PLANAR NAVIER-STOKES EQUATIONS
VORTICITY APPROACH

MATANTA BEN-ARTZI

1. INTRODUCTION

In this survey we review the existence, uniqueness and regularity
theory of solutions to the Navier—stokes equations when they are for-
mulated in “vorticity form”. We also discuss the large-time asymptotic
behavior of solutions for sufficiently small initial data. In fact, the
three-dimensional case has hardly been studied (we refer to the article
by P. Constantin in this book), and we shall therefore concentrate on
the two-dimensional case.

We recall the basic equations |26], [11]. Throughout the paper, we
use bold-face notation for vectors and vector—functions (in R? or R?).
Their components are labeled as w = (w!,...,w") (n = 2,3) and
w2 =>"" (w")? The scalar product is denoted by a-b ="  a’-b".
If @ € Z7 is a multi-index, we let V& = [["_, 0% and |a| = >, o'

Denoting the velocity by u(x, t), the pressure by p(x, ¢) and the (con-
stant) coefficient of viscosity by v (v > 0), the Navier Stokes equations

in a domain €2 C R” are,
Ju+ (u-V)u=—-Vp+ vAu, 0, = %7

(1.1) V-u=0.
The equations are supplemented by an initial condition
(1.2) u(x, 0) = uy(x),

and, if Q # R", by boundary conditions (such as u = 0, the “no slip”
condition) on the boundary 09, for all ¢ > 0. If Q@ = R", growth (or,
rather, decay) condition must be imposed on u at infinity.

In the case that uy € L*(Q) (or ug € H'(Q)) the well posedness of
the problem with suitably defined weak solutions (strong for H'(Q))
is well-known since the pioneering work of Leray [27] (see also [29] for
the case of the full plane) . The strong well-posedness is only local
in time if n = 3. We refer to [12], [25], |36] for full accounts of this
theory. In what concerns well posedness of the system (1.1) beyond
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the L>~framework, we refer to [24] and references therein, as well as
earlier works by Kato and Ponce using commutator estimates in various
Sobolev spaces [19], [21], [22], [23], [34].

Our interest here is to study well posedness of the flow, in “rough”
spaces, by using the vorticity formulation. We recall this formulation in
the general three-dimensional case. Taking the curl of the first equation
in (1.1), and denoting by w = V X u the vorticity, we get

(1.3) Ow~+ (u-Viw — (w- V)u =rvAw.

The connection between u and w = V X u is given by the “vector
potential” A,

(1.4) u=VxA AA=-w.

Under mild growth assumptions, one can take

(1.5) A=-Gxuw,

where G is the fundamental solution of A. Note that the fact that
V-w =0 forall t > 0 (a“structural assumption” that must be verified
for any solution of (1.3)) implies that V - A = 0, hence, indeed, from
(1.4),

(1.6) Vxu=-AA=w.

Remark that when u is given by (1.4), then automatically V -u =
0, so that (1.3) (1.4) is equivalent to (1.1), at least in the case of
sufficiently regular solutions. The system is supplemented by the initial
condition

(1.7) w(x,0) = wy(x), x€R.

From the point of view of hydrodynamical phenomena, an interest-
ing case is that of the evolution of vorticity (and its associated velocity
field) when it is initially given by isolated vortices, vortex filaments
or sheets . Since, in the "zero viscosity limit" (i.e., v = 0, leading to
the Euler equations) the circulation is preserved (Kelvin’s theorem),
the use of vorticity in numerical methods has become very popular. In
particular, in "vortex methods" ( [13]), even smooth initial data are re-
placed by a distribution of singular "vortical objects". Mathematically
speaking, we need to study the system (1.3) (1.4), (1.7), when wy(x) is
a measure. This will be the main focus of this article. Indeed, since very
little is known in the three dimensional case, we shall deal here with
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the two—dimensional situation. We refer to the article by P. Constantin
in this volume, concerning approximate solutions to the vorticity equa-
tion in the three-dimensional case. Also for simplicity, we have avoided
adding a source term (external force) in the case of Eq. (1.1) or (1.3).
In fact, for issues considered here such as existence, uniqueness and
regularity, the results can be extended to the non homogeneous case
in a rather standard way. When  # R" the system (1.3) (1.4) must
be supplemented with boundary conditions on w(x,t), x € 09, t > 0.
The most common physically plausible boundary conditions are stated
in terms of u (such as the “non-slip” condition). Casting these con-
ditions in terms of w is quite involved, and in fact, has hardly been
treated in theoretical studies. On the other hand, in numerical works,
the methods used for the implementation of vorticity boundary con-
ditions (or, in the hydrodynamical language, “generation of vorticity”)
are quite diverse. Some of them could perhaps prove instrumental in
the rigorous treatment of the problem. However, in this survey we shall
not touch upon this topic, and refer the reader to the book [13]| and
to [2] for more details.

In order to avoid the boundary problem, we shall concentrate in this
survey on the case of the full plane, Q = R? .

The velocity u(x,t) is obtained from (1.6). In fact, in the two-
dimensional case we can easily obtain a convolution integral connecting
u to w as follows.

The velocity field is now two dimensional u(x,t) = (u'(z', 2% t),
u?(x', 22, t)) and the vorticity is given by w(x,?) = w(x, 1)k,
(1.8) w(x,t) = Opu? — Opou’.

Furthermore, the term (w - V)u vanishes identically, so that Eq. (1.3)
reduces to a (nonlinear) convection—diffusion equation for the scalar
vorticity w,

(1.9) Ow ~+ (u- Vw = vAw, w(x,0) = wy(x).

Carrying out the operations in (1.4)-(1.5) we obtain

(1.10) u(x,t) = (K*w)(x,t) = g K(x —y)w(y,t)dy,

where the “Biot—Savart” kernel K is given by

1
(1.11) K(x) = —|x| ?(—22,2").

