BASIC CONCEPTS IN ANALYSIS

EXERCISES II (HILBERT TRANSFORM )

MATANIA BEN-ARTZI

1. BOOKS
[Ru] W. Rudin, Real and Complex Analysis, McGraw-Hill Co. 1966.

[Ne] U. Neri, Singular Integrals, Springer-Verlag 1971.
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NOTATION
|z The Euclidean norm in R™.
D; = la% D = (Dy,...,Dy,).
D* = D} ... Do for every multi-index «a = (o, ..., o).

FFE) = f(&) = @2m)% [ f(x)e ¢ dx The Fourier transform of f.
Rﬂ,
S = S(R") The Schwartz space of smooth rapidly decaying functions.

S = S'(R™) The space of tempered distributions, i.e., continuous linear
functionals on S.

Ty e s For a function f of polynomial growth

Ti(p) = - f(@)p(z)dz, p€eSs.

Jf(z) = f(a) = f(~x).
D(R™) The space of smooth compactly supported functions.

D' (R™) The space of distributions, i.e., continuous linear functionals on
D(R™).
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(1) Prove the following theorem that deals with bounded kernels decaying at
infinity.

Theorem. Suppose that K(z) € L>(R") and that (1 + |z|"")|K(z)] < C
for some constant C' > 0. Suppose also that f]Rn K(z)dz = 1 and denote
K (x) = "K(%2). Then, for any f € LP(R"), 1<p<oo,

f*K.(x) :O—jf(x), for a.e. xeR".

This is Theorem 6, Chapter I of [Ne]. Here are the steps in the proof.

Proof. (a) Note that [, K.(z)dz =1 and |K.(z)| < Enﬂfﬁ
(b) Estimate (with f. = fx K.,)

(@) — 1) S/Rnlf(z—y)—f(x)llKe(y)ldy—/l< +/|> L+ b,

(c) Note that if z is a Lebesgue point of f,

L<S [ -y f@dy —o.

n +
€7 Jlyl<e £—0

(d) Estimate

I < Ce /| IS~ @y = /

e<|y|<w

+C€/ = Ce[J1+ Jo],
ly|>w

for some fixed w > 0.
(e) Show that

eJs —— 0.
e—0*t

(Use the fact that f € LP.)
(f) Denote F(u) = f\y\<u |f(z —y) — f(z)|dy and note that

w w

eJy = s/u_(”“)dF(u) =e{ [F(u)}w +(n+ 1)/u_("+2)F(u)du}.

untlle
£ £

(g) Note that if z is a Lebesgue point then, for any ¢ > 0, we can find
w > 0 such that F(u) < du™ for u < w. Choosing such w above, show
that

F(w)

wn—i—l

F(w)

wn-‘rl

+ (n+ 1)55/u*2du <e

€

eJi <e + (n+1)0.

(h) Conclude that

limsup Iy < (n+1)d, forany §>0.
e—07t

O
In the following problems n = 1. Recall that for every distribution v € S’,
du — ou

%(5) =iga(g), txu(f) = _%u(g)'
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0, 20

1, x>0.

Show that Tj; = 0z=o0.

Often this is simplified to H'(z) = 0.
Conclude that

(2) Let H(z) =

i€H(E) = (2m) 2 (=T

Does it follow that you can conclude f[(f) = —i(27r)_%£_1?

(3) (a) Show that

o0

()= H(g)= [$a)dn,  pes
0
and conclude that (for ¢ € S)

e—0*t

H(yp) = =2 lim // £ze*‘mdfda::(271')7% lim

(b) Show similarly that
- 1. Sﬁ(f)
JH = (2 2 ] ———d¢.
(p) = (2m)7% lim T
(¢) Conclude that
— ~ — 1 2e
T =(H+JH =(2m) 2 li —_—
1) = (H+ JH)(¢) = (2m)7% T | =59
(d) (Poisson kernel) Show that (for ¢ € 5),
1 . €
ﬁw(ﬁ)dé, TE

T e—07t (f

Definition. The kernel P(§) = = £2+1
For every € > 0 we set Pe(€) = E_IP( )=

ﬂ- §2+62

(e) Extend this result to any bounded continuous function g(§).

