HARMONIC ANALYSIS 2016

EXERCISES IV (FOURIER TRANSFORM AND SCHWARTZ
SPACE S(R"))

MATANIA BEN-ARTZI
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NOTATION

B(y, R) The open ball (in R™) of radius R, centered at y.
S(R™) is the Schwartz space of rapidly decaying smooth functions. The seminorms
on S are defined by

Pas(f) = max [z° D7 f(z)], @, €N,

~

_n —a
&)= Fre) = (2m) % / f(z)e€edz,
R‘IL
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(1) Prove that F : S(R™) — S(R™) is continuous.
(2) (In this problem n = 1) Let f € S(R) and define

gty =Y f(t+2mj).

j=—oc0

(a) Show that the sum converges absolutely (so the order of summation is
not important).

(b) Show that g € C°°(S'), namely, it is 27 —periodic and continuously
differentiable of any order.
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(¢) Let the Fourier coefficients of g be given by

1 g .
§%%;z§/’ﬂﬂfm%& oo < k< 0.

Prove that

G(k) = Flk) = Ff(k), —oo<k < oo

(d) Prove Poisson’s Summation Formula:

MGy =ver Y fem).
j=—o0 Jj=—00
(See [Kal], Ch. VL. Sec. 1.15)
(3) In this problem n = 1.
(a) Find the Fourier transform of f(z) = 30.29:_1.
(b) Find the Fourier transform of f(r) = =2,

. in2
Use your result in order to evaluate [ =td.

(See [W], Sec. 66.) :

(4) In this problem n = 1.
(a) Find the function f(z) if f(¢) = %
(b) Find the function f(z) if f(€) 1_Cgs ag
(¢) Find the function f(z) if f(€) EQil.
(d) Find the function f(z) if f(£) = exp(—¢2)

(See [W], Sec. 67.)
(5) In this problem n = 1.
Define the Féjer kernel on the real line by

K(x)

1 /sinZ\2
:—( IQ), z eR.
27

2

(a) Show that the family {K.} . is a positive summability kernel, where
K. (z) =e'K(%).
(Compare Problem 3(b) above).

(b) Prove that for every f € L}(R),

f= liH(l) K. f, in the topology of L'(R).
e—
(c) Prove that
1
K@) =5 [ (- lehes
TJ

and use it to find the Fourier transform K ().
(d) Prove that for every f € L}(R),

571

flz) = 21_% \/% —5—1(1 — 5\§|)f(§)ei5$d§, in the topology of L'(R).
(See [Ka] ,Chapter VI, Sec. 1.11).

(6) Let p(z) be a polynomial in R™ (with complex coefficients). What is
F(p(x) exp(—3]z[*)) ?
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(7) In this problem n = 1.
Let the operator H : S(R) — S(R) be defined by
2
Hp= (- % + x2>¢(x).
(a) Prove that if ¢y € S is an eigenfunction of H with eigenvalue A, then
Yrpo 1= (m — %)1@\ is an eigenfunction of H with eigenvalue A + 2.
(b) Let

d\" 1.2
o) = b (o - L)erie
(x)=e - e
Prove that H,(z) is a polynomial of degree n, n = 0,1,2... (called
Hermite polynomial) and
d\mn
Hy(z) = emz(—l)”(%> e
(¢) Prove that ta,41 = Hy(z)e 2% is an eigenfunction of H, with eigen-
value 2n +1, n=0,1,2, ...
(d) Prove the orthogonality

/ Hn(x)Hm(m)e_f”zda: =0, n#m.
R

(e) Prove that , after normalization, the family {¢2n41(z), n =0,1,2...}
is a basis for L?(R).
(8) Suppose A is an invertible linear operator on R, f € L*(R") and g(z) =
f(Az). Express g in terms of f.
(See [Ru] , Exercise 1, Ch. 7).
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