HARMONIC ANALYSIS 2016

EXERCISES IV (FOURIER TRANSFORM AND SCHWARTZ SPACE $S\left(\mathbb{R}^{n}\right)$)

MATANIA BEN-ARTZI

1. BOOKS

[Co] R. Courant, Differential and Integral Calculus, Vol. I ,Blackie and Son, 1934.
[Ka] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.
[Ru] W. Rudin, Real and Complex Analysis, McGraw-Hill Co. 1966.
[W] H.F.Weinberger, A First Course in Partial Differential Equations, Wiley Publ. 1965.

Notation

$B(y, R) \quad$ The open ball (in \mathbb{R}^{n}) of radius R , centered at y.
$S\left(\mathbb{R}^{n}\right)$ is the Schwartz space of rapidly decaying smooth functions. The seminorms on S are defined by

$$
\begin{aligned}
& p_{\alpha, \beta}(f)=\max _{x \in \mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|, \quad \alpha, \beta \in \mathbb{N}^{n} . \\
& \widehat{f}(\xi)=\mathcal{F} f(\xi)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(x) e^{-i \xi x} d x
\end{aligned}
$$

(1) Prove that $\mathcal{F}: S\left(\mathbb{R}^{n}\right) \rightarrow S\left(\mathbb{R}^{n}\right)$ is continuous.
(2) (In this problem $n=1$) Let $f \in S(\mathbb{R})$ and define

$$
g(t)=\sum_{j=-\infty}^{\infty} f(t+2 \pi j)
$$

(a) Show that the sum converges absolutely (so the order of summation is not important).
(b) Show that $g \in C^{\infty}\left(S^{1}\right)$, namely, it is 2π-periodic and continuously differentiable of any order.

[^0](c) Let the Fourier coefficients of g be given by
$$
\widehat{g}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} g(t) e^{-i k \theta} d \theta, \quad-\infty<k<\infty
$$

Prove that

$$
\widehat{g}(k)=\widehat{f}(k)=\mathcal{F} f(k), \quad-\infty<k<\infty .
$$

(d) Prove Poisson's Summation Formula:

$$
\sum_{j=-\infty}^{\infty} \widehat{f}(j)=\sqrt{2 \pi} \sum_{j=-\infty}^{\infty} f(2 \pi j)
$$

(See [Ka], Ch. VI. Sec. 1.15)
(3) In this problem $n=1$.
(a) Find the Fourier transform of $f(x)=\frac{x}{x^{2}+1}$.
(b) Find the Fourier transform of $f(x)=\frac{\sin x}{x}$.

Use your result in order to evaluate $\int_{\mathbb{R}} \frac{\sin ^{2} x}{x^{2}} d x$.
(See [W], Sec. 66.)
(4) In this problem $n=1$.
(a) Find the function $f(x)$ if $\hat{f}(\xi)=\frac{\sin a \xi}{\xi}$.
(b) Find the function $f(x)$ if $\hat{f}(\xi)=\frac{1-\cos a \xi}{\xi}$.
(c) Find the function $f(x)$ if $\hat{f}(\xi)=\frac{\xi}{\xi^{2}+1}$.
(d) Find the function $f(x)$ if $\hat{f}(\xi)=\exp \left(-\xi^{2}\right)$.
(See [W], Sec. 67.)
(5) In this problem $n=1$.

Define the Féjer kernel on the real line by

$$
K(x)=\frac{1}{2 \pi}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}, \quad x \in \mathbb{R}
$$

(a) Show that the family $\left\{K_{\varepsilon}\right\}_{\varepsilon>0}$ is a positive summability kernel, where $K_{\varepsilon}(x)=\varepsilon^{-1} K\left(\frac{x}{\varepsilon}\right)$.
(Compare Problem 3(b) above).
(b) Prove that for every $f \in L^{1}(\mathbb{R})$,

$$
f=\lim _{\varepsilon \rightarrow 0} K_{\varepsilon} * f, \quad \text { in the topology of } L^{1}(\mathbb{R}) .
$$

(c) Prove that

$$
K(x)=\frac{1}{2 \pi} \int_{-1}^{1}(1-|\xi|) e^{i \xi x} d \xi
$$

and use it to find the Fourier transform $\widehat{K}(\xi)$.
(d) Prove that for every $f \in L^{1}(\mathbb{R})$,
$f(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\sqrt{2 \pi}} \int_{-\varepsilon^{-1}}^{\varepsilon^{-1}}(1-\varepsilon|\xi|) \widehat{f}(\xi) e^{i \xi x} d \xi, \quad$ in the topology of $L^{1}(\mathbb{R})$.
(See [Ka] ,Chapter VI, Sec. 1.11).
(6) Let $p(x)$ be a polynomial in \mathbb{R}^{n} (with complex coefficients). What is $\mathcal{F}\left(p(x) \exp \left(-\frac{1}{2}|x|^{2}\right)\right) ?$
(7) In this problem $n=1$.

Let the operator $H: S(\mathbb{R}) \rightarrow S(\mathbb{R})$ be defined by

$$
H \phi=\left(-\frac{d^{2}}{d x^{2}}+x^{2}\right) \phi(x)
$$

(a) Prove that if $\psi_{\lambda} \in S$ is an eigenfunction of H with eigenvalue λ, then $\psi_{\lambda+2}:=\left(x-\frac{d}{d x}\right) \psi_{\lambda}$ is an eigenfunction of H with eigenvalue $\lambda+2$.
(b) Let

$$
H_{n}(x)=e^{\frac{1}{2} x^{2}}\left(x-\frac{d}{d x}\right)^{n} e^{-\frac{1}{2} x^{2}}
$$

Prove that $H_{n}(x)$ is a polynomial of degree $n, n=0,1,2 \ldots$ (called Hermite polynomial) and

$$
H_{n}(x)=e^{x^{2}}(-1)^{n}\left(\frac{d}{d x}\right)^{n} e^{-x^{2}}
$$

(c) Prove that $\psi_{2 n+1}=H_{n}(x) e^{-\frac{1}{2} x^{2}}$ is an eigenfunction of H, with eigenvalue $2 n+1, n=0,1,2, \ldots$
(d) Prove the orthogonality

$$
\int_{\mathbb{R}} H_{n}(x) H_{m}(x) e^{-x^{2}} d x=0, \quad n \neq m
$$

(e) Prove that, after normalization, the family $\left\{\psi_{2 n+1}(x), n=0,1,2 \ldots\right\}$ is a basis for $L^{2}(\mathbb{R})$.
(8) Suppose A is an invertible linear operator on $\mathbb{R}^{n}, f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g(x)=$ $f(A x)$. Express \hat{g} in terms of \hat{f}.
(See [Ru], Exercise 1, Ch. 7).
Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail address: mbartzi@math.huji.ac.il

[^0]: Date: January 6, 2017.

