
PLANAR NAVIER-STOKES EQUATIONSVORTICITY APPROACHMATANIA BEN-ARTZI1. IntrodutionIn this survey we review the existene, uniqueness and regularitytheory of solutions to the Navier�stokes equations when they are for-mulated in �vortiity form�. We also disuss the large-time asymptotibehavior of solutions for su�iently small initial data. In fat, thethree-dimensional ase has hardly been studied (we refer to the artileby P. Constantin in this book), and we shall therefore onentrate onthe two-dimensional ase.We reall the basi equations [26℄, [11℄. Throughout the paper, weuse bold-fae notation for vetors and vetor�funtions (in R2 or R3).Their omponents are labeled as w = (w1; : : : ; wn) (n = 2; 3) andjwj2 =Pni=1(wi)2. The salar produt is denoted by a �b =Pni=1 ai �bi.If � 2 Zn+ is a multi�index, we let r� =Qni=1 ��ixi and j�j =Pni=1 �i.Denoting the veloity by u(x; t), the pressure by p(x; t) and the (on-stant) oe�ient of visosity by � (� > 0), the Navier�Stokes equationsin a domain 
 � Rn are,(1.1) �tu+ (u � r)u = �rp+ ��u; �t = ��t ;r � u = 0:The equations are supplemented by an initial ondition(1.2) u(x; 0) = u0(x);and, if 
 6= Rn , by boundary onditions (suh as u = 0, the �no�slip�ondition) on the boundary �
, for all t � 0. If 
 = Rn , growth (or,rather, deay) ondition must be imposed on u at in�nity.In the ase that u0 2 L2(
) (or u0 2 H1(
)) the well�posedness ofthe problem with suitably de�ned weak solutions (strong for H1(
))is well�known sine the pioneering work of Leray [27℄ (see also [29℄ forthe ase of the full plane) . The strong well�posedness is only loalin time if n = 3. We refer to [12℄, [25℄, [36℄ for full aounts of thistheory. In what onerns well�posedness of the system (1.1) beyondDate: August 25, 2002. 1



2 MATANIA BEN-ARTZIthe L2�framework, we refer to [24℄ and referenes therein, as well asearlier works by Kato and Pone using ommutator estimates in variousSobolev spaes [19℄, [21℄, [22℄, [23℄, [34℄.Our interest here is to study well�posedness of the �ow, in �rough�spaes, by using the vortiity formulation. We reall this formulation inthe general three-dimensional ase. Taking the url of the �rst equationin (1.1), and denoting by ! = r� u the vortiity, we get(1.3) �t! + (u � r)! � (! � r)u = ��!:The onnetion between u and ! = r � u is given by the �vetorpotential� A,(1.4) u = r�A; �A = �!:Under mild growth assumptions, one an take(1.5) A = �G � !;where G is the fundamental solution of �. Note that the fat thatr�! = 0 for all t � 0 (a �strutural assumption� that must be veri�edfor any solution of (1.3)) implies that r �A = 0, hene, indeed, from(1.4),(1.6) r� u = ��A = !:Remark that when u is given by (1.4), then automatially r � u =0, so that (1.3)�(1.4) is equivalent to (1.1), at least in the ase ofsu�iently regular solutions. The system is supplemented by the initialondition(1.7) !(x; 0) = !0(x); x 2 R3 :From the point of view of hydrodynamial phenomena, an interest-ing ase is that of the evolution of vortiity (and its assoiated veloity�eld) when it is initially given by isolated vorties, vortex �lamentsor sheets . Sine, in the "zero visosity limit" (i.e., � = 0, leading tothe Euler equations) the irulation is preserved (Kelvin's theorem),the use of vortiity in numerial methods has beome very popular. Inpartiular, in "vortex methods" ( [13℄), even smooth initial data are re-plaed by a distribution of singular "vortial objets". Mathematiallyspeaking, we need to study the system (1.3)�(1.4), (1.7), when !0(x) isa measure. This will be the main fous of this artile. Indeed, sine verylittle is known in the three dimensional ase, we shall deal here with



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 3the two�dimensional situation. We refer to the artile by P. Constantinin this volume, onerning approximate solutions to the vortiity equa-tion in the three-dimensional ase. Also for simpliity, we have avoidedadding a soure term (external fore) in the ase of Eq. (1.1) or (1.3).In fat, for issues onsidered here suh as existene, uniqueness andregularity, the results an be extended to the non�homogeneous asein a rather standard way. When 
 6= Rn the system (1.3)�(1.4) mustbe supplemented with boundary onditions on !(x; t), x 2 �
, t � 0.The most ommon physially plausible boundary onditions are statedin terms of u (suh as the �non�slip� ondition). Casting these on-ditions in terms of ! is quite involved, and in fat, has hardly beentreated in theoretial studies. On the other hand, in numerial works,the methods used for the implementation of vortiity boundary on-ditions (or, in the hydrodynamial language, �generation of vortiity�)are quite diverse. Some of them ould perhaps prove instrumental inthe rigorous treatment of the problem. However, in this survey we shallnot touh upon this topi, and refer the reader to the book [13℄ andto [2℄ for more details.In order to avoid the boundary problem, we shall onentrate in thissurvey on the ase of the full plane, 
 = R2 .The veloity u(x; t) is obtained from (1.6). In fat, in the two-dimensional ase we an easily obtain a onvolution integral onnetingu to ! as follows.The veloity �eld is now two�dimensional u(x; t) = (u1(x1; x2; t),u2(x1; x2; t)) and the vortiity is given by !(x; t) = !(x; t)k,(1.8) !(x; t) = �x1u2 � �x2u1:Furthermore, the term (! � r)u vanishes identially, so that Eq. (1.3)redues to a (nonlinear) onvetion�di�usion equation for the salarvortiity !,(1.9) �t! + (u � r)! = ��!; !(x; 0) = !0(x):Carrying out the operations in (1.4)�(1.5) we obtain(1.10) u(x; t) = (K � !)(x; t) = ZR2 K(x� y)!(y; t)dy;where the �Biot�Savart� kernel K is given by(1.11) K(x) = 12� jxj�2(�x2; x1):Note thatr�K = 0, implying (by (1.7)) the inompressibility onditionr � u = 0.



