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******************************************************************************************

Notation

|x| The Euclidean norm in Rn.

Dj = 1
i

∂
∂xj

D = (D1, ..., Dn).

Dα = Dα1
1 · · ·Dαn

n for every multi-index α = (α1, ..., αn).

Ff(ξ) = f̂(ξ) = (2π)−
n
2

∫
Rn

f(x)e−iξxdx The Fourier transform of f .

S = S(Rn) The Schwartz space of smooth rapidly decaying functions.

S′ = S′(Rn) The space of tempered distributions, i.e., continuous linear
functionals on S.

Tf ∈ S′ For a function f of polynomial growth

Tf (ϕ) =
∫

Rn

f(x)ϕ(x)dx, ϕ ∈ S.

Jf(x) = f̌(x) = f(−x).

D(Rn) The space of smooth compactly supported functions.

D′(Rn) The space of distributions, i.e., continuous linear functionals on
D(Rn).

*****************************************************************************************
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2 MATANIA BEN-ARTZI

(1) Prove the following theorem that deals with bounded kernels decaying at
infinity.

Theorem. Suppose that K(x) ∈ L∞(Rn) and that (1 + |x|n+1)|K(x)| ≤ C
for some constant C > 0. Suppose also that

∫
Rn K(x)dx = 1 and denote

Kε(x) = ε−nK(x
ε ). Then, for any f ∈ Lp(Rn), 1 ≤ p < ∞,

f ? Kε(x) −−−−→
ε→0+

f(x), for a.e. x ∈ Rn.

This is Theorem 6, Chapter I of [Ne]. Here are the steps in the proof.

Proof. (a) Note that
∫
Rn Kε(x)dx = 1 and |Kε(x)| ≤ Cε

εn+1+|x|n+1 .

(b) Estimate (with fε = f ? Kε,)

|fε(x)− f(x)| ≤
∫ n

R
|f(x− y)− f(x)||Kε(y)|dy =

∫

|y|≤ε

+
∫

|y|≥ε

= I1 + I2.

(c) Note that if x is a Lebesgue point of f ,

I1 ≤ C

εn

∫

|y|≤ε

|f(x− y)− f(x)|dy −−−−→
ε→0+

0.

(d) Estimate

I2 ≤ Cε

∫

|y|≥ε

|y|−(n+1)|f(x−y)−f(x)|dy = Cε

∫

ε≤|y|≤ω

+Cε

∫

|y|≥ω

= Cε[J1+J2],

for some fixed ω > 0.
(e) Show that

εJ2 −−−−→
ε→0+

0.

(Use the fact that f ∈ Lp.)
(f) Denote F (u) =

∫
|y|≤u

|f(x− y)− f(x)|dy and note that

εJ1 = ε

ω∫

ε

u−(n+1)dF (u) = ε
{[F (u)

un+1

]ω

ε
+ (n + 1)

ω∫

ε

u−(n+2)F (u)du
}
.

(g) Note that if x is a Lebesgue point then, for any δ > 0, we can find
ω > 0 such that F (u) ≤ δun for u < ω. Choosing such ω above, show
that

εJ1 ≤ ε
F (ω)
ωn+1

+ (n + 1)δε

ω∫

ε

u−2du ≤ ε
F (ω)
ωn+1

+ (n + 1)δ.

(h) Conclude that

lim sup
ε→0+

I2 ≤ (n + 1)δ, for any δ > 0.

¤

In the following problems n = 1. Recall that for every distribution u ∈ S′,

∂̂u

∂x
(ξ) = iξû(ξ), îxu(ξ) = −∂u

∂ξ
û(ξ).



BASIC CONCEPTS IN ANALYSIS-EXERCISES II 3

(2) Let H(x) =

{
0, x ≤ 0
1, x > 0.

Show that T ′H = δx=0.
Often this is simplified to H ′(x) = δ.
Conclude that

iξĤ(ξ) = (2π)−
1
2 (= T

(2π)−
1
2
).

