): A subset $D \subseteq Q$ is of zero content if, for any $\varepsilon>0$, it can be covered by a finite number of open boxes with total volume less than ε.
- THEOREM: The (real, bounded) function f on Q is integrable if and only if for every $\eta>0$ the set

$$
A_{\eta}=\{x \in Q, \quad o(f, x) \geq \eta\}
$$

is of zero content.

- PROOF: (a) Suppose f is integrable, let $\varepsilon, \eta>0$ be given.

Find a partition P such that $U(f, P)-L(f, P)<\varepsilon \eta$. Let $\left\{S_{1}, \ldots, S_{r}\right\} \subseteq P$ be the boxes in the partition P satisfying

$$
\operatorname{osc}\left(f, S_{j}\right) \geq \eta, \quad 1 \leq j \leq r
$$

We have

$$
\eta \sum_{j=1}^{r} v\left(S_{j}\right) \leq \varepsilon \eta \Rightarrow \sum_{j=1}^{r} v\left(S_{j}\right) \leq \varepsilon
$$

Let $\Lambda=\underset{S \in P}{ } \partial S \subseteq Q$ be the union of all the boundaries of boxes in the partition P.

Clearly

$$
A_{\eta}=\{x, \quad o(f, x) \geq \eta\} \subseteq \underset{1 \leq j \leq r}{\cup} S_{j} \cup \Lambda,
$$

since if x is interior to some $S \in P$, then $S=S_{j}$ for some $1 \leq j \leq r$.
Now take, for every $j=1, \ldots, r$, an open box $\widetilde{S_{j}}$ containing S_{j} and such that $v\left(\widetilde{S_{j}}\right)<2 v\left(S_{j}\right)$. Thus

$$
\sum_{j=1}^{r} v\left(\widetilde{S_{j}}\right) \leq 2 \varepsilon
$$

Also, clearly Λ has content zero, so can be covered by a finite number of open boxes with total volume less than ε.

Thus A_{η} is covered by a finite number of open boxes of total volume $<3 \varepsilon$.
(b) Conversely, suppose that A_{η} is of zero content for every $\eta>0$. Let $\varepsilon>0$ be given and take $\eta=\frac{\varepsilon}{2 v(Q)}$. Cover $A_{\eta} \cup \partial Q$ by a finite number of open boxes S_{α} of total volume smaller than $\frac{\varepsilon}{4 M}$, where $M=\sup _{Q}|f|$.

The set $G=Q \backslash \cup_{\alpha} S_{\alpha} \subseteq \stackrel{\circ}{Q}$ is a compact set and $o(f, x)<\eta$ for all $x \in G$.
Hence G can be covered by a finite set of open boxes T_{β} such that $\operatorname{osc}\left(f, \widetilde{T}_{\beta}\right)<\eta$, where \widetilde{T}_{β} is T_{β} whose sides are expanded by a factor of 2 (and same center).

By removing common interior points we can assume that $T_{\beta_{1}} \cap T_{\beta_{2}}=\emptyset$ if $\beta_{1} \neq \beta_{2}$.

It follows that

$$
\begin{aligned}
\sum_{S_{\alpha}}\left(M_{\bar{S}_{\alpha}}-m_{\bar{S}_{\alpha}}\right)(f) v\left(S_{\alpha}\right) & +\sum_{T_{\beta}}\left(M_{\bar{T}_{\beta}}-m_{\bar{T}_{\beta}}\right)(f) v\left(T_{\beta}\right) \\
& \leq 2 M \frac{\varepsilon}{4 M}+\frac{\varepsilon}{2 v(Q)} v(Q)=\varepsilon .
\end{aligned}
$$

Let P be a partition such that every $S \in P$ is contained in some \bar{S}_{α} or some \bar{T}_{β}. Then

$$
U(f, P)-L(f, P)<\varepsilon
$$

- DEFINITION (Zero measure): A set $D \subseteq Q$ is of zero measure if, for every $\varepsilon>0$, it can be covered by a countable number of boxes of total volume less than ε.
- LEMMA: A closed (hence compact) subset of Q is of zero measure iff it is of zero content.
- LEMMA: A subset of a set of zero measure is itself of zero measure.
- LEMMA: A countable union of sets of zero measure is of zero measure.
- OBSERVE: It follows from the above theorem that f is integrable iff $A_{\frac{1}{k}}$ is of zero measure, for any integer k.
- The UNION $\bigcup_{k=1}^{\infty} A_{\frac{1}{k}}$ is exactly the points of discontinuity of f.

