BASIC CONCEPTS IN ANALYSIS

EXERCISES III (FUNDAMENTAL SOLUTIONS AND PARTIAL DIFFERENTIAL EQUATIONS)

MATANIA BEN-ARTZI

1. BOOKS

[Ru] W. Rudin, Functional Analysis, McGraw-Hill Co. 1973.

[E] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics Vol. 19, AMS 1998.

[Ka] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag 1976.

NOTATION

|x| The Euclidean norm in \mathbb{R}^n .

$$\Gamma(x) = \begin{cases} \frac{1}{n(2-n)\omega_n} |x|^{2-n} & \text{if } n > 2, \\ \frac{1}{2\pi} \log(|x|), & \text{if } n = 2. \end{cases}$$

$$D_j = \frac{1}{i} \frac{\partial}{\partial x_j} \qquad D = (D_1, ..., D_n).$$

$$D^{\alpha} = D_1^{\alpha_1} \cdots D_n^{\alpha_n} \quad \text{for every multi-index } \alpha = (\alpha_1, ..., \alpha_n).$$

$$|\alpha| = \alpha_1 + \cdots \alpha_n \quad \text{for every multi-index } \alpha = (\alpha_1, ..., \alpha_n).$$

$$\mathcal{F}f(\xi) = \hat{f}(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(x)e^{-i\xi x} dx \quad \text{The Fourier transform of } f.$$

$$S = S(\mathbb{R}^n) \quad \text{The Schwartz space of smooth rapidly decaying functions}$$

 $S' = S'(\mathbb{R}^n)$ The space of **tempered distributions**, i.e., continuous linear functionals on S.

 $\mathbb{D}(\mathbb{R}^n)$ The space of smooth compactly supported functions.

 $\mathbb{D}'(\mathbb{R}^n)$ The space of **distributions**, i.e., continuous linear functionals on $\mathbb{D}(\mathbb{R}^n)$.

Date: June 18, 2006.

MATANIA BEN-ARTZI

- (1) (a) Show that $\Gamma(x)$ (as defined in the "Notations") is a fundamental solution of Δ in \mathbb{R}^n . (See [E], Sec. 2.2).
 - (b) Let $f \in C^2(\mathbb{R}^n)$ (i.e., $D^{\alpha}f$ is continuous if $|\alpha \leq 2$). Assume further that f is compactly supported. Prove that $u = \Gamma \star f \in C^2(\mathbb{R}^n)$ and that $\Delta u = f$. Explain why this fact does not follow immediately from part (a) of the problem.
- (2) (a) Let $\psi \in \mathbb{D}(\mathbb{R}^n)$ such that $\psi = 1$ in a neighborhood of 0. Prove that $\Delta(\psi\Gamma) \delta_0 \in \mathbb{D}(\mathbb{R}^n)$, where Γ is the fundamental solution of δ . Use this to show that $\Delta(\psi\Gamma) \star u$ can be defined for any $u \in \mathbb{D}'(\mathbb{R}^n)$. (Remark: More generally, the convolution of two distributions in $\mathbb{D}'(\mathbb{R}^n)$ can be defined if one of them is compactly supported).
 - (b) Show that if $u \in \mathbb{D}'(\mathbb{R}^n)$ and $D_j u \in L^2_{loc}(\mathbb{R}^n)$, $j = 1, \dots, n$ then we have the "integration by parts" formula

$$\Delta(\psi\Gamma) \star u = -\sum_{j=1}^{n} D_j(\psi\Gamma) \star (D_j u).$$

(Suggestion: While such a formula can be established in general, when one distribution is compactly supported, you can use here the fact that each $D_j(\psi\Gamma)$ is in L^1 , and then approximate u by "nice" functions).