Does it follow that you can conclude Ĥ(ξ) = −i(2π)−
1
2 ξ−1?

(3) (a) Show that

Ĥ(ϕ) = H(ϕ̂) =

∞∫

0

ϕ̂(x)dx, ϕ ∈ S

and conclude that (for ϕ ∈ S)

Ĥ(ϕ) = (2π)−
1
2 lim

ε→0+

∞∫

0

∫

R
ϕ(ξ)e−iξxe−εxdξdx = (2π)−

1
2 lim

ε→0+

∫

R

ϕ(ξ)
iξ + ε

dξ.

(b) Show similarly that

ĴH(ϕ) = (2π)−
1
2 lim

ε→0+

∫

R

ϕ(ξ)
−iξ + ε

dξ.

(c) Conclude that

T̂1(ϕ) = (Ĥ + ĴH)(ϕ) = (2π)−
1
2 lim

ε→0+

∫

R

2ε

ξ2 + ε2
ϕ(ξ)dξ.

(d) (Poisson kernel) Show that (for ϕ ∈ S),

ϕ(τ) =
1
π

lim
ε→0+

∫

R

ε

(ξ − τ)2 + ε2
ϕ(ξ)dξ, τ ∈ R.

Definition. The kernel P (ξ) = 1
π

1
ξ2+1 is called the Poisson kernel.

For every ε > 0 we set Pε(ξ) = ε−1P ( ξ
ε ) = 1

π
ε

ξ2+ε2 .

(e) Extend this result to any bounded continuous function g(ξ). Give a
condition on g that will ensure that the limit is attained uniformly in
τ ∈ R.

(4) (a) For any ϕ ∈ S, show that the following limit exists

PV

∫

R

ϕ(ξ)
ξ

dξ := lim
η→0+

∫

R\(−η,η)

ϕ(ξ)
ξ

dξ.

(b) Show that

1
2
(Ĥ − ĴH)(ϕ) = (2π)−

1
2 i−1 lim

ε→0+

∫

R

ξ

ξ2 + ε2
ϕ(ξ)dξ = (2π)−

1
2 i−1PV

∫

R

ϕ(ξ)
ξ

dξ.

(Hint: For the last equality you need to show that
∫

R

ξ

ξ2 + ε2
ϕ(ξ)dξ −

∫

R\(−ε,ε)

ϕ(ξ)
ξ

dξ −−−−→
ε→0+

0.
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Use Problem 1 with the kernel

K(t) =

{
t

t2+1 , if |t| ≤ 1,
t

t2+1 − 1
t , if |t| ≥ 1.

Note that you have to modify Problem 1 since here
∫
RK(t)dt = 0.)

(c) Show that

Ĥ(ϕ) = (2π)−
1
2 i−1PV

∫

R

ϕ(ξ)
ξ

dξ + (2π)−
1
2
ϕ(0)

2
.

Use this equation to compute iξĤ and compare it with the formula in
Problem 2.

(5) (a) For ϕ ∈ S and τ ∈ R define ψ ∈ S by ϕ̂(x) = eiτxψ̂(x). Show that

(2π)−
1
2

∫

R
(H − JH)ϕ̂(x)dx =

1
πi

PV

∫

R

ψ(ξ)
ξ − τ

dξ.

(b) For ψ ∈ S define the transformation

Hψ(τ) =
1
πi

PV

∫

R

ψ(ξ)
ξ − τ

dξ, τ ∈ R.

Prove that H is a linear isometry from S into L2(R) (with respect
to the L2 norm) and hence can be extended as an isometry to all of
L2(R).

(c) Keep the notation H for the extended isometry and show that H2 = I,
the identity operator. Conclude that H is in fact an isomorphism on
L2(R).

Definition. The isomorphism H is called the Hilbert transform.
(6) Consider the kernel P̃ε(t) = 1

π
t

t2+ε2 , ε > 0 (which is sometimes called the
”conjugate Poisson kernel”).
(a) Show that if ϕ ∈ S then P̃ε ? ϕ ∈ L2(R) and

̂̃
Pε ? ϕ(ξ) = −i(H − JH)(ξ)e−ε|ξ|ϕ̂(ξ) = −i sgn(ξ)e−ε|ξ|ϕ̂(ξ), ξ ∈ R.