27
Note that V-K = 0, implying (by (1.7)) the incompressibility condition
V.-u=0.
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In what follows we shall study the well-posedness of (1.9) in various
functional spaces X. This means (at the least), that given the initial
vorticity wg the solution evolves along a continuous trajectory in X.
The paper is organized as follows. In Section 2 we recall the derivation
of solutions for smooth initial data. As is appropriate for parabolic
equations, the "maximum principle" plays a fundamental role. In Sec-
tion 3 we derive space-time estimates for smooth solutions. They are
the main tools used in the extension of the solution operator to initial
vorticities in L'(R?), as is done in Section 4. In Section 5 we discuss
the further extension to measure-valued initial data. We shall see that
uniqueness is still an open problem (for measures with large atomic
part). In Section 6 we discuss the asymptotic behavior of the vortic-
ity for large time. We conclude in Section 7 with remarks concerning
various related open problems.

Notation

The norm in LP(R"), 1 < p < oo, is denoted by

o= [ [ toorax] "

with the usual (ess—sup) modification for p = 4oc.
The space W*P(R") (s positive integer) is the LP Sobolev space,

normed by
[ llwse =Y D IV,

k=0 |Qt|=k

If X is a Banach space, normed by || - ||x, and I C R, is a finite or
infinite interval, we define the following spaces of X—valued functions
f:1I—-X.

Continuous functions (not necessarily bounded), topolo-
C(I,X)  gized by uniform convergence over compact subintervals
of I.

Strongly  measurable  functions, normed by
LML, X) (f;IIf@®)|5dt)?, 1 < p < oo, with the usual
modification for p = occ.

2 (I, X) Strongly measurable functions such that ¢f € LP(I, X)
loc ™ for all ¢ € C§°(1).

If Xy, X, are Banach spaces, then X = X; N X, is normed by
-1l =1l + - e



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 5

2. THE CASE OF SMOOTH INITIAL DATA

Our first theorem is a theorem of McGrath [31]|. It imposes rather
strong regularity assumptions on wy(x). Set, for 0 < A < 1,

CMR?) = {f € C(R?)N L>*(R?), f is uniformly (\-) Hélder continuous,
f(x) — f(y)] < Mylx -y x,y e R}

CEAR?) = {f € CF(R*), VEf € CH(R?), o] < K}

Theorem 2.1 (McGrath). Assume that for some 0 < A < 1, wy(x) €
L'(R?) N C**R?). Then there exists a solution to (1.9) (1.10) such
that

(a) The solution is classical; all derivatives appearing in (1.9) are
continuous in R? x (0, 00).

(b) w(x,t), u(x,t) are continuous and uniformly bounded in R?® x
[0, 00).

(¢c) w(x,-) € L>=([0,00), L'(R?)).

(d) For every T > 0,

sup  |u(x,t)] =0 as R — oc.
0<I<T,|x|> R

Under conditions (a) (d) the solution is unique.

Proof (outline). Fix T > 0 and let

Qr = R? x [0, 7],
(2.1)

Xy = C(QT) N LOO(QT) N LOO([OJT]J L](RQ))J
where |lw(x,1)||x; = [|wllzo(@r) + SUPo<i<r [|w (- 1)][1. Let By € X7 be
the ball

By =A{w € Xr, |wl[x, < |lwollt + [[wolloo}-

For £ € By, one defines the map A = v by means of (1.10), i.e.,
v=K=x¢ 0<t<T. In particular it is easily seen that v € C(Qr) N

L>*(Qr) and by standard facts concerning linear parabolic equations
the equation

(2.2) 0+ (v-V)§ =vAfh, 0(x,0) = w(x),

has a unique classical solution in ()7, and in particular # € X;. We
let A: By — Xy be the map § = A¢ (where v = A€ in (2.2)).
Using the maximum principle and its dual statement in L' (note that

V- A€ = 0) it follows that ABy C By. Now the assumptions on
elements of X7 imply that {v = A&, £ € By} is uniformly bounded



6 MATANTIA BEN-ARTZI

and equicontinuous in Q7. The regularity hypothesis on wy (and its
decay at infinity) imply therefore that ABy, the set of all solutions of
(2.2) with v € A;By, is uniformly bounded and equicontinuous (in
fact, ABy C W"*®(Q7)). Furthermore, the elements of AB, vanish
uniformly as |z| — oo, 0 < ¢ < T. Thus AB, is compactly imbedded
in By and , since A is continuous, the Schauder fixed point theorem
yields w € By such that w = Aw. This w is a solution to (1.9) with
u = A w. The uniqueness is shown by a similar argument. 0

Remark 2.2. The mazimum principle can be applied to Eq. (2.2) and
its dual (since V -v = 0). We can therefore conclude (for the solution
of (1.9)) that (1) < llwolls @nd [lo(-, )]l < [ollr £ > 0 and by
interpolation,

(2.3) lw (s D)llp < [lwollp, 1T <p < o0,

Observe that the interpolation argument used above is based on
the linear theory. Indeed, Once the solution to (1.9) is obtained, the
velocity field u(x,?) is "frozen" and Eq. (1.9) is treated as a linear
convection-diffusion equation. The L? estimate (2.3) is then obtained
for all solutions of equation (1.9), including the original vorticity w. A
similar reasoning is applied to justify the duality argument, and will be
used also in the sequel (see the proofs of Eq. (3.4) and Theorem 6.1).

If we limit further wy € C$°(R?) the solution w € C®(R? x R, ) can
be obtained as a limit of a sequence of solutions to linear convection
diffusion equations. We refer to [1]| for details. In fact, certain basic
estimates are easily derived in this case and then extended to more
general spaces. We designate by

(2.4) S CP(R*) — C*(R* x Ry)

the solution operator to (1.9) (1.10), w = Swy. The corresponding
velocity field is given by (1.10), and we denote it by

U: CP(R?) — Co(R? x R,),

(2.5) u(-, 1) = Uwy(t) = K * (Swp)(t)

(when there is no risk of confusion we shall write w(t) instead of w(-, t)).