4 MATANIA BEN-ARTZIIn what follows we shall study the well�posedness of (1.9) in variousfuntional spaes X. This means (at the least), that given the initialvortiity !0 the solution evolves along a ontinuous trajetory in X.The paper is organized as follows. In Setion 2 we reall the derivationof solutions for smooth initial data. As is appropriate for paraboliequations, the "maximum priniple" plays a fundamental role. In Se-tion 3 we derive spae-time estimates for smooth solutions. They arethe main tools used in the extension of the solution operator to initialvortiities in L1(R2), as is done in Setion 4. In Setion 5 we disussthe further extension to measure-valued initial data. We shall see thatuniqueness is still an open problem (for measures with large atomipart). In Setion 6 we disuss the asymptoti behavior of the vorti-ity for large time. We onlude in Setion 7 with remarks onerningvarious related open problems.NotationThe norm in Lp(Rn), 1 � p <1, is denoted byk kp = h ZRn j (x)jpdxi1=pwith the usual (ess�sup) modi�ation for p = +1.The spae W s;p(Rn) (s positive integer) is the Lp Sobolev spae,normed by k kW s;p = sXk=0 Xj�j=k kr� kp:If X is a Banah spae, normed by k � kX , and I � R+ is a �nite orin�nite interval, we de�ne the following spaes of X�valued funtionsf : I ! X.C(I;X) Continuous funtions (not neessarily bounded), topolo-gized by uniform onvergene over ompat subintervalsof I.Lp(I;X) Strongly measurable funtions, normed by(RI kf(t)kpXdt)1=p, 1 � p < 1, with the usualmodi�ation for p =1.Lplo(I;X) Strongly measurable funtions suh that �f 2 Lp(I;X)for all � 2 C10 (I).If X1, X2 are Banah spaes, then X = X1 \ X2 is normed byk � kX = k � kX1 + k � kX2 .



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 52. The ase of smooth initial dataOur �rst theorem is a theorem of MGrath [31℄. It imposes ratherstrong regularity assumptions on !0(x). Set, for 0 < � < 1,C�(R2) = ff 2 C(R2) \ L1(R2); f is uniformly (��) Hölder ontinuous,jf(x)� f(y)j �Mf jx� yj�;x;y 2 R2	 :Ck;�(R2) = ff 2 Ck(R2);r�f 2 C�(R2); j�j � kg:Theorem 2.1 (MGrath). Assume that for some 0 < � < 1, !0(x) 2L1(R2) \ C2;�(R2). Then there exists a solution to (1.9)�(1.10) suhthat(a) The solution is lassial; all derivatives appearing in (1.9) areontinuous in R2 � (0;1).(b) !(x; t), u(x; t) are ontinuous and uniformly bounded in R2 �[0;1).() !(x; �) 2 L1([0;1); L1(R2)).(d) For every T > 0,sup0�t�T;jxj>R ju(x; t)j ! 0 as R!1:Under onditions (a)�(d) the solution is unique.Proof (outline). Fix T > 0 and let(2.1) QT = R2 � [0; T ℄;XT = C(QT ) \ L1(QT ) \ L1([0; T ℄; L1(R2));where k!(x; t)kXT = k!kL1(QT ) + sup0�t�T k!(�; t)k1. Let B0 � XT bethe ball B0 = f! 2 XT ; k!kXT � k!0k1 + k!0k1g:For � 2 B0, one de�nes the map A1� = v by means of (1.10), i.e.,v = K � �, 0 � t � T: In partiular it is easily seen that v 2 C(QT ) \L1(QT ) and by standard fats onerning linear paraboli equationsthe equation(2.2) �t� + (v � r)� = ���; �(x; 0) = !(x);has a unique lassial solution in QT , and in partiular � 2 XT . Welet A : B0 ! XT be the map � = A� (where v = A1� in (2.2)).Using the maximum priniple and its dual statement in L1 (note thatr � A1� = 0) it follows that AB0 � B0. Now the assumptions onelements of XT imply that fv = A1�, � 2 B0g is uniformly bounded