- (c) Prove that if $u \in \mathbb{D}'(\mathbb{R}^n)$ is such that $D_j u \in L^2_{loc}(\mathbb{R}^n)$, $j = 1, \dots, n$ then $u \in L^2_{loc}(\mathbb{R}^n)$. (See [Ru], Ch. 8, Exercise 11).
- (d) Prove that if $u \in \mathbb{D}'(\mathbb{R}^n)$ is such that Δu (defined as a distribution) is a continuous function, then also u is a continuous function. (See [Ru], Ch. 8, Exercise 12).
- (3) In this problem n = 3.
 - (a) Let $f \in \mathbb{D}'(\mathbb{R}^3)$ be such that $\hat{f}(\xi) = (2\pi)^{-\frac{3}{2}}(1+\xi^2)^{-1}$. Show that in fact $f \in L^2(\mathbb{R}^3)$ and that it is a fundamental solution of 1Δ .
 - (b) Show that $f(x) = (\frac{\pi}{2})^{\frac{1}{2}} |x|^{-1} \exp(-|x|)$. (See [Ru], Ch. 8, Exercise 5).

(c) Find a fundamental solution for $k^2 - \Delta$ for any $k \in \mathbb{R}$.

- (4) In this problem n = 1.
 - (a) Suppose $P(D) = D^2 + aD + b$, where a, b are complex numbers. Let $f, g \in C^2(\mathbb{R})$ such that P(D)f = P(D)g = 0, and

$$g(0) - f(0) = 0,$$
 $g'(0) - f'(0) = 1.$

Prove that

$$G(x) = \begin{cases} g(x) & \text{if } x > 0, \\ f(x), & \text{if } x \le 0, \end{cases}$$

is a fundamental solution of P(D).

(See [Ru], Ch. 8, Exercise 10).

- (b) Let $k \in \mathbb{R}$. Write explicitly (in terms of a convolution kernel) the solution to $y'' + ky = \varphi$ where $\varphi \in \mathbb{D}(\mathbb{R})$.
- Is this solution unique? Can you write an "optimal" one?
- (5) (Fundamental solution of the heat operator).

Let

$$G(x,t) = (4\pi t)^{-\frac{n}{2}} \exp(-\frac{|x|^2}{4t}), \qquad x \in \mathbb{R}^n, \quad t > 0.$$

- (a) Show that the family $\{G(\cdot, t)\}_{t>0}$ is a positive summability kernel.
- (b) Define

$$\Phi(x,t) = \begin{cases} G(x,t) & \text{if } t > 0, \\ 0, & \text{if } t \le 0. \end{cases}$$

Prove that Φ is a fundamental solution for the operator $\frac{\partial}{\partial t} - \Delta$ in \mathbb{R}^{n+1} (where Δ is the Laplacian with respect to the *x*-coordinates). (See [E], Sec. 2.3).

- (c) Is $\Phi \in S'(\mathbb{R}^{n+1})$?
- (d) Let $\psi \in \mathbb{D}(\mathbb{R}^{n+1})$. Show that $u(x,t) = \Phi \star \psi$ is a smooth function satisfying $(\frac{\partial}{\partial t} \Delta)u = \psi$ and such that for some $\tau \in \mathbb{R}$ we have u(x,t) = 0 if $t < \tau$.
- (e) (Solution of the initial-value problem for the heat equation).

Let g(y) be a bounded continuous function in \mathbb{R}^n . Define the function

$$\begin{split} v(x,t) = & G(\cdot,t) \star g = \\ & (4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \exp(-\frac{|x-y|^2}{4t})g(y)dy, \qquad x \in \mathbb{R}^n, \quad t > 0. \end{split}$$

Show that

(i)
$$v \in C^{\infty}(\mathbb{R}^n \times (0, \infty)).$$

(ii) $(\frac{\partial}{\partial t} - \Delta)v = 0$ in $\mathbb{R}^n \times (0, \infty).$
(iii)

 $\lim_{\substack{(x,t)\to(x_0,0)\\x\in\mathbb{R}^n,t>0}} v(x,t) = g(x_0), \qquad \text{for each point } x_0 \text{ in } \mathbb{R}^n.$

(See
$$[E]$$
, Theorem 1, Sec. 2.3).

(6) (Fundamental solution of the free Schrödinger operator). In this problem n = 1.

