
RIEMANN INTEGRATION ON A MULTIDIMENSIONAL

RECTANGULAR BOX

MATANIA BEN-ARTZI

March 2013

Functions here are real, bounded , defined on a closed rectangular box

Q = [a1, b1]× [a2, b2]× ...× [an, bn].

All rectangular boxes have sides parallel to the axes.
The (open) ball of radius r, centered at x, is denoted by B(x, r). It will be clear

from the context what is the dimension .
We use the Euclidean norm.

• DEFINITION(Partition of a real interval): A partition P of [a, b] ⊆ R
is a finite set of points:

P : a = t0 < t1 < ... < tm = b.

• DEFINITION: The intervals [ti, ti+1], 0 ≤ i ≤ m− 1 are called the par-
tition intervals.

• DEFINITION (Multidimensional partition): A partition P of Q is a
product P = P1 × ...× Pn, where Pj is a partition of [aj , bj ], 1 ≤ j ≤ n.

• DEFINITION (Partition boxes): A rectangular box (closed) such that
its side on the j−th axis is a Pj partition interval (1 ≤ j ≤ n) is called a
partition box (of P ).

• NOTATION: We use the simplified notation S ∈ P for a partition box S.
• DEFINITION (Volume of a box): The volume v(S) is the product of its
(n) sides.

•
• DEFINITION:Let f be a real, bounded function on Q. Given a partition
P of Q, we define for every S ∈ P,

MS(f) = sup
S
f, mS(f) = inf

S
f.

•
• DEFINITION (Upper and Lower Sums): Given the function f and
partition P as above, we define:

L(f, P ) =
∑
S∈P

mS(f)v(S), U(f, P ) =
∑
S∈P

MS(f)v(S).

• DEFINITION (Refinement of a partition): The partition P ′ = P ′
1 ×

...× P ′
n is a refinement of P = P1 × ...× Pn if P ′

i ⊇ Pi, 1 ≤ i ≤ n.
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• CLAIM: If f is a real bounded function and P ′ is a refinement of P , then

L(f, P ) ≤ L(f, P ′), U(f, P ) ≥ U(f, P ′).

• CLAIM: For any two partitions (not necessarily refinements of each
other) P, P ′,

L(f, P ) ≤ U(f, P ′).

• DEFINITION (Integral and Integrability): f is real, bounded on Q.
We say that f is (Riemann-) integrable on Q if

sup
P

L(f, P ) = inf
P
U(f, P ) = I.

The number I is called the integral of f (on Q). It is denoted by I(f) =∫
f.

• REMARK: If the ”domain of integration” needs to be specified, we write
IQ(f) =

∫
Q
f.

• LEMMA: f is integrable iff for every ε there exists a partition P such that

U(f, P )− L(f, P ) ≤ ε.

• BASIC PROPERTIES OF THE INTEGRAL
• The set of integrable functions is a linear space. On this space I is a linear
functional.

• The integral is order preserving. If f ≥ g (and both are integrable) then
I(f) ≥ I(g).

• If f, g are integrable then also the product fg, as well as max(f, g) and
min(f, g) are integrable.

• If f is integrable then so are |f |, f± = 1
2 (|f | ± f).

• LEMMA: (a) LetQ0 be a rectangular box contained inQ. If f is integrable
on Q then it is integrable on Q0.

(b) Let Q =
m
∪
l=1
Ql be a union of rectangular boxes with no common

interior points (
◦
Qj ∩

◦
Qk = ∅, j ̸= k). Suppose that f is integrable over each

Ql. Then it is integrable over Q and

IQ(f) =
m∑
l=1

IQl
(f).

• THEOREM: If f is continuous on Q then it is integrable on Q.
• THE BASIC NECESSARY AND SUFFICIENT CONDITION
FOR INTEGRABILITY

**************************************************************************
• THE INTERIOR LEMMA Let P be a partition of a box Q. Let {Ql}ml=1

be a finite collection of rectangular boxes with no common interior points,
such that , for every 1 ≤ l ≤ m,

Ql ⊆ S, for some S ∈ P.

Then
m∑
l=1

(MQl
(f)−mQl

(f))v(Ql) ≤ U(f, P )− L(f, P ).
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• DEFINITION (Parameter of a partition): If P is a partition then its
parameter is defined by:

δ(P ) = sup
S∈P

diam(S).

• Fix a partition P of Q.
• If P ′ is another partition, we say that S′ ∈ P ′ is a boundary box (with
respect to P ) if there is NO S ∈ P such that S′ ⊆ S.

• THE BOUNDARY LEMMA: Fix a partition P of Q and let ε > 0
be given. Then there exists a η > 0 such that for any partition P ′ with
δ(P ′) < η we have∑

S′∈P ′, S′ boundary box

(MS′(f)−mS′(f))v(S′) ≤ ε.