6 MATANIA BEN-ARTZIand equiontinuous in QT . The regularity hypothesis on !0 (and itsdeay at in�nity) imply therefore that AB0, the set of all solutions of(2.2) with v 2 A1B0, is uniformly bounded and equiontinuous (infat, AB0 � W 1;1(QT )). Furthermore, the elements of AB0 vanishuniformly as jxj ! 1, 0 � t � T . Thus AB0 is ompatly imbeddedin B0 and , sine A is ontinuous, the Shauder �xed point theoremyields ! 2 B0 suh that ! = A!. This ! is a solution to (1.9) withu = A1!. The uniqueness is shown by a similar argument. �Remark 2.2. The maximum priniple an be applied to Eq. (2.2) andits dual (sine r � v = 0). We an therefore onlude (for the solutionof (1.9)) that k!(�; t)k1 � k!0k1 and k!(�; t)k1 � k!0k1, t � 0 and byinterpolation,(2.3) k!(�; t)kp � k!0kp; 1 � p � 1:Observe that the interpolation argument used above is based onthe linear theory. Indeed, One the solution to (1.9) is obtained, theveloity �eld u(x; t) is "frozen" and Eq. (1.9) is treated as a linearonvetion-di�usion equation. The Lp estimate (2.3) is then obtainedfor all solutions of equation (1.9), inluding the original vortiity !. Asimilar reasoning is applied to justify the duality argument, and will beused also in the sequel (see the proofs of Eq. (3.4) and Theorem 6.1).If we limit further !0 2 C10 (R2) the solution ! 2 C1(R2 � R+) anbe obtained as a limit of a sequene of solutions to linear onvetion�di�usion equations. We refer to [1℄ for details. In fat, ertain basiestimates are easily derived in this ase and then extended to moregeneral spaes. We designate by(2.4) S : C10 (R2)! C1(R2 � R+)the solution operator to (1.9)�(1.10), ! = S!0. The orrespondingveloity �eld is given by (1.10), and we denote it by(2.5) U : C10 (R2)! C1(R2 � R+);u(�; t) = U!0(t) = K � (S!0)(t)(when there is no risk of onfusion we shall write !(t) instead of !(�; t)).3. Some estimates for smooth solutionsIt is onvenient to establish some of the basi estimates for the so-lution operators S; U, assuming that !0 2 C10 (R2).



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 7Multiplying (1.9) by ! and integrating over R2 we obtain(3.1) �tk!(�; t)k22 = �2�kr!(�; t)k22;sine ZR2 !(u � r)!dx = 0 by r � u = 0. Reall that by the Nashinequality [14℄, [8℄ , if � is a smooth deaying funtion in R2 , then, forsome � > 0, k�k22 � ��1k�k1kr�k2:Using this inequality in (3.1) and noting (2.3) with p = 1 we get,(3.2) �tk!(�; t)k22 � �2��k!0k�21 k!(�; t)k42;hene(3.3) k!(�; t)k2 � (2��t)�1=2k!0k1:By duality (using again r � u = 0),k!(�; t)k1 � (2��t)�1=2k!0k2;so that(3.4) k!(�; t)k1 � (��t)�1k!0k1:To estimate ku(�; t)k1, note that jK(y)j � (2�)�1jyj�1, so that,
(3.5) ju(x; t)j � Zjyj�( ��t2� )1=2 + Zjyj�( ��t2� )1=2 jK(y)!(x� y; t)jdy� ���t2� �1=2k!(�; t)k1 + (2�)�1=2(��t)�1=2k!(�; t)k1� ( 2�)1=2(��t)�1=2k!0k1:Note that in view of the Hardy-Littlewood-Sobolev inequality [28, Chap-ter 4℄ or the fat thatrK is a Calderon�Zygmund kernel , we also have,(3.6) ku(�; t)kq � Ck!(�; t)kp; 1 < p < 2; 1q = 1p � 12 ;with C = Cp.We shall now re�ne these estimates by looking more losely at Eq.(1.9). Using the heat kernelG�(x; t) = (4��t)�1 exp �� jxj24�t �;the solution !(x; t) an be written as,(3.7) !(x; t) = RR2 G�(x� y; t)!0(y)dy� R t0 RR2 ryG�(x� y; t� s) � u(y; s)!(y; s)dyds:



8 MATANIA BEN-ARTZIOur �rst aim is to derive uniform estimates for solutions having initialdata !0 2 K � C10 (R2), where K is preompat in the L1(R2) topol-ogy. We use the following notational onvention. The onstant C > 0stands for a generi positive onstant and Æ(t) stands for a monotonenondereasing, uniformly bounded, generi funtion de�ned for t � 0,suh that limt!0 Æ(t) = 0. Both C and Æ(t) may depend on variousparameters (p; �; : : :) but not on the solution funtions. However, theymay depend on ertain subsets of initial data. We sometimes indiatespei� dependenies by adding parameters, e.g., C(p) or Æ(t;K).Sine t1�1=pG�(�; t)� is a bounded operator from L1(R2) to Lp(R2),1 � p � 1, and t1�1=pG�(�; t)�!0 ! 0 as t! 0, in Lp(R2), 1 < p � 1,for every smooth !0, we onlude that if K � C10 (R2) is preompatin L1(R2) then, for 1 < p � 1,(3.8) t1�1=pkG�(�; t) � !0kp � Æ(t;K); !0 2 K(Æ(t;K) depends on p, �).Next we note that(3.9) krG�(�; t)kr = Ct� 32+ 1r ; 1 � r � 1:Inserting (3.6), (3.8)�(3.9) in (3.7) and using the Young and Hölderinequalities we get,(3.10)k!(�; t)kp � Æ(t;K)t�1+ 1p + C Z t0 (t� s)� 32+ 1r k!(�; s)u(�; s)kpds� Æ(t;K)t�1+ 1p + C Z t0 (t� s)� 32+ 1r k!(�; s)k2pdswhere 1q + 1r = 1p + 1, 1p + 1r = 32 , 1 < p < 2. Setting Mp(t) =sup0���t � 1� 1pk!(�; t)kp for !0 2 K and noting that sine !0 is smoothMp(t) is ontinuous, Mp(0) = 0, we infer from (3.10),Mp(t) � Æ(t;K) + CMp(t)2;hene Mp(t) � Æ(t;K) (1 < p < 2) and, interpolating with (3.4) wehave(3.11) k!(�; t)kp � Æ(t;K)t�1+ 1p ; !0 2 K; 1 < p � 1:(The ase p =1 is obtained by duality as in (3.4)).Finally we note that the estimate (3.5) an be strengthened to yield(3.12) ku(�; t)k1 � Æ(t;K)t� 12 ; !0 2 K;(K � C10 (R2), preompat in the L1(R2) topology). Indeed, this fol-lows by replaing in (3.5) the term (��t2� )1=2 by ( ��t2�Æ(t;K))1=2 and using(3.11).