Let

$$K(x,t) = (4i\pi t)^{-\frac{1}{2}} \exp(-\frac{|x|^2}{4it}), \qquad x \in \mathbb{R}, \quad t > 0.$$

(a) Show that the family

$$\mathcal{P} = \left\{ \exp[-b(x-a)^2], \qquad b > 0, \quad a \in \mathbb{R} \right\},$$

is dense in $L^2(\mathbb{R})$.

(b) Show that for every fixed t > 0 the convolution operator, which is first defined on elements of \mathcal{P} ,

$$\mathbb{K}_t g(x) = \int_{\mathbb{R}} K(x - y, t) g(y) dy, \qquad x \in \mathbb{R},$$

can be extended to a unitary operator on $L^2(\mathbb{R})$. (See [Ka], Sec. IX.1.8, also for the next parts). (c) Define

4

$$\Psi(x,t) = \begin{cases} K(x,t) & \text{if } t > 0, \\ 0, & \text{if } t \le 0. \end{cases}$$

Prove that Ψ is a fundamental solution for the free Schrödinger oper-

- ator $\frac{1}{i}\frac{\partial}{\partial t} \frac{\partial^2}{\partial x^2}$. (d) Is $\Psi \in S'(\mathbb{R}^2)$?
- (e) Let $\theta \in \mathbb{D}(\mathbb{R}^2)$. Show that $u(x,t) = \Psi \star \theta$ is a smooth function satisfying $(\frac{1}{i}\frac{\partial}{\partial t} \frac{\partial^2}{\partial x^2})u = \theta$ and such that for some $\tau \in \mathbb{R}$ we have u(x,t) = 0 if $t < \tau$.
- (f) (Solution of the initial-value problem for the free Schrödinger equation).

Let $q(y) \in \mathbb{D}(\mathbb{R})$. Define the function

$$v(x,t) = \mathbb{K}_t g(x), \qquad x \in \mathbb{R}, \quad t > 0.$$

Show that

(i) $v \in C^{\infty}(\mathbb{R}^n \times (0, \infty)).$ (ii) $(\frac{1}{i}\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2})v = 0$ in $\mathbb{R}^n \times (0,\infty)$). (iii)

 $\lim_{\substack{(x,t)\to(x_0,0)\\x\in\mathbb{R},t>0}} v(x,t) = g(x_0), \quad \text{for each point } x_0 \text{ in } \mathbb{R}.$

(g) Try to generalize the above results to \mathbb{R}^n .

- (7) (The Wave Equation).
 - (a) Let f(x,t), g(x,t) be two locally integrable functions in \mathbb{R}^2 , and let $c \in \mathbb{R}$. Show that the function u(x,t) = f(x+ct) + g(x-ct), considered as an element of $\mathbb{D}'(\mathbb{R}^2)$, satisfies the (homogeneous) wave equation

$$(\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2})u = 0.$$

(b) Define the function

$$\Sigma(x,t) = \begin{cases} -\frac{1}{2} & \text{if } t > 0 \text{ and } -ct < x < ct, \\ 0, & \text{if } t \le 0. \end{cases}$$

Prove that Σ is a fundamental solution for the wave operator (in one space dimension) $L(\frac{\partial}{\partial x}, \frac{\partial}{\partial t}) = \frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2}$. (Note that Σ is supported in the "forward light cone").

- (c) Let $\phi \in \mathbb{D}(\mathbb{R}^2)$ and suppose that $supp \phi \subseteq \mathbb{R} \times (t_0, \infty)$. Show that there exists a solution u to the wave equation $Lu = \phi$ that "propagates only" into the future", namely, supp $u \subseteq \mathbb{R} \times (t_0, \infty)$.
- (d) Furthermore, show that the solution u from the previous part is compactly supported (in x) at every fixed time level t. (We say that it satisfies the "finite propagation speed" property).
- (e) Formulate similar results for the "backward light cone".

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM 91904, ISRAEL E-mail address: mbartzi@math.huji.ac.il