3. SOME ESTIMATES FOR SMOOTH SOLUTIONS

It is convenient to establish some of the basic estimates for the so-
lution operators S, U, assuming that wy € C§°(R?).



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 7

Multiplying (1.9) by w and integrating over R? we obtain
(3.1) Ollw(-, 1)1 = —2v|[Vw(- )3,

since / w(ua-V)wdx = 0 by V-u = 0. Recall that by the Nash

R2
inequality |14], 8] , if ¢ is a smooth decaying function in R?, then, for
some 71 > 0,

15 <0 Mol Vel
Using this inequality in (3.1) and noting (2.3) with p =1 we get,

(3.2) Allw(-, )15 < —2umllwolly *flw (-, 1)]5,
hence
(3.3) lw(-, )]z < (2unt)?[|wol|1.

By duality (using again V - u = 0),
oo (-5 )lloo < (20mt) "2 |eo 2,
so that
(3.4) lw(,B)lloo < (vnt) ™ flwol 1.
To estimate ||u(-, )]s, note that |K(y)| < (27) !y| ™, so that,

u(x,f)] < / + / K(y)w(x — y, 1)y
ly|<(HL)1/2 ly|>(HL)1/2

(3.5) < () o) o + (2002 mt) 2 - 1)

2

< (D)2 (nt)"lwoll1-

Note that in view of the Hardy-Littlewood-Sobolev inequality |28, Chap-
ter 4] or the fact that VK is a Calderon Zygmund kernel , we also have,

1 1 1
. : < : 1 9 ____°_
(3.6)  fu( D)y < Cllwt, D, 1<p<2 piaiviat
with C = C,.
We shall now refine these estimates by looking more closely at Eq.
(1.9). Using the heat kernel

—1 |x/?
G,(x,t) = (4nvt) " exp ( - —),
the solution w(x,t) can be written as,

W(Xa t) = ,/‘RZ GU(X -y t)WO(Y)dy

(37) o fﬂt fRz VyGU(X —y, +— S) . u(y, S)(A)(y, S)dde-
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Our first aim is to derive uniform estimates for solutions having initial
data wy € K C C§°(R?), where K is precompact in the L'(R?) topol-
ogy. We use the following notational convention. The constant C' > 0
stands for a generic positive constant and d(¢) stands for a monotone
nondecreasing, uniformly bounded, generic function defined for ¢ > 0,
such that lim;_,00(¢) = 0. Both C and ¢(¢) may depend on various
parameters (p, v, ...) but not on the solution functions. However, they
may depend on certain subsets of initial data. We sometimes indicate
specific dependencies by adding parameters, e.g., C'(p) or 6(¢; K).

Since t'~'/?G, (-, t)* is a bounded operator from L'(R?) to LP(R?),
1 <p<oo,and ' VPG, (-, ) xwy — 0ast — 0, in LP(R?), 1 < p < oo,
for every smooth wy, we conclude that if K C C§°(R?) is precompact
in L' (R?) then, for 1 < p < oo,
(3.8) tVP) G (- 1) * woll, < 6(t K), wo € K
(0(t; K) depends on p, v).

Next we note that

1

(3.9) IVG, (. )|, =Ct 2, 1<r<o.
3.

Inserting (3.6), (3.8)—(3.9) in (3.7) and using the Young and Hoélder
inequalities we get,

(3.10)
t
el <stere o [0t
J0

W s)ul- s) | ds

t
<K+ O / (t—s) 37 |lw(- 5)|2ds
J0
where %4—% = %4—1, %—i—% =21 < p < 2 Setting My(t) =

SUPg<, < 7'17%||w(-, t)||, for wy € K and noting that since wy is smooth
M, (t) is continuous, M,(0) = 0, we infer from (3.10),

M,(t) < 8(t; K) + C M, (t)?,

hence M,(t) < 6(#; K) (1 < p < 2) and, interpolating with (3.4) we
have

(3.11) lw( B, < 5K, wye K, 1<p< oo.
(The case p = oc is obtained by duality as in (3.4)).

Finally we note that the estimate (3.5) can be strengthened to yield
(3.12) (-, )]s < 0(t: K)t 2, wy € K,

(K C C§°(R?), precompact in the L'(R?) topology). Indeed, this fol-
lows by replacing in (3.5) the term (42£)'/? by (27”5”(?:‘K))]/2 and using
(3.11).
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Remark 3.1. Note the similarity of the estimates (3.8) for the heat
(linear) equation and (3.11) for the vorticity (nonlinear) equation. In
what concerns the L' L™ decay estimate, we have (3.4), where n > 0
is the “best constant” in the Nash inequality. As pointed out in [8],
n ~ 3.67m whereas the corresponding estimate for the heat kernel is
|G, (-, ) ||oe = (4mvt)~'. The estimate (3.4) was derived in 1], [20]
and was improved by Carlen and Loss [9], replacing n by 4w. Thus, quite
surprisingly, in spite of the nonlinearity, the L™ estimate for w(-,1t)
(in terms of  ||wol|1) is identical to that of the linear heat solution.
Observe,however, that radial solutions of (1.9) are also solutions of the
heat equation, since the nonlinear term vanishes identically. It follows
also |9, Th.2|, that n in (3.5) can be replaced by 4.

4. EXTENSION OF THE SOLUTION OPERATOR

We shall now study the extension of the solution operator S, U (see
(2.4) (2.5)) to initial data in L'(R?). Our goal is to show that the
system (1.9)-(1.10) is well-posed in L' (R?).

As in the case of the heat equation, the solution “regularizes” for
positive time. Thus, estimates over time intervals [e,00), € > 0, are
easy to obtain, using data at ¢ = €. It is convenient to introduce an
“intermediate” space

Y = L'(R*) N Cy(R?)