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 9Remark 3.1. Note the similarity of the estimates (3.8) for the heat(linear) equation and (3.11) for the vortiity (nonlinear) equation. Inwhat onerns the L1�L1 deay estimate, we have (3.4), where � > 0is the �best onstant� in the Nash inequality. As pointed out in [8℄,� � 3:67� whereas the orresponding estimate for the heat kernel iskG�(�; t)k1 = (4��t)�1. The estimate (3.4) was derived in [1℄, [20℄and was improved by Carlen and Loss [9℄, replaing � by 4�. Thus,quitesurprisingly, in spite of the nonlinearity, the L1 estimate for !(�; t)(in terms of k!0k1) is idential to that of the linear heat solution.Observe,however, that radial solutions of (1.9) are also solutions of theheat equation, sine the nonlinear term vanishes identially. It followsalso [9, Th.2℄, that � in (3.5) an be replaed by 4�.
4. Extension of the solution operatorWe shall now study the extension of the solution operator S, U (see(2.4)�(2.5)) to initial data in L1(R2). Our goal is to show that thesystem (1.9)�(1.10) is well-posed in L1(R2).As in the ase of the heat equation, the solution �regularizes� forpositive time. Thus, estimates over time intervals [�;1), � > 0, areeasy to obtain, using data at t = �. It is onvenient to introdue an�intermediate� spae Y = L1(R2) \ C0(R2)(where C0(R2) onsists of ontinuous funtions tending to zero at in-�nity, normed by k � k1). The spae Y has atually been used in thestudy of vortiity by Marhioro and Pulvirenti [30℄ in their treatmentof �di�usive vortiies� (approximation by �nite�dimensional di�usionproesses). In addition to the interest in Y as a �persistene� spae forvortiity, some basi estimates in this spae serve in the study of �zerovisosity� limit, being independent of � > 0 [1℄.It is easy to see that the onvolution operator K� : Y ! C0(R2) isbounded. We have the following lemma.Lemma 4.1. (a) (Existene). The operators S, U an be extendedontinuously as(4.1) S : Y ! C(R+; Y )U : Y ! C(R+;C0(R2)):



10 MATANIA BEN-ARTZIIndeed, the maps rS and rU an be extended ontinuously as(4.2) rS : Y ! C(R+; Y ) \ Lplo(R+; Y )rU : Y ! C(R+;C0(R2)) \ Lplo(R+;C0(R2))for any 1 � p � 2. Furthermore, the funtions ! = S!0, u = U!0 =K � S!0 give a weak solution to (1.9)-(1.10).(b) (Uniqueness). Let �(x; t), v(x; t) = K � � be a weak solution inR2 � R+ , of(4.3) �t� + (v � r)� = ���where, for some 1 < p < 2,�(�; t) 2 C(R+; Y ) \ C(R+ ;W 1;1 \W 1;1) \ Lplo(R+ ;W 1;1 \W 1;1);�(x; 0) = !0(x) 2 Y:Then �(�; t) = S!(t) for all t � 0.() (Regularity). For every !0 2 Y the funtions !(x; t) = S!0(t),u(x; t) = U!0(t) are in C1(R2 � R+) and Eq. (1.9) is satis�ed in thelassial sense. Furthermore, for every integer k and double�index �,the maps �ktr�S : Y ! C(R+ ; Y );�ktr�U : Y ! C(R+ ;C0(R2))are ontinuous.Proof (outline ,see [1℄ for details). Di�erentiating (3.7) we obtain(4.4)r!(x; t) = RR2 rxG�(x� y; t)!0(y)dy+ R t0 RR2 rxG�(x� y; t� s) � (u(y; s) � r)!(y; s)dyds:In view of (2.3) and the boundedness of K� we have(4.5) A := sup0�t�T ku(�; t)k1 � Ck!0kY ; C = C(T );so that, using (3.9) in (4.4), and denotingN(t) = sup0<��t kr!(�; �)k1,(4.6) N(t) � Cht�1=2k!0k1 + A Z t0 (t� s)�1=2N(s)dsi:A similar inequality is obtained for kr!(�; t)k1. We dedue(4.7) kr!(�; t)kY � Ct�1=2; C = C(�; T; k!0kY ):If �(x; t) is another solution to (1.9), �(x; 0) = �0(x) 2 C10 (R2), asimilar derivation yields(4.8) k!(�; t)� �(�; t)kY � Ck!0 � �0kY ;