• THEOREM: Let f be a bounded function defined in a box Q. The following
condition is necessary and sufficient for f to be integrable in Q.

For any ε > 0 there exists an η > 0 so that, for every partition P ′ of
Q, with δ(P ′) < η, we have

U(f, P ′)− L(f, P ′) < ε.

• PROOF. It is clear that the condition is sufficient, by the definition of
integrability.

To prove it is necessary, suppose f is integrable and let P be a partition
so that

U(f, P )− L(f, P ) <
ε

2
.

Now take any partition P ′ with δ(P ′) < η so that by the boundary lemma,∑
S′∈P ′, S′ boundary box

(MS′(f)−mS′(f))v(S′) ≤ ε

2
.

For the interior boxes of P ′ use the interior lemma.
************************************************************

• RIEMANN SUMS
************************************************************

• DEFINITION (RIEMANN SUM): Given f real and bounded and P a
partition of Q, we choose a point xS ∈ S for every S ∈ P. The Riemann
sum of f , relative to P and the choice of points is defined by:

R(f ;P, xS) =
∑
S∈P

f(xS)v(S).

• OBSERVE:

L(f, P ) ≤ R(f ;P, xS) ≤ U(f, P ).

• DEFINITION (THE RIEMANN CONDITION): Let f be real and
bounded in Q. There exists a number Ī so that for any ε > 0, there exists
η > 0 such that

|Ī −R(f ;P, xS)| < ε, ∀P such that δ(P ) < η,

and for all selections of points xS ∈ S ∈ P.
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• THEOREM (The Riemann Condition is Necessary and Sufficient
for Integrability): A real bounded function f is integrable iff it satisfies
the Riemann condition. In this case Ī = I.

• PROOF: (a) If the Riemann condition is satisfied, then

δ(P ) < η ⇒ U(f, P )− L(f, P ) ≤ ε.

(b) If f is integrable and ε > 0 is given, take η > 0 such that if P ′ is any
partition with

δ(P ′) < η ⇒ U(f, P ′)− L(f, P ′) ≤ ε,

Then clearly

|R(f ;P ′, xS′)− I| < ε.

****************************************************
• NECESSARY AND SUFFICIENT CONDITION FOR INTE-
GRABILITY IN TERMS OF CONTINUITY PROPERTY

***************************************************
• DEFINITION (Oscillation in a set): Let x ∈ Q. The oscillation of f
(real, bounded) in D ⊆ Q is

osc(f,D) = sup
D
f − inf

D
f.

• DEFINITION (Oscillation at a point): The oscillation of f at x ∈ Q is
defined by:

o(f, x) = inf
δ>0

osc(f,B(x, δ) ∩Q) = lim
δ→0

osc(f,B(x, δ) ∩Q).

• OBSERVE: The function f is continuous at x iff o(f, x) = 0.
• REMARK: Clearly, these definitions can be applied to functions defined in
any set, not necessarily a box.

• LEMMA: Let f be real, bounded in Q. Then for every η > 0 the set

Aη = {x ∈ Q, o(f, x) ≥ η}

is closed.
• PROOF: If a sequence {xk} ⊆ Aη converges to x ∈ Q, then clearly for
every δ > 0

osc(f,B(x, δ)) ≥ η,

since there is a point xk0 ∈ B(x, δ) and hence δ1 > 0 such that B(xk0 , δ1) ⊆
B(x, δ).

• REMARK: This lemma means that o(f, x) is upper semicontinuous in Q.
• DEFINITION(Zero content of a subset): A subset D ⊆ Q is of zero
content if , for any ε > 0, it can be covered by a finite number of open
boxes with total volume less than ε.

• THEOREM: The (real, bounded) function f on Q is integrable if and
only if for every η > 0 the set

Aη = {x ∈ Q, o(f, x) ≥ η}

is of zero content.
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• PROOF: (a) Suppose f is integrable, let ε, η > 0 be given.
Find a partition P such that U(f, P )−L(f, P ) < εη. Let {S1, ..., Sr} ⊆ P

be the boxes in the partition P satisfying

osc(f, Sj) ≥ η, 1 ≤ j ≤ r.

We have

η
r∑

j=1

v(Sj) ≤ εη ⇒
r∑

j=1

v(Sj) ≤ ε.

Let Λ = ∪
S∈P

∂S ⊆ Q be the union of all the boundaries of boxes in the

partition P.
Clearly

Aη = {x, o(f, x) ≥ η} ⊆ ∪
1≤j≤r

Sj ∪ Λ,

since if x is interior to some S ∈ P, then S = Sj for some 1 ≤ j ≤ r.