(where Cy(R?) consists of continuous functions tending to zero at in-
finity, normed by || - ||»). The space Y has actually been used in the
study of vorticity by Marchioro and Pulvirenti [30] in their treatment
of “diffusive vorticies” (approximation by finite-dimensional diffusion
processes). In addition to the interest in Y as a “persistence” space for
vorticity, some basic estimates in this space serve in the study of “zero
viscosity” limit, being independent of v > 0 [1].

It is easy to see that the convolution operator Kx : Y — Cg(R?) is
bounded. We have the following lemma.

Lemma 4.1. (a) (Existence). The operators S, U can be extended
continuously as

S . Y — C(R+,Y)

(4.1) U: Y%C(R%CO(RQ))'
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Indeed, the maps VS and VU can be extended continuously as
VS:Y = CRy,Y)N L], (R, Y)
VU:Y = C(Ry, Co(R?)) N LF (R, Cy(R?))

for any 1 < p < 2. Furthermore, the functions w = Swy, u = Uwy =
K x Swy give a weak solution to (1.9)-(1.10).

(b) (Uniqueness). Let 0(x,t), v(x,t) = K x 6 be a weak solution in
R X Ry, of
(4.3) 0+ (v- V)i =vAH
where, for some 1 < p < 2,

0(,t) € C(R,Y)NCRy, Whnwhe)n [P
0(x,0) = wy(x) € Y.

Then 6(-,t) = Sw(t) for all t > 0.

(¢) (Regularity). For every wy € Y the functions w(x,t) = Swy(t),
u(x,t) = Uwy(t) are in C®(R* x Ry) and Eq. (1.9) is satisfied in the
classical sense. Furthermore, for every integer k and double indezr o,
the maps

(4.2)

Ry, W W),

VS Y = C(R,,Y),
FVAU 1Y — C(R,, Cy(R2))

are continuous.

Proof (outline ,see |1]| for details). Differentiating (3.7) we obtain

(4.4)
Vw(x,t) = [z VxGy(x =y, two(y)dy
+ fot fR? ViG,(x —y,t—s)-(u(y,s) - V)w(y, s)dyds.

In view of (2.3) and the boundedness of Kx we have
(4.5) A= sup flu( )]l < Cllwolly, € =C(T),
0<I<T

so that, using (3.9) in (4.4), and denoting N (t) = supy,<; [[Vw(:, 7)o,
t

46) N < 2| woln +A/ (1 — 5)" V2N (s)ds].
0

A similar inequality is obtained for |Vw(-,%)||;. We deduce
(4.7) IV t)lly <Ct'2, C=CW, T ||lwlly).

If 6(x,t) is another solution to (1.9), 6(x,0) = by(z) € CF(R?), a
similar derivation yields

(4.8) [w(-,8) = 0(, B)lly < Cllwo — bolly,
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[Vw(, ) = VO(, 8)lly < Ot [lwo — bolly,

4.9
(4.9) C=C,T,|wolly, 16olly)-

The conclusion of the proof of (a) is now standard. For wy € Y we
take a sequence {w[(]])}“j?il C C°(R?) converging to wy in Y, and using
(4.8)—(4.9) we obtain w(t) = lim;_,s Swi (£), u(t) = lim,_. Uw{ (1).

To prove the uniqueness assertion, we note that v = K6 € Cy(R?),
so that (3.7) holds, with w, wg, u replaced by 6, 6y, v. We can then
derive an estimate analogous to (4.8).

Finally the regularity claim follows from standard arguments con-
cerning parabolic equations [35]. O

We may now proceed to the main result of this section.

Theorem 4.2. (a) (Ezistence). The operators S, U can be extended
continuously as

S LYR?) - C(R,, LY(R?)) N C(R,, Whl n Whee),

(4.10) U: L'(R?) - C(R,, Co(R?)).

For every wy € L'(R?) and t > 0 we have
u =K * (Swy) (%),

and w, u give a weak solution to (1.9). Furthermore, the estimates
(5.4) (3.5) are valid.

(b) (Uniqueness). Let 8(x,t), v(x,t) = K % 6 be a weak solution to
(4.3) in R x R, . Assume that

0(-,t) € C(Ry, L'(R?*)) NC(Ry, L%(R?)),
f(x,0) = wo(x) € L'(R).

Then 0(-,t) = Swy(t) for all 0 <t < oco.

(¢) (Regularity). For every wy € L'(R?) the functions w(x,t) =
Swo(t), u(x,t) = Uwy(t) are in C°(R* xRy ) and Eq. (1.9) is satisfied
in the classical sense. Furthermore, for every integer k and double—
ndex o, the maps

OFVAS . LI(R?) — C(R,, L'(R?) N L®(R?)),
VAU : L'(R?) — C(R,, Co(R?))

(4.11)

are continuous.

Proof. Let K C C°(R*)N L' (R?) be precompact (in the L' topology).
We first show that the family of maps

(4.12) t = Swolt), t>0,w€ K
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is equicontinuous. Indeed, it follows from (3.7), using (3.9) (with r = 1)
and (2.3),(3.12) that

(4.13) 1Swo(t) — wolli < |Gy * wo — wollr + 8(t; K),

which converges to 0 (as ¢ — 0) uniformly in wy € K. Next it follows
from (3.11) and Lemma 4.1(c) that, for any € > 0, @ = (o', o?),

(4.14) sup sup {[|[V¥Swy(t)[]y} < oo,

e<t<oc wpeEK
which implies, by (3.5) and (1.9),
(4.15) sup sup {||Uwg ()]0 + || Swo(t) |1} < oc.

e<t<oo wpEK

The estimates (4.13)-(4.15) imply the equicontinuity of (4.12) in L' (R?).
Now let {wén)(x) ©  C C°(R?) converge to wy € L'(R?) in L'