(£)de.

R.

v(§) i

e—0t Jp i€ +¢€

is called the Poisson kernel.

Give a

condition on g that will ensure that the limit is attained uniformly in

T €R.

(4) (a) For any ¢ € S, show that the following limit exists

®(§) (&)
PV/R g “ _WLO*/Rv—n,n) g

(b) Show that

e—0t Jr

(Hint: For the last equality you need to show that

§ B #(§)
/R (e /R B

iTlPV
R

ol6),

e



MATANIA BEN-ARTZI

Use Problem 1 with the kernel

K= [ <L
Note that you have to modify Problem 1 since here [, K(t)dt = 0.)
(¢) Show that

H(p) = (%)*érlpv/ ‘P(;)dg +(2m) "7 “’(20) .
R
Use this equation to compute i{ff and compare it with the formula in

Problem 2. .
(5) (a) For ¢ € S and 7 € R define ¥ € S by ¢(x) = €™¢)(z). Show that

(27)"2 /R(H — JH)¢(z)dx = i,PV/]R V(&) de.

e E—T

(b) For ¢ € S define the transformation

Hy (1) = i,PV/ Md@ TeR.
m rRE—T
Prove that H is a linear isometry from S into L?(R) (with respect
to the L? norm) and hence can be extended as an isometry to all of
L%(R).
(c) Keep the notation H for the extended isometry and show that H? = I,
the identity operator. Conclude that H is in fact an isomorphism on
L?(R).
Definition. The isomorphism H is called the Hilbert transform.
(6) Consider the kernel P.(t) = %@, € > 0 (which is sometimes called the
”conjugate Poisson kernel”).
(a) Show that if ¢ € S then P. x ¢ € L*(R) and

Pex (&) = —i(H — JH)(€)e *1¥1p(¢) = —isgn(€)e=Flp(e), ¢ eR.

Conclude that P. « g € L2(R) for any g € L2(R).
(b) Prove that

P. * g o iHg, forany g€ L*(R).
e—
(¢) Prove that
P.xg=iP.xHg, forany g€ L*(R).

(Suggestion: Look at Fourier transforms).

For the following problems, you can consult Chapter III of [Ne].
(7) Let f € LP(R) for some p € (1, 00).
(a) Show that

F(z) = i &dt
m gt —2
is an analytic function of z = = + 4y in the upper (resp. lower) half-
plane y > 0 (resp. y < 0).
(b) Prove the following theorem of M. Riesz.
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Theorem. Write F(z) = U(z,y) +iV(x,y). Then there exists a con-
stant A, > 0, depending only on p, such that for everyy > 0,

() [Wepds < [ If@pds,

<m4wmmwsgéumwx

This is Theorem 2 in Chapter IIT of [Ne]. Note that for the case p = 2
it follows from Problem 6 (with Ay = 1). Here are the steps in the
proof.

Proof. (i) The estimate (*) follows from the fact that
U(Iay) = f*Py(gj)a

where P, is the Poisson kernel.
(ii) Note that V(z,y) = f * P,(z) where as above Pg(t) = %ﬁ
Hence conclude that ||V (-, 4)| L~ ®) < [[f|l @)l PyllLer) Where
q = 325 In particular [V (-, y) — V;(-,y)|l=®) —— 0, where
J—00

Vi(z,y) = f; *ﬁy(a:) and f; = x[—j,;f is the truncation of f.
(iii) Use Fatou’s lemma to conclude that it is sufficient to prove (**)
for a compactly supported f. Furthermore, by splitting into posi-
tive and negative parts you can assume f > 0 so that U(z,y) > 0
(except for the trivial case f = 0).
(iv) Take 1 < p < 3. Let ( = a+ 40 € C such that Re({) = a > 0.
Show that there exist constants ¢, co > 0 such that

I8P < c1aP — caRe(CP).
(It suffices to prove
|sin @7 < ¢1(cos )P — ca cos(ph), 0<|0 < g)

(v) Conclude that

/R|V($7y)\pdx§cl/R\U(a?,y)de—CQ/RRe(F(:E—i—iy)p)dm.