- THEOREM: A NECESSARY AND SUFFICIENT CONDITION FOR THE INTEGRABILITY OF f IS THAT ITS SET OF POINTS OF DISCONTINUITY IS OF ZERO MEASURE.
- COROLLARY: If $f \geq 0$ is integrable on Q and $\int_{Q} f=0$ then the set $\{x, \quad f(x)>0\}$ is of zero measure.
- FUBINI'S THEOREM
$* *$
- Let $Q^{\prime} \subseteq \mathbb{R}^{n}, \quad Q^{\prime \prime} \subseteq \mathbb{R}^{m}$ be boxes. Then $Q=Q^{\prime} \times Q^{\prime \prime}$ is a box in \mathbb{R}^{n+m}.

A point $x \in Q$ is $x=\left(x^{\prime}, x^{\prime \prime}\right), \quad x^{\prime} \in Q^{\prime}, x^{\prime \prime} \in Q^{\prime \prime}$.

- We denote partitions in $Q^{\prime}, Q^{\prime \prime}$ by $P^{\prime}, P^{\prime \prime}$, respectively. Every partition P of Q is of the form $P=P^{\prime} \times P^{\prime \prime}$.
- Let $f\left(x^{\prime}, x^{\prime \prime}\right)$ be a real bounded function on Q. For every $x^{\prime} \in Q^{\prime}$ define:

$$
\phi\left(x^{\prime}\right)=\sup _{P^{\prime \prime}} L\left(f\left(x^{\prime}, \cdot\right), P^{\prime \prime}\right), \quad \psi\left(x^{\prime}\right)=\inf _{P^{\prime \prime}} U\left(f\left(x^{\prime}, \cdot\right), P^{\prime \prime}\right) .
$$

- Clearly: $\phi\left(x^{\prime}\right) \leq \psi\left(x^{\prime}\right), \quad x^{\prime} \in Q^{\prime}$.
- THEOREM (Fubini's theorem): Let f be integrable on Q. Then $\phi\left(x^{\prime}\right), \psi\left(x^{\prime}\right)$ are integrable on Q^{\prime} and

$$
\int_{Q} f=\int_{Q^{\prime}} \phi=\int_{Q^{\prime}} \psi
$$

- PROOF: (a) Given $\varepsilon>0$ let $\eta>0$ be such that

$$
\left|R\left(f ; P, x_{S}\right)-\int_{Q} f\right|<\varepsilon \quad \text { if } \quad \delta(P)<\eta
$$

(b) Let $P=P^{\prime} \times P^{\prime \prime}$. For every $S_{i}^{\prime} \in P^{\prime}$ choose $x_{i}^{\prime} \in S_{i}^{\prime}$ and take any $x_{j, i}^{\prime \prime} \in S_{j}^{\prime \prime} \in P^{\prime \prime}$.

If $S=S_{i}^{\prime} \times S_{j}^{\prime \prime}$ take $x_{S}=\left(x_{i}^{\prime}, x_{j, i}^{\prime \prime}\right)$.
(c) By varying the $x_{j, i}^{\prime \prime}$ we get

$$
\begin{aligned}
& \sum_{i} U\left(f\left(x_{i}^{\prime}, \cdot\right), P^{\prime \prime}\right) v\left(S_{i}^{\prime}\right) \leq \int_{Q} f+\varepsilon \\
& \sum_{i} L\left(f\left(x_{i}^{\prime}, \cdot\right), P^{\prime \prime}\right) v\left(S_{i}^{\prime}\right) \geq \int_{Q} f-\varepsilon
\end{aligned}
$$

(d) It follows that

$$
\int_{Q} f-\varepsilon \leq \sum_{i} \phi\left(x_{i}^{\prime}\right) v\left(S_{i}^{\prime}\right) \leq \sum_{i} \psi\left(x_{i}^{\prime}\right) v\left(S_{i}^{\prime}\right) \leq \int_{Q} f+\varepsilon
$$

(e) So by definition both ϕ and ψ are integrable on Q^{\prime} and

$$
\int_{Q} f=\int_{Q^{\prime}} \phi=\int_{Q^{\prime}} \psi .
$$

- REMARK: It follows that $\phi\left(x^{\prime}\right)=\psi\left(x^{\prime}\right)$ except (possibly) for a zero measure set of $x^{\prime} \in S^{\prime}$.

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail address: mbartzi@math.huji.ac.il