Taking K = {w(()n)(x) ° | the foregoing argument yields the equicon-

tinuity (in L') of the trajectories w™(t) = Sw(()n)(t). In what fol-
lows we prove the uniform convergence of these trajectories. Writing

u™(t) = Uw(™(t) we have,
W) = (1) = G 1) * (w” — wp™)

+ f(: VG, (-t —s)*um(s)(w™(s) —w™(s))ds
(4.16) t
+ / VG, (-t —s) x (0™ (s) —u™ (s))w™(s)ds

Let p € (1,2). Clearly,

(4.17) 11 )]l < O (|l — wi™ |1
In view of (3.12) we obtain in I, for 0 < s <1,
(4.18)

[ ()@, 8) = )y < () ool @ 8) =™ )]

<At K) - s 2 (W™ s) — w™ (- 8)) s

and using (3.6), (3.11), we have in I3,
(4.19)
[ (s) = ut (s)w (s)[l, < Cllat(s) =™ (s)]|q[lw™(s)]|2

<3t K) - 5 V2w — W (s)],.
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Inserting (4.17)-(4.19) in (4.16) we have

™ @) — ™l < O3 — ™
(4.20)
5(5: K) [y (¢ — )27 2w (5) — ) (s) ] ds

Denoting N(t) = supy<, 7175||w(")(7) — wm™(1)],, (4.20) can be
rewritten as,

N(t) < Cllwf™ — o™l + 8(t; K)N(t)
which implies, for 0 < ¢t < t* = t*(K),
(421)  [w™ () — W™ @), < Cpllwd = wi™ -+, 1<p<2.

Turning back to (4.16) we now obtain,
(4.22)

Jw(t) = wm @l < Ol - wi™ |

+ fy (= 8) 7 [ut () (@ (s) = wi™(s))[hds

+Jyl0 =) @0 ) = (5)) ) ) s
Take p = 5 and use (3.6), (3.11), (4.21), to estimate,
[u(5) @ (s) = Dl < 0 () 5) = 5)
gcfwdmwgwwofwf%a

[((s) = ut ()™ ()1 < [Ja)(s) = um (5) oo™ 5)]

_1 n m _1 m
< Cs o () = o™ () -5~ 3l ™ I
Inserting these inequalities in (4.22) yields, for 0 < ¢ < t*,
(4.23) (1) = ™ (@)1 < Clleg™ = wi™ 1.

We can now conclude the proof of the theorem. In view of (4.14)
(4.15), (4.23) and Lemma 4.1 the sequence w™ () = Swé")(t) converges
in C(R,, L'(R?)) to a function w(t) € C(Ry, L'(R?)). Lemma 4.1 now
implies that the sequence converges also in C(R,,Y") (in fact, with all
derivatives), hence the regularity claim.

To establish the uniqueness claim, we note first that in view of the
equicontinuity (4.12) the estimate (3.11) extends to

(4.24) 1Swo(B)]l, < 6(t; K)t 45, wye K, 1<p< oo,
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when K C L'(R?) is precompact. Assume first that 6, € L®(R?).
Then 0(x,t) satisfies (3.7) (with w, wy, u replaced respectively by 6,
6y, v) and repeating the argument leading up to (3.11) we get,

(4.25) 160G, )|l <O, >0,

(4.26) [v(-, )|l < 8(1)E 2, t>0.
Setting 0(-,t) = SBy(t), we get, as in (4.20), for 1 < p < 2,

16(-2) = 0C. D)l < 5(t)/0 (t =) 27 2)0( 5) = O(, ) lpdls,

which implies that 8(-,t) = 6(-,t), 0 < t < t*, for some t* > 0. One
can then proceed stepwise in time to obtain é(, t) =0(-,t),t > 0. This
proves uniqueness if 6y € L'(R?) N L>°(R?). Dropping the assumption
0y € L°°(R?), we still have by hypothesis, for any s > 0, that 6(-,s) €
L>°(R?). Invoking the foregoing argument (with (-, s) as initial data)
we obtain

(4.27) SO(-,s)(t) =0(,t+s), s>0,t>0.

Also, since 0(-,t) € O(Ry, L'(R?)), the set K = {0(-,5),0 < s < 1} C
L'(R?) is precompact. Hence, combining (4.24) and (4.27)

(4.28) |0C.t+ 8|, <SHK) v, 0<s<1, ,1<p<oo.
Letting s — 0 in (4.28) we have, with ¢t > 0,

(4.29) 10¢. 1), < 5(t K)t ', 1<p< oo,

and, in particular, we obtain (4.25) and (4.26). We can now repeat the
first part of the proof to obtain 6(-,t) = 6(-,t) = SOy(t), t > 0. O

Remark 4.3. The existence of a solution to the vorticity equation
(1.9) (1.10), when wy € L'(R?), was first proved by Giga, Miyakawa
and Osada [16|,using a delicate estimate for Green’s function of a per-
turbed heat equation. The constants appearing in their treatment are
unspecified and depend nonlinearly on ||wo||1, in contrast to the linear
dependence in (3.4)-(3.5). The proof given here follows |1| and the
uniqueness part relies also on |6]. Observe that only the classical esti-
mates for the heat kernel have been used. A similar approach has been
used by Kato |20], using also the classical heat kernel but different func-
tional spaces. Kato derives (3.4), but not (3.5), (3.11) (5.12), which
are essential in the uniqueness proof here. We refer to the implications
of this uniqueness proof to nonlinear parabolic equations in Remark 5.3
below.
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5. MEASURES AS INITIAL DATA

Let M be the Banach space of finite (signed) measures on R?, normed
by total variation || - ||x, so that naturally L'(R?) C M. Following
Kato |20|, we shall now extend the solution operators S, U to M. The
estimates obtained in Theorem 4.2 and the weak density of L' in M
lead to a straightforward result concerning existence and regularity.
However, uniqueness remains partially open.