Conclude that P̃ε ? g ∈ L2(R) for any g ∈ L2(R).
(b) Prove that

P̃ε ? g −−−−→
ε→0+

iHg, for any g ∈ L2(R).

(c) Prove that

P̃ε ? g = iPε ?Hg, for any g ∈ L2(R).

(Suggestion: Look at Fourier transforms).

For the following problems, you can consult Chapter III of [Ne].
(7) Let f ∈ Lp(R) for some p ∈ (1,∞).

(a) Show that

F (z) =
1
πi

∫

R

f(t)
t− z

dt

is an analytic function of z = x + iy in the upper (resp. lower) half-
plane y > 0 (resp. y < 0).

(b) Prove the following theorem of M. Riesz.
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Theorem. Write F (z) = U(x, y) + iV (x, y). Then there exists a con-
stant Ap > 0, depending only on p, such that for every y > 0,

(∗)
∫

R
|U(x, y)|pdx ≤

∫

R
|f(x)|pdx,

(∗∗)
∫

R
|V (x, y)|pdx ≤ Ap

∫

R
|f(x)|pdx.

This is Theorem 2 in Chapter III of [Ne]. Note that for the case p = 2
it follows from Problem 6 (with A2 = 1). Here are the steps in the
proof.

Proof. (i) The estimate (*) follows from the fact that

U(x, y) = f ? Py(x),

where Py is the Poisson kernel.
(ii) Note that V (x, y) = f ? P̃y(x) where as above P̃y(t) = 1

π
t

t2+y2 .

Hence conclude that ‖V (·, y)‖L∞(R) ≤ ‖f‖Lp(R)‖P̃y‖Lq(R) where
q = p

p−1 . In particular ‖V (·, y) − Vj(·, y)‖L∞(R) −−−→
j→∞

0, where

Vj(x, y) = fj ? P̃y(x) and fj = χ[−j,j]f is the truncation of f.
(iii) Use Fatou’s lemma to conclude that it is sufficient to prove (**)

for a compactly supported f. Furthermore, by splitting into posi-
tive and negative parts you can assume f ≥ 0 so that U(x, y) > 0
(except for the trivial case f ≡ 0).

(iv) Take 1 < p < 3. Let ζ = α + iβ ∈ C such that Re(ζ) = α > 0.
Show that there exist constants c1, c2 > 0 such that

|β|p ≤ c1α
p − c2Re(ζp).

(It suffices to prove

| sin θ|p ≤ c1(cos θ)p − c2 cos(pθ), 0 ≤ |θ| < π

2
).

(v) Conclude that
∫

R
|V (x, y)|pdx ≤ c1

∫

R
|U(x, y)|pdx− c2

∫

R
Re(F (x + iy)p)dx.

(vi) Show that
∫

R
(F (x + iy)p)dx = 0

using the following arguments: F (z)p is analytic in the upper
half-plane (U > 0) and |z||F (z)| is bounded. Then use Cauchy’s
theorem.

(vii) This takes care (in particular) of the proof if 1 < p ≤ 2. If p > 2
use the ”duality method”: Let q = p

p−1 ∈ (1, 2) and write:

( ∫

R
|V (x, y)|pdx

) 1
p = sup

‖g‖Lq(R)=1

∫

R
V (x, y)g(x)dx,
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where you can assume that g is compactly supported. Now
∫
R V (x, y)g(x)dx =

∫
R g(x)

∫
R f(t)P̃y(x− t)dtdx

= − ∫
R f(t)

∫
R g(x)P̃y(t− x)dxdt = − ∫

RW (t, y)f(t)dt,

where by the preceding part

‖W (·, y)‖Lq(R) ≤ Aq‖g‖Lq(R).