Now take, for every j = 1, ..., r, an open box S̃j containing Sj and such

that v(S̃j) < 2v(Sj). Thus
r∑

j=1

v(S̃j) ≤ 2ε.

Also, clearly Λ has content zero, so can be covered by a finite number of
open boxes with total volume less than ε.

Thus Aη is covered by a finite number of open boxes of total volume
< 3ε.

(b) Conversely, suppose that Aη is of zero content for every η > 0. Let
ε > 0 be given and take η = ε

2v(Q) . Cover Aη ∪ ∂Q by a finite number of

open boxes Sα of total volume smaller than ε
4M , where M = sup

Q
|f |.

The set G = Q\∪
α
Sα ⊆

◦
Q is a compact set and o(f, x) < η for all x ∈ G.

Hence G can be covered by a finite set of open boxes Tβ such that

osc(f, T̃β) < η, where T̃β is Tβ whose sides are expanded by a factor of 2
(and same center).

By removing common interior points we can assume that Tβ1 ∩ Tβ2 = ∅
if β1 ̸= β2.

It follows that∑
Sα

(MSα
−mSα

)(f)v(Sα) +
∑
Tβ

(MTβ
−mTβ

)(f)v(Tβ)

≤ 2M
ε

4M
+

ε

2v(Q)
v(Q) = ε.

Let P be a partition such that every S ∈ P is contained in some Sα or
some T β . Then

U(f, P )− L(f, P ) < ε.

• DEFINITION (Zero measure): A set D ⊆ Q is of zero measure if, for
every ε > 0, it can be covered by a countable number of boxes of total
volume less than ε.

• LEMMA: A closed (hence compact) subset of Q is of zero measure iff it is
of zero content.
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• LEMMA: A subset of a set of zero measure is itself of zero measure.
• LEMMA: A countable union of sets of zero measure is of zero measure.
• OBSERVE: It follows from the above theorem that f is integrable iff A 1

k
is

of zero measure, for any integer k.

• The UNION
∞
∪

k=1
A 1

k
is exactly the points of discontinuity of f .

***************************************************************
• THEOREM: A NECESSARY AND SUFFICIENT CONDITION FOR
THE INTEGRABILITY OF f IS THAT ITS SET OF POINTS OF DIS-
CONTINUITY IS OF ZERO MEASURE.

• COROLLARY: If f ≥ 0 is integrable on Q and
∫
Q
f = 0 then the set

{x, f(x) > 0} is of zero measure.
**************************************************************

• FUBINI’S THEOREM
***************************************************************

• Let Q′ ⊆ Rn, Q′′ ⊆ Rm be boxes. Then Q = Q′ ×Q′′ is a box in Rn+m.
A point x ∈ Q is x = (x′, x′′), x′ ∈ Q′, x′′ ∈ Q′′.

• We denote partitions in Q′, Q′′ by P ′, P ′′, respectively. Every partition P
of Q is of the form P = P ′ × P ′′.

• Let f(x′, x′′) be a real bounded function on Q. For every x′ ∈ Q′ define:

ϕ(x′) = sup
P ′′

L(f(x′, ·), P ′′), ψ(x′) = inf
P ′′

U(f(x′, ·), P ′′).

• Clearly: ϕ(x′) ≤ ψ(x′), x′ ∈ Q′.
• THEOREM (Fubini’s theorem): Let f be integrable onQ. Then ϕ(x′), ψ(x′)
are integrable on Q′ and∫

Q

f =

∫
Q′

ϕ =

∫
Q′

ψ.

• PROOF: (a) Given ε > 0 let η > 0 be such that

|R(f ;P, xS)−
∫
Q

f | < ε if δ(P ) < η.

(b) Let P = P ′ × P ′′. For every S′
i ∈ P ′ choose x′i ∈ S′

i and take any
x′′j,i ∈ S′′

j ∈ P ′′.
If S = S′

i × S′′
j take xS = (x′i, x

′′
j,i).

(c) By varying the x′′j,i we get∑
i

U(f(x′i, ·), P ′′)v(S′
i) ≤

∫
Q

f + ε,

∑
i

L(f(x′i, ·), P ′′)v(S′
i) ≥

∫
Q

f − ε.

(d) It follows that∫
Q

f − ε ≤
∑
i

ϕ(x′i)v(S
′
i) ≤

∑
i

ψ(x′i)v(S
′
i) ≤

∫
Q

f + ε.
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(e) So by definition both ϕ and ψ are integrable on Q′ and∫
Q

f =

∫
Q′

ϕ =

∫
Q′

ψ.

• REMARK: It follows that ϕ(x′) = ψ(x′) except (possibly) for a zero mea-
sure set of x′ ∈ S′.
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