For simplicity we henceforth assume v = 1 and write G = (G; for the
heat kernel. A measure € M can be decomposed as

(5.1) N=1c+ N0 =N+ Y bid(x —x;),

J=1

where 7, is continuous and 7, is the atomic part of . The decomposi-
tion is “orthogonal”,

(5.2) llae = 1mell e+ 7l = Nl + Y 1551
j=1

In what follows we write b = (b1, by, ...) and
> 1/p

(5.3) ol = (X Ies) . 1< p< o
j=1

We can now state the extension theorem for initial data in M.

Theorem 5.1. Let wy = (wp). + (wo)a € M. Then the system (1.9)
(1.10) has a solution w(-,t) € C(R; W' W) u(-,t) = Kxw(-,t)
such that

(a) w(-,t) = wy ast — 0, in the weak™ topology of M.

(b) For every 1 < p < oo, ||w(-,t)|, is a decreasing function of
te Ry, and

(5.4) sup ' v |w(-, 1), < oc.
0<t<oo

Furthermore, if (wy)e = 0, then
(5.5) 111(% t17%||w(-,t)||p =0, 1<p<o (compare (3.11)).
-

(¢) Let (wo)a = b = (b, bo,-+). For each 5 < p < 2 there are
constants 6,, €, > 0, such that if ||b||, < 6, then

4
(5.6) nmmp%ﬂw@ﬂm<%,53p<z

t—0
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This condition (and (a)) determines uniquely the solution w. In par-
ticular, if (wo)a = 0 then the condition (5.5) (for any single 5 < p < 2)
determines w uniquely.

Remark 5.2. Since for 7 > 0, w(-,7) € L'(R?), Theorem 4.2 can be
applied to t > 7. Thus w(x,t) € C°(R% x R, ) and estimates like (5.4)
follow for t > 7 (see (3.11)) and need to be established only in (0, 7).

Proof. Using a standard mollifier, we construct a sequence {w[(]j)}“j?il C
L' (RQ) ||w0j Il < |Jwo||pm and w(()j) — wp (in the weak* topology of M).
Let w® be the solution given by Theorem 4.2, w\(-,0) = w{’. Using
the estimates (2.3), (3.4) we see that there exists a subsequence, which
we relabel as  {w?}%, such that, for any fixed 7 > 0, WV (-, 7)
converges to a function w(-,7) in Y (in fact, with all derivatives, see
Lemma 4.1). In particular, we have also w@Wul) — wu, u = K *w. It
is easy to verify that (w,u) constitutes a solution to (1.9) (1.10) and
satisfies (2.3) (with p = 1) and (3.4), with |lwg||; replaced by ||wo|| -
The estimate (5.4) follows by interpolation. To prove (a) it is clearly
sufficient to show (compare (4.12)) that the family

(5.7) t—= w0, j=1,2,...,0<t<T,
is equicontinuous in the weak® topology of M. Taking ¢ € C§°(R?),
(5.8) 8, < W (1), >=<wD(-, 1), Ap > + < wPDu (- 1), Vip >
(<, > is the (M, Cy(R?)) pairing). Using the estimate

[0, )P 1) < Cllwol 34t 12

(see the derivation preceding (4.23)) we obtain the equicontinuity of

(5.7) from the uniform integrability of 9, < w\W(-, ), > in [0, T].
Finally, it remains to prove (5.5) and the uniqueness part (¢). We use

the integral equation (3.7). Note first that the heat kernel G satisfies,

for any n € M,

(5.9)

—_(1=1y _
OS::lp t! pHG( )*77”1) < pp||77||M’ Cp = (47r) “ p)p ]/pv 1 <p<oo,
<t<oo

and, with the atomic part b =

(5.10) limsup '~ ||G( ) * 77||p = cpllbll,, 1 <p< oo

t—0

With €, > 0 to be determined, take §, = 7-. The hypothesis |[b][, < J,
D
then implies, by (5.10), that there exists 7" > 0 such that for the
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sequence w(()]),

(5.11) sup 7 [|G( )+ W], < p < 2,
0<t<T 2

where we have used the fact that w(()j) are obtained from wy by mollifi-

cation (which commutes with Gx). Arguing as in (3.10), with §(¢; K)
replaced by a function h(t) < p, we obtain a solution to the integral
equation (3.7) for 0 < t < T and % < p < 2, if ¢, is sufficiently small.
Since w(()'y) is smooth, the solution is necessarily w'/)(-, ), as constructed
above. As in the derivation of (3.11), we have, for some p’ < ¢,

. 4
sup t17%||w(-7)(-,t)||p </, j=12,..., -<p<2,
0<t<T 3
hence also
(5.12) sup t' 5 [|w(-, 1), < g,
0<t<T

where w(-,t) is the solution constructed in the first part of the proof.
Now if 0(-, t) is another solution of Eq. (3.7), satisfying (5.12), we may
proceed as in the uniqueness part in the proof of Theorem 4.2 (the
argument following (4.26)) to obtain

0(-,t) = w(-, ) for t<T,
provided that €, satisfies

1
(5.13) €& / s>t (1—s) 2ds < 1.
J0

We can then prove the identity § = w for all time by proceeding step-
wise.

Finally (5.5) follows readily from (5.12). O

Remark 5.3. The smallness condition (5.6) has been extensively used
i proving uniqueness for solutions of nonlinear parabolic equations
(see "note added in proof"” in |6]), and is commonly referred to as
the "Kato Fujita" condition. In Theorem 4.2 (i.e, for initial data
in L'(R?*)) we have avoided it by assuming that the solution 0 is in
C(Ry, LY(R?)) N C(Ry, L®(R?)), thus obtaining (4.28). The require-
ment O(-,t) € L> for t>0 can be considerably relazed, still avoiding a
"Kato-Fujita" condition. We refer to |4], [7| where similar uniqueness
arquments have been used in the study of nonlinear parabolic equations.

When the atomic part of the initial measure is not small, a suitable
uniqueness condition is still unknown.
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Remark 5.4. We refer the reader to |5| where the results of this sec-
tion are extended to well-posedness for initial data in functional spaces
beyond M(R?). In fact, these functional spaces are defined by suitable
restrictions of the action of the heat kernel on the initial data.

6. ASYMPTOTIC BEHAVIOR FOR LARGE TIME

We assume now that wy € L'(R?). Then, for any ¢ > 0, the solution
w(x,t) to (1.9)-(1.10) satisfies

/Ww(x,t)dx = /]RZ wo(x)dx.

Thus, in general, there is no decay (for large time) in L' norm. On the
other hand, by (3.4), the vorticity decays in all L? norms, p € (0, oc].
As mentioned earlier (see Remark 3.1), the constant 1 in (3.4) (and
the subsequent inequalities) can be replaced by 4, thus equalizing the
L' — LP estimates for vorticity with those of the heat equation. The
proof of this improvement (see |9, Theorem 5]|) is obtained by using a
logarithmic Sobolev inequality instead of the Nash inequality used in
(3.2).

As in the case of uniqueness arguments (see Remark 5.3), the meth-
ods used in the study of the vorticity equation (1.9) can be success-
fully applied in the study of various types of nonlinear parabolic equa-
tions (and vice versa). This is certainly true in what concerns large-
time decay estimates. The study of such estimates for Navier-Stokes
equations is well established ( [10], [15], [33] and references there).
We refer to [3], [9] for L' decay estimates of solutions to "viscous"
Hamilton-Jacobi and conservation equations. In particular, in the two-
dimensional case, the fact that equation (1.9) is scalar renders the
vorticity a convenient object of study.

A solution to the heat equation in R” decays in L' norm if the integral
of the initial value vanishes. It is remarkable that a similar fact holds
for vorticity in the two-dimensional case.

Theorem 6.1. Consider the system (1.9)-(1.10) and assume that wy €
L'(R?) and [, wo(x)dx = 0. Then

(a) iy [o(,B)]s = 0.

(b) Suppose in addition that wy is compactly supported. Then

. _1
(6.1) lim o w0, =0, peloo

Proof. We refer to [9, Theorem 4] for a proof of (a). The proof for (b)
follows |15, Theorem 2.4].
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Replacing (1.10) by

() = [ (Kx =) = Kx)un(y)dy

we get ug € L. From the L? theory of the Navier-Stokes equations it
follows that Vu(x,?) € L*(R?* x R, ), hence so is w(x,t). In view of
(3.1) the function ||w(-,%)||2 is decreasing in t, so

¢

tHlw (- )2 < 2 / (-, )[2ds

t/2
which proves (6.1) with p = 2. To prove the case p = 1 use the integral

equation (3.7). Since the decay is known for the heat equation, we need
only estimate the second term in the RHS of (3.7), in the L' (R?) norm.

Denoting €(s) = s ||w(-, 5)||» we have

(), )l < s 2e(s)||aoll2-

In view of (3.9) (with » = 1) we conclude

t
lw(- 1) = Gl 1) * wol[1 < Cllugll, / (t —5)"2s Ze(s)ds
J0

and the RHS tends to 0 as t — oo by the Lebesgue dominated con-
vergence theorem. By interpolation we get (6.1) for 1 < p < 2. The
conclusion for 2 < p < oo follows by duality, as in the proof of |1, Eq.
(3.47)]. O]

Remark 6.2. The conclusion in part (b) of the theorem can be con-
siderably improved. In fact, under the same assumptions (in fact, only
exponential decay of wy is required) we have

1
sp 4wl Bl < o0
0<t<oo
and combining this with (3.4) we obtain
3
sup t2|jw(+, t)]|e < 0.
<t<oo

These estimates are identical to those obtained for the heat equation.
We refer to |9, Theorem 4| for details and sharp constants.

The asymptotic behavior of solutions to the vorticity equation (1.9)
can be studied in detail in terms of "scaling variables" ( [10], [17], [15]).
They are defined by

€= (1+1)7x, 7 =In(1l+1).
Defining new functions v, 6 by

v(€,7) = (1+1)2ulx,t), O 7)=(1+1)

N =

2w(x,t)
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and setting for simplicity v = 1, Eq. (1.9) is transformed into

8.0 =L0— (v-V)o, 0(€,0) = 6o(&)
(6.2)
LO=N0+L(E-V)O+0

(spatial derivatives are now with respect to €). Clearly, the relation
v(-,7) = K x0(-,7) is still valid. The results of Sec. 4 yield readily
the well-posedness of Eq. (6.2) in L'(R?), as well as decay estimates
in 7. However, the interest in this transformed equation lies in its
well-posedness in a scale of weighted-L? spaces defined as follows.

po = {f Nl = / (L+1€IF(€)de }.

Proposition 6.3. Equation (6.2) is well-posed in L** for any s > 1.
More explicitly, for any 0y € L*® there exists a unique global solution

0(-,7) € O(R,, L**).

Furthermore, for any M > 0 there exists a constant C = C(M, s) such
that

1foll2e <M = [10(; 7)[l2s <C, 7 €[0,00)
and C — 0 as M — 0.

We refer to [15, Section 3| for a proof. Observe that L*»* C L' if s >
1. By Proposition 6.3 it is a "persistence" space for the vorticity, in
analogy with the space Y in Lemma 4.1.

The spectrum o (L) of £ in L**  for any s > 0, is given by (see |15,
Appendix Al)

a(c):{AeC, Re()\)<S;1}U{g, k:0,1,2,...}.