¤

(8) Prove the following theorem of M. Riesz.

Theorem. Let f ∈ Lp(R) for some p ∈ (1,∞). Define

f̃ε(x) =
1
π

∫

|x−t|>ε

f(t)
x− t

dt.

Then
(∗) ‖f̃ε‖Lp(R) ≤ Ap‖f‖Lp(R), ε > 0.

(∗∗) There exists a function f̃ ∈ Lp(R)

such that ‖f̃ε − f̃‖Lp(R) −−−−→
ε→0+

0.

This is Theorem 3 in Chapter III of [Ne]. In the case p = 2 we have
f̃ = iHf. Here are the steps of the proof.

Proof. (a) Let V (x, ε) be as in the previous problem and note that

V (x, ε)− f̃ε = f ? Kε

where Kε is the integrable kernel introduced in Problem 4. Hence

‖V (x, ε)− f̃ε‖Lp(R) ≤ C‖f‖Lp(R)

so that (*) follows from (**) in the previous problem.
(b) In view of (*) it suffices to prove (**) when f ∈ D(R). Write

f̃ε(x) =
1
π

∫

ε<|x−t|<3a

f(t)− f(x)
x− t

dt

where supp(f) ⊆ (−a, a) and |x| < 2a. Combined with the behavior
at infinity conclude that |f̃ε(x)| ≤ C(1 + |x|)−1 for 0 < ε < ε0. Use
the Lebesgue Dominated Convergence theorem to conclude that

{
f̃ε

}
is a Cauchy sequence (in Lp(R)) as ε → 0+.

¤

(9) Prove the following theorem .

Theorem. Let f ∈ Lp(R) for some p ∈ (1,∞). Define

f̃ε(x) =
1
π

∫

|x−t|>ε

f(t)
x− t

dt.

Let f̃ ∈ Lp(R) be the limit function from the previous problem. Then

f̃ε(x) −−−−→
ε→0+

f̃(x), for a.e. x ∈ R.

This is Theorem 4 in Chapter III of [Ne]. Here are the steps of the proof.
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Proof. (a) Prove that

P̃ε ? g = Pε ? g̃, for any g ∈ Lp(R).

(You can start with the result of Problem 6(c) and extend by the
continuity property in Problem 7).

(b) Prove that for any h ∈ Lp(R),

Pε ? h(x) −−−−→
ε→0+

h(x), for a.e. x ∈ R.

(You can use the result in Problem 1).
(c) With V (x, ε) = P̃ε ? f show that

V (x, ε)− f̃ε(x) −−−−→
ε→0+

0, for a.e. x ∈ R.

(You can use the kernel K in Problem 4).
¤

Definition. The operator H : Lp(R) → Lp(R) defined by Hf = −if̃ is
called the Hilbert transform in Lp(R).

(10) (a) Prove that H2 = I (the identity operator) for all p ∈ (1,∞).
(b) Prove that H∗ = H, where H∗ is the adjoint of H in Lq(R), q = p

p−1 .

(11) Let f = χ[a,b], the characteristic function of the closed interval [a, b]. Show
that f̃(x) = 1

π log |x−a
x−b |, hence conclude that the above results do not hold

in the cases p = 1,∞.
(12) Returning to the case p = 2, prove that the function F (z) in Problem 7 is

given by

F (z) = (2π)−
1
2

∫ 0

−∞
e−iξzg(ξ)dξ, Im(z) > 0,

where g(ξ) = 2f̂(−ξ). Prove also the converse:

Paley-Wiener Theorem. A necessary and sufficient condition for a func-
tion F (z), z = x + iy, y > 0, to be analytic in the upper half-plane and
satisfy the condition

sup
y>0

∫

R
|F (x + iy)|2dx < ∞,

is that there exists a function g ∈ L2(−∞, 0) such that

F (z) = (2π)−
1
2

∫ 0

−∞
e−iξzg(ξ)dξ, Im(z) ≥ 0.

(See Th. 19.2 in [Ru]).
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