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 11(4.9) kr!(�; t)�r�(�; t)kY � Ct�1=2k!0 � �0kY ;C = C(�; T; k!0kY ; k�0kY ):The onlusion of the proof of (a) is now standard. For !0 2 Y wetake a sequene f!(j)0 g1j=1 � C10 (R2) onverging to !0 in Y , and using(4.8)�(4.9) we obtain !(t) = limj!1 S!(j)0 (t); u(t) = limj!1U!(j)0 (t):To prove the uniqueness assertion, we note that v = K�� 2 C0(R2),so that (3.7) holds, with !, !0, u replaed by �, �0, v. We an thenderive an estimate analogous to (4.8).Finally the regularity laim follows from standard arguments on-erning paraboli equations [35℄. �We may now proeed to the main result of this setion.Theorem 4.2. (a) (Existene). The operators S, U an be extendedontinuously as(4.10) S : L1(R2)! C(R+; L1(R2)) \ C(R+ ;W 1;1 \W 1;1);U : L1(R2)! C(R+;C0(R2)):For every !0 2 L1(R2) and t > 0 we haveu = K � (S!0)(t);and !, u give a weak solution to (1.9). Furthermore, the estimates(3.4)�(3.5) are valid.(b) (Uniqueness). Let �(x; t), v(x; t) = K � � be a weak solution to(4.3) in R2 � R+ . Assume that(4.11) �(�; t) 2 C(R+; L1(R2)) \ C(R+ ; L1(R2));�(x; 0) = !0(x) 2 L1(R):Then �(�; t) = S!0(t) for all 0 � t <1.() (Regularity). For every !0 2 L1(R2) the funtions !(x; t) =S!0(t), u(x; t) = U!0(t) are in C1(R2�R+) and Eq. (1.9) is satis�edin the lassial sense. Furthermore, for every integer k and double�index �, the maps�ktr�S : L1(R2)! C(R+ ; L1(R2) \ L1(R2));�ktr�U : L1(R2)! C(R+ ;C0(R2))are ontinuous.Proof. Let K � C10 (R2)\L1(R2) be preompat (in the L1 topology).We �rst show that the family of maps(4.12) t! S!0(t); t � 0; !0 2 K



12 MATANIA BEN-ARTZIis equiontinuous. Indeed, it follows from (3.7), using (3.9) (with r = 1)and (2.3),(3.12) that(4.13) kS!0(t)� !0k1 � kG� � !0 � !0k1 + Æ(t;K);whih onverges to 0 (as t ! 0) uniformly in !0 2 K. Next it followsfrom (3.11) and Lemma 4.1() that, for any � > 0, � = (�1; �2),(4.14) sup��t<1 sup!02Kfkr�S!0(t)kY g <1;whih implies, by (3.5) and (1.9),(4.15) sup��t<1 sup!02KfkU!0(t)k1 + k�tS!0(t)k1g <1:The estimates (4.13)�(4.15) imply the equiontinuity of (4.12) in L1(R2).Now let f!(n)0 (x)g1n=1 � C10 (R2) onverge to !0 2 L1(R2) in L1.Taking K = f!(n)0 (x)g1n=1 the foregoing argument yields the equion-tinuity (in L1) of the trajetories !(n)(t) = S!(n)0 (t). In what fol-lows we prove the uniform onvergene of these trajetories. Writingu(n)(t) = U!(n)0 (t) we have,
(4.16) !(n)(t)� !(m)(t) = G�(�; t) � (!(n)0 � !(m)0 )+ R t0 rG�(�; t� s) � u(n)(s)(!(n)(s)� !(m)(s))ds+ Z t0 rG�(�; t� s) � (u(n)(s)� u(m)(s))!(m)(s)ds= I1(�; t) + I2(�; t) + I3(�; t):Let p 2 (1; 2). Clearly,(4.17) kI1(�; t)kp � Ct�1+ 1p k!(n)0 � !(m)0 k1:In view of (3.12) we obtain in I2, for 0 < s � t,(4.18)ku(n)(�; s)(!(n)(�; s)� !(m)(�; s))kp � ku(n)(�; s)k1k(!(n)(�; s)� !(m)(�; s))kp� Æ(t;K) � s�1=2k(!(n)(�; s)� !(m)(�; s))kp;and using (3.6), (3.11), we have in I3,(4.19)k(u(n)(s)� u(m)(s))!(m)(s)kp � Cku(n)(s)� u(m)(s)kqk!(m)(s)k2� Æ(t;K) � s�1=2k!(n) � !(m)(s)kp:



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 13Inserting (4.17)�(4.19) in (4.16) we have(4.20) k!(n)(t)� !(m)(t)kp � Ct�1+ 1pk!(n)0 � !(m)0 k1+Æ(t;K) R t0 (t� s)�1=2s�1=2k!(n)(s)� !(m)(s)kpds:Denoting N(t) = sup0���t � 1� 1p k!(n)(�) � !(m)(�)kp, (4.20) an berewritten as, N(t) � Ck!(n)0 � !(m)0 k1 + Æ(t;K)N(t)whih implies, for 0 < t � t� = t�(K),(4.21) k!(n)(t)� !(m)(t)kp � Cpk!(n)0 � !(m)0 k1 � t�1+ 1p ; 1 < p < 2:Turning bak to (4.16) we now obtain,(4.22)k!(n)(t)� !(m)(t)k1 � C nk!(n)0 � !(m)0 k1+ R t0 (t� s)�1=2ku(n)(s)(!(n)(s)� !(m)(s))k1ds+ R t0 (t� s)�1=2k(u(n)(s)� u(m)(s))!(m)(s)k1dso :Take p = 43 and use (3.6), (3.11), (4.21), to estimate,ku(n)(s)(w(n)(s)� !(m)(s))k1 � ku(n)(s)k4k!(n)(s)� !(m)(s)k 43� Cs� 14k!(n)0 k1 � s� 14k!(n)0 � !(m)0 k1;k(u(n)(s)� u(m)(s))!(m)(s)k1 � ku(n)(s)� u(m)(s)k4k!(m)(s)k 43� Cs� 14k!(n)0 (s)� !(m)0 (s)k1 � s� 14k!(m)0 k1Inserting these inequalities in (4.22) yields, for 0 < t < t�,(4.23) k!(n)(t)� !(m)(t)k1 � Ck!(n)0 � !(m)0 k1:We an now onlude the proof of the theorem. In view of (4.14)�(4.15), (4.23) and Lemma 4.1 the sequene !(n)(t) = S!(n)0 (t) onvergesin C(R+; L1(R2)) to a funtion !(t) 2 C(R+; L1(R2)). Lemma 4.1 nowimplies that the sequene onverges also in C(R+ ; Y ) (in fat, with allderivatives), hene the regularity laim.To establish the uniqueness laim, we note �rst that in view of theequiontinuity (4.12) the estimate (3.11) extends to(4.24) kS!0(t)kp � Æ(t;K)t�1+ 1p ; !0 2 K; 1 < p � 1;



14 MATANIA BEN-ARTZIwhen K � L1(R2) is preompat. Assume �rst that �0 2 L1(R2).Then �(x; t) satis�es (3.7) (with !, !0, u replaed respetively by �,�0, v) and repeating the argument leading up to (3.11) we get,(4.25) k�(�; t)k1 � Æ(t)t�1; t > 0;(4.26) kv(�; t)k1 � Æ(t)t�1=2; t > 0:Setting ~�(�; t) = S�0(t), we get, as in (4.20), for 1 < p < 2,k~�(�; t)� �(�; t)kp � Æ(t) Z t0 (t� s)�1=2s�1=2k~�(�; s)� �(�; s)kpds;whih implies that ~�(�; t) = �(�; t), 0 � t � t�, for some t� > 0. Onean then proeed stepwise in time to obtain ~�(�; t) = �(�; t), t > 0. Thisproves uniqueness if �0 2 L1(R2) \ L1(R2). Dropping the assumption�0 2 L1(R2), we still have by hypothesis, for any s > 0, that �(�; s) 2L1(R2). Invoking the foregoing argument (with �(�; s) as initial data)we obtain(4.27) S�(�; s)(t) = �(�; t+ s); s > 0; t � 0:Also, sine �(�; t) 2 C(R+; L1(R2)), the set K = f�(�; s); 0 < s � 1g �L1(R2) is preompat. Hene, ombining (4.24) and (4.27)(4.28) k�(�; t+ s)kp � Æ(t;K)t�1+ 1p ; ; 0 < s � 1; ; 1 < p � 1:Letting s! 0 in (4.28) we have, with t > 0,(4.29) k�(�; t)kp � Æ(t;K)t�1+ 1p ; 1 < p � 1;and, in partiular, we obtain (4.25) and (4.26). We an now repeat the�rst part of the proof to obtain �(�; t) = ~�(�; t) = S�0(t), t > 0. �Remark 4.3. The existene of a solution to the vortiity equation(1.9)�(1.10), when !0 2 L1(R2), was �rst proved by Giga, Miyakawaand Osada [16℄,using a deliate estimate for Green's funtion of a per-turbed heat equation. The onstants appearing in their treatment areunspei�ed and depend nonlinearly on k!0k1, in ontrast to the lineardependene in (3.4)�(3.5). The proof given here follows [1℄ and theuniqueness part relies also on [6℄. Observe that only the lassial esti-mates for the heat kernel have been used. A similar approah has beenused by Kato [20℄, using also the lassial heat kernel but di�erent fun-tional spaes. Kato derives (3.4), but not (3.5), (3.11)�(3.12), whihare essential in the uniqueness proof here. We refer to the impliationsof this uniqueness proof to nonlinear paraboli equations in Remark 5.3below.



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 155. Measures as initial dataLetM be the Banah spae of �nite (signed) measures on R2 , normedby total variation k � kM, so that naturally L1(R2) � M. FollowingKato [20℄, we shall now extend the solution operators S, U toM. Theestimates obtained in Theorem 4.2 and the weak density of L1 in Mlead to a straightforward result onerning existene and regularity.However, uniqueness remains partially open.For simpliity we heneforth assume � = 1 and write G = G1 for theheat kernel. A measure � 2 M an be deomposed as(5.1) � = � + �a = � + 1Xj=1 bjÆ(x� xj);where � is ontinuous and �a is the atomi part of �. The deomposi-tion is �orthogonal�,(5.2) k�kM = k�kM + k�akM = k�kM + 1Xj=1 jbjj:In what follows we write b = (b1; b2; : : :) and(5.3) kbkp = � 1Xj=1 jbjjp�1=p; 1 � p � 1:We an now state the extension theorem for initial data in M.Theorem 5.1. Let !0 = (!0) + (!0)a 2 M. Then the system (1.9)�(1.10) has a solution !(�; t) 2 C(R+ ;W 1;1\W 1;1), u(�; t) = K�!(�; t)suh that(a) !(�; t)! !0 as t! 0, in the weak� topology of M.(b) For every 1 � p � 1, k!(�; t)kp is a dereasing funtion oft 2 R+ , and(5.4) sup0<t<1 t1� 1pk!(�; t)kp <1:Furthermore, if (!0)a = 0, then(5.5) limt!0 t1� 1pk!(�; t)kp = 0; 1 < p � 1 (ompare (3.11)):() Let (!0)a = b = (b1; b2; � � � ). For eah 43 < p < 2 there areonstants Æp, �p > 0, suh that if kbkp < Æp then(5.6) lim supt!0 t1� 1pk!(�; t)kp < �p; 43 � p < 2:



16 MATANIA BEN-ARTZIThis ondition (and (a)) determines uniquely the solution !. In par-tiular, if (!0)a = 0 then the ondition (5.5) (for any single 43 < p < 2)determines ! uniquely.Remark 5.2. Sine for � > 0, !(�; �) 2 L1(R2), Theorem 4.2 an beapplied to t � � . Thus !(x; t) 2 C1(R2 �R+) and estimates like (5.4)follow for t � � (see (3.11)) and need to be established only in (0; �).Proof. Using a standard molli�er, we onstrut a sequene f!(j)0 g1j=1 �L1(R2), k!(j)0 k1 � k!0kM and !(j)0 ! !0 (in the weak� topology ofM).Let !(j) be the solution given by Theorem 4.2, !(j)(�; 0) = !(j)0 . Usingthe estimates (2.3), (3.4) we see that there exists a subsequene, whihwe relabel as f!(j)g1j=1, suh that, for any �xed � > 0, !(j)(�; �)onverges to a funtion !(�; �) in Y (in fat, with all derivatives, seeLemma 4.1). In partiular, we have also !(j)u(j) ! !u, u = K � !. Itis easy to verify that (!;u) onstitutes a solution to (1.9)�(1.10) andsatis�es (2.3) (with p = 1) and (3.4), with k!0k1 replaed by k!0kM.The estimate (5.4) follows by interpolation. To prove (a) it is learlysu�ient to show (ompare (4.12)) that the family(5.7) t! !(j)(�; t); j = 1; 2; : : : ; 0 � t � T;is equiontinuous in the weak� topology of M. Taking  2 C10 (R2),(5.8) �t < !(j)(�; t);  >=< !(j)(�; t);� > + < !(j)u(j)(�; t);r >(< ; > is the (M; C0(R2)) pairing). Using the estimateku(j)(�; t)!(j)(�; t)k1 � Ck!0k2Mt�1=2(see the derivation preeding (4.23)) we obtain the equiontinuity of(5.7) from the uniform integrability of �t < !(j)(�; t);  > in [0; T ℄.Finally, it remains to prove (5.5) and the uniqueness part (). We usethe integral equation (3.7). Note �rst that the heat kernel G satis�es,for any � 2 M,(5.9)sup0<t<1 t1� 1pkG(�; t) � �kp � pk�kM; p = (4�)�(1� 1p )p�1=p; 1 � p � 1;and, with the atomi part b = �a,(5.10) lim supt!0 t1� 1pkG(�; t) � �kp = pkbkp; 1 < p � 1:With �p > 0 to be determined, take Æp = �p2p . The hypothesis kbkp < Æpthen implies, by (5.10), that there exists T > 0 suh that for the



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 17sequene !(j)0 ,(5.11) sup0<t�T t1� 1pkG(�; t) � !(j)0 kp � � < �p2 ;where we have used the fat that !(j)0 are obtained from !0 by molli�-ation (whih ommutes with G�). Arguing as in (3.10), with Æ(t;K)replaed by a funtion h(t) � �, we obtain a solution to the integralequation (3.7) for 0 � t � T and 43 � p < 2, if �p is su�iently small.Sine !(j)0 is smooth, the solution is neessarily !(j)(�; t), as onstrutedabove. As in the derivation of (3.11), we have, for some �0 < �p,sup0<t�T t1� 1pk!(j)(�; t)kp � �0; j = 1; 2; : : : ; 43 � p < 2;hene also(5.12) sup0<t�T t1� 1pk!(�; t)kp � �0;where !(�; t) is the solution onstruted in the �rst part of the proof.Now if �(�; t) is another solution of Eq. (3.7), satisfying (5.12), we mayproeed as in the uniqueness part in the proof of Theorem 4.2 (theargument following (4.26)) to obtain�(�; t) = !(�; t) for t � T;provided that �p satis�es(5.13) �p Z 10 s� 32+ 1p (1� s)� 12ds < 1:We an then prove the identity � = ! for all time by proeeding step-wise.Finally (5.5) follows readily from (5.12). �Remark 5.3. The smallness ondition (5.6) has been extensively usedin proving uniqueness for solutions of nonlinear paraboli equations(see "note added in proof" in [6℄), and is ommonly referred to asthe "Kato�Fujita" ondition. In Theorem 4.2 (i.e, for initial datain L1(R2)) we have avoided it by assuming that the solution � is inC(R+; L1(R2))TC(R+ ; L1(R2)), thus obtaining (4.28). The require-ment �(�; t) 2 L1 for t>0 an be onsiderably relaxed, still avoiding a"Kato-Fujita" ondition. We refer to [4℄, [7℄ where similar uniquenessarguments have been used in the study of nonlinear paraboli equations.When the atomi part of the initial measure is not small, a suitableuniqueness ondition is still unknown.