In particular, for a fixed s > 1, the finite set of real nonpositive numbers

(6.3) A(k) = {Aj - % j=0,1,. k}

consists of isolated eigenvalues of £ if & < s — 1 (in the space L**).

Gallay and Wayne [15| construct finite-dimensional invariant mani-
folds for the semiflow of Eq. (6.2) (which can easily be translated to
the solutions of (1.9)), for sufficiently small initial data. It is based on
this spectral structure, and on methods used in the study of dynamical
systems. The construction can be described as follows.

Fix k€ N and s > k+ 2. Let Hi C L?* be the finite-dimensional
subspace spanned by the eigenvectors associated with A(k), and let
Jir = L?* © H,, be its orthogonal complement. For r > (0 we denote by
B, the ball of radius 7 in L** (centered at 0).
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Theorem 6.4. Fiz r > 0 sufficiently small and s,k as above. Let
kokl
ne (5, 5)
(a) There exists a globally Lipschitz C* map g : Hy — T such
that g(0) =0, Dg(0) =0  and such that the manifold

Ty ={w+gw), weH}

15 locally invariant in the following sense.
There exists 0 < ry < r such that the semiflow associated with (6.2),
commencing at any point 0y € T, N B, stays in T, N B, for all 7 > 0.

(b) This invariant manifold "attracts” all trajectories having small
initial data. More explicitly, for every 6y € T, N B, there exists a
manifold Sy,, such that all trajectories beginning at points of Sp, N By,
(with Oy restricted also to B,,) approach the trajectory 6(-,T) starting
at By. We have, if ¢(-,7) is a solution to (6.2), with ¢(-,0) = ¢y €
860 N Bn;

(6.4) limsup7 "In||¢(-, 7) — O(-, 7)|| 120 < —pa-
T—00

(¢) The manifold Sy, is a continuous map of Jp . It intersects

To N B, only at 6y and the family

{Ss,, by € T,N B, }
is a foliation of B,,.
We refer to |15, Section 3| for a proof of the theorem.

Remark 6.5. Observe that the decay rate in Eq. (6.4) corresponds to
a decay rate of t7" for solutions of the vorticity equation (1.9). Thus,
for sufficiently small initial data in weighted-L? spaces, the asymp-
totic behavior of the vorticity is determined, to any order, by "finite-
dimensional dynamics”.

Remark 6.6. In analogy with Theorem 6.1, if [, 05(§)d€ = 0 then
10, 7)|ls = 0 as 7 — 0 (see [15, Theorem 3.2|) and Theorem 6.4 can
be applied to determine its asymptotic behavior. Note that in this case
the velocity field is square-integrable (assuming s > 1).

The Gaussian

G(€) = (4m) " exp(—

is a stationary solution of (6.2) and an eigenfunction of £ (with zero
eigenvalue). In terms of the original vorticity, it corresponds to the
solution of (1.9) obtained by the heat kernel with singularity at ¢ =
—1. Tt is called the "Oseen Vortex". Taking £ = 0 and s = 2 in
Theorem 6.4, it is easily seen that H, is the one-dimensional subspace

%), EER
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spanned by G and coincides with the invariant manifold 7 (i.e., g = 0).
Thus,combining Theorem 6.4 and the conservation of fneez O(&, 7)d€ we
get

Corollary 6.7 (stability of Oseen’s vortex). Fiz 0 < p < % There
exists > 0 such that if (&, T) is a solution to (6.2) with ||6g]|22 <
and 4, 00(€)d€ = a then

(6.5) 10(-, 7) — aG(+) |22 < Ce™7, T>0.

We refer to [15, Section 4] for a detailed analysis of this convergence.

7. CONCLUDING REMARKS AND OPEN PROBLEMS

It is common to say that the case of the Navier-Stokes equations
in two-dimensional is "resolved". Admittedly, the situation here is
much better than that of the 3-D case. Furthermore, the L? theory
of existence and uniqueness is complete. However, as we have seen,
there are important problems, related to "rough" initial data, that
remain yet unresolved. Rather than "purely mathematical", they touch
upon very relevant issues of fluid dynamics and numerical simulations
of singular flows. Even in the (weighted)-L? context, the asymptotic
results discussed in Section 6 show that the two-dimensional case still
carries much interest. Another aspect of this interest is the (relatively)
recent, interplay between the methods used here and those used in the
study of various classes of nonlinear parabolic equations.

In what follows we list a number of yet unresolved problems.

(1) Uniqueness for measure-valued initial data with large
atomic part
As was mentioned in Section 5, the uniqueness of the solution
to (1.9)-(1.10) when wq is a measure with large atomic part is
unknown. It seems that tools developed in this context could
prove useful for other classes of nonlinear parabolic equations.

(2) Uniform estimates with respect to v and Euler’s equa-
tions
It is known that for smooth initial data one can obtain esti-
mates which are uniform in v € (0, 1], where v is the coefficient
of viscosity (see [18], [31]). The solutions converge, as v — 0, to
the unique solution ("zero viscosity limit") to Euler’s equations
with the same initial data. When the initial data is not suffi-
ciently smooth (say, in L' N L”, p > 2) we can still obtain the
convergence of a subsequence to a solution of Euler’s equations.
However, the uniqueness of such a solution is not known. Thus,
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one might try to establish at least the uniqueness of the "zero
viscosity limit".

(3) The case of bounded domains

1]
2]

13]
[4]

5]

[6]

7]
18]
19]

[10]
[11]
[12]

[13]

In this case there is no existence theory for solutions of the
Navier-Stokes equations in vorticity form (with "no-slip" bound-
ary conditions), if the initial vorticity is only known to be in L'.
We refer to [32] for the case of measures as initial data, but with
homogeneous boundary condition on the vorticity. As already
mentioned in the Introduction, this is a case of prime impor-
tance in applications. Indeed, if this problem is ill-posed, then
the numerical procedure of approximating singular vorticities
by smooth ones needs to be justified.
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