(vi) Show that

/(F(x +iy)P)dx =0
R

using the following arguments: F'(z)P is analytic in the upper
half-plane (U > 0) and |z||F'(#)] is bounded. Then use Cauchy’s
theorem.

(vii) This takes care (in particular) of the proof if 1 <p < 2.If p > 2

use the “duality method”: Let ¢ = ;E5 € (1,2) and write:

(Awmmwﬁ: m>Awamm

”gHL‘I(R):l
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where you can assume that g is compactly supported. Now

Je V@ y)g(z)dae = [y g(x) [ f(#)Py(x — t)dtdz

== Ja ft) Jp 9(@) Py(t — x)dadt = — e W(t,y)f(t)dt,
where by the preceding part

||W(7y)||L‘1(R) < Aq”g”Lq(R)

(8) Prove the following theorem of M. Riesz.
Theorem. Let f € LP(R) for some p € (1,00). Define

fs(z) = l‘/ 1) dt.

T Jje—t|>e T — 1t
Then }
(*) I fellorry < Apll flloe ), e>0.
() There exists a function f € LP(R)
such that || f- — f| Lr@) —— 0.
e—0t

~ This is Theorem 3 in Chapter III of [Ne|. In the case p = 2 we have
f = iHf. Here are the steps of the proof.
Proof. (a) Let V(x,¢) be as in the previous problem and note that
V(z,e) - fo = [+ K.
where K. is the integrable kernel introduced in Problem 4. Hence
IV (2,€) = fellom) < ClIfllLo)

so that (*) follows from (**) in the previous problem.
(b) In view of (*) it suffices to prove (**) when f € D(R). Write

o1 fO - @),
fE( ) /6<at—t|<3a

T r—t

where supp(f) C (—a,a) and |z| < 2a. Combined with the behavior
at infinity conclude that |f.(z)| < C(1 + |z|)~" for 0 < & < go. Use
the Lebesgue Dominated Convergence theorem to conclude that { fg}
is a Cauchy sequence (in LP(R)) as ¢ — 0*.

O

(9) Prove the following theorem .
Theorem. Let f € LP(R) for some p € (1,00). Define

fo-1 [ MO

T Jiz—t|>e £ — t
Let f € LP(R) be the limit function from the previous problem. Then

fs(x) o f(x), for a.e. x€R.

This is Theorem 4 in Chapter III of [Ne|. Here are the steps of the proof.
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Proof. (a) Prove that
P.xg=P.%§, forany g€ LP(R).

(You can start with the result of Problem 6(c) and extend by the
continuity property in Problem 7).
(b) Prove that for any h € LP(R),

P, x h(x) o h(z), fora.e. zeR.

(You can use the result in Problem 1).
(¢) With V(z,e) = P. x f show that

V(z,e) — f-(z) o 0, forae xz€eR.
E—

(You can use the kernel K in Problem 4).
O

Definition. The operator H : L?(R) — LP(R) defined by Hf = —if is
called the Hilbert transform in LP(R).

(a) Prove that H? = I (the identity operator) for all p € (1, 00).

(b) Prove that H* = H, where H" is the adjoint of H in LY(R), ¢ = ;£5.
Let f = X[a,p), the characteristic function of the closed interval [a, b]. Show
that f(z) = Llog|Z=4|, hence conclude that the above results do not hold
in the cases p =1, c0.

Returning to the case p = 2, prove that the function F(z) in Problem 7 is
given by

0

F(z) = (2n) "} / e g(e)de,  Im(=) > 0,

where (&) = 2f(—¢). Prove also the converse:

Paley-Wiener Theorem. A necessary and sufficient condition for a func-
tion F(z), z=ux+1iy, y >0, to be analytic in the upper half-plane and
satisfy the condition

sup/ |F(x + iy)|*dx < oo,
y>0JR

is that there exists a function g € L*(—00,0) such that
0

Fe) = @nt [ e geds, ) 2o

—00

(See Th. 19.2 in [Ru)).
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