18 MATANIA BEN-ARTZIRemark 5.4. We refer the reader to [5℄ where the results of this se-tion are extended to well�posedness for initial data in funtional spaesbeyond M(R2). In fat, these funtional spaes are de�ned by suitablerestritions of the ation of the heat kernel on the initial data.6. Asymptoti behavior for large timeWe assume now that !0 2 L1(R2). Then, for any t > 0, the solution!(x; t) to (1.9)-(1.10) satis�esZR2 !(x; t)dx = ZR2 !0(x)dx:Thus, in general, there is no deay (for large time) in L1 norm. On theother hand, by (3.4), the vortiity deays in all Lp norms, p 2 (0;1℄:As mentioned earlier (see Remark 3.1), the onstant � in (3.4) (andthe subsequent inequalities) an be replaed by 4�, thus equalizing theL1 � Lp estimates for vortiity with those of the heat equation. Theproof of this improvement (see [9, Theorem 5℄) is obtained by using alogarithmi Sobolev inequality instead of the Nash inequality used in(3.2).As in the ase of uniqueness arguments (see Remark 5.3), the meth-ods used in the study of the vortiity equation (1.9) an be suess-fully applied in the study of various types of nonlinear paraboli equa-tions (and vie versa). This is ertainly true in what onerns large-time deay estimates. The study of suh estimates for Navier-Stokesequations is well established ( [10℄, [15℄, [33℄ and referenes there).We refer to [3℄, [9℄ for L1 deay estimates of solutions to "visous"Hamilton-Jaobi and onservation equations. In partiular, in the two-dimensional ase, the fat that equation (1.9) is salar renders thevortiity a onvenient objet of study.A solution to the heat equation in Rn deays in L1 norm if the integralof the initial value vanishes. It is remarkable that a similar fat holdsfor vortiity in the two-dimensional ase.Theorem 6.1. Consider the system (1.9)-(1.10) and assume that !0 2L1(R2) and RR2 !0(x)dx = 0. Then(a) limt!1 k!(�; t)k1 = 0:(b) Suppose in addition that !0 is ompatly supported. Then(6.1) limt!1 t1� 1pk!(�; t)kp = 0; p 2 [1;1℄Proof. We refer to [9, Theorem 4℄ for a proof of (a). The proof for (b)follows [15, Theorem 2.4℄.



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 19Replaing (1.10) byu0(x) = ZR2(K(x� y)�K(x))!0(y)dywe get u0 2 L2. From the L2 theory of the Navier-Stokes equations itfollows that ru(x; t) 2 L2(R2 � R+), hene so is !(x; t). In view of(3.1) the funtion k!(�; t)k2 is dereasing in t, sotk!(�; t)k22 � 2 Z tt=2 k!(�; s)k22dswhih proves (6.1) with p = 2. To prove the ase p = 1 use the integralequation (3.7). Sine the deay is known for the heat equation, we needonly estimate the seond term in the RHS of (3.7), in the L1(R2) norm.Denoting �(s) = s 12k!(�; s)k2 we haveku(�; s)!(�; s)k1 � s� 12 �(s)ku0k2:In view of (3.9) (with r = 1) we onludek!(�; t)�G�(�; t) � !0k1 � Cku0k2 Z t0 (t� s)� 12 s� 12 �(s)dsand the RHS tends to 0 as t ! 1 by the Lebesgue dominated on-vergene theorem. By interpolation we get (6.1) for 1 � p � 2. Theonlusion for 2 < p � 1 follows by duality, as in the proof of [1, Eq.(3.47)℄. �Remark 6.2. The onlusion in part (b) of the theorem an be on-siderably improved. In fat, under the same assumptions (in fat, onlyexponential deay of !0 is required) we havesup0�t<1 t 12k!(�; t)k1 <1and ombining this with (3.4) we obtainsup0<t<1 t 32k!(�; t)k1 <1:These estimates are idential to those obtained for the heat equation.We refer to [9, Theorem 4℄ for details and sharp onstants.The asymptoti behavior of solutions to the vortiity equation (1.9)an be studied in detail in terms of "saling variables" ( [10℄, [17℄, [15℄).They are de�ned by� = (1 + t)� 12x; � = ln(1 + t):De�ning new funtions v; � byv(�; �) = (1 + t) 12u(x; t); �(�; �) = (1 + t) 12!(x; t)



20 MATANIA BEN-ARTZIand setting for simpliity � = 1, Eq. (1.9) is transformed into(6.2) ��� = L� � (v � r)�; �(�; 0) = �0(�)L� = �� + 12(� � r)� + � :(spatial derivatives are now with respet to �). Clearly, the relationv(�; �) = K � �(�; �) is still valid. The results of Se. 4 yield readilythe well-posedness of Eq. (6.2) in L1(R2), as well as deay estimatesin � . However, the interest in this transformed equation lies in itswell-posedness in a sale of weighted-L2 spaes de�ned as follows.L2;s = nf; kfk2L2;s := ZR2(1 + j�j2)sjf(�)j2d�o:Proposition 6.3. Equation (6.2) is well-posed in L2;s for any s > 1.More expliitly, for any �0 2 L2;s there exists a unique global solution�(�; �) 2 C(R+; L2;s):Furthermore, for any M > 0 there exists a onstant C = C(M; s) suhthat k�0kL2;s �M ) k�(�; �)kL2;s � C; � 2 [0;1)and C ! 0 as M ! 0.We refer to [15, Setion 3℄ for a proof. Observe that L2;s � L1 if s >1. By Proposition 6.3 it is a "persistene" spae for the vortiity, inanalogy with the spae Y in Lemma 4.1.The spetrum �(L) of L in L2;s, for any s > 0, is given by (see [15,Appendix A℄)�(L) = n� 2 C ; Re(�) � �s� 12 o[n� k2 ; k = 0; 1; 2; : : :o:In partiular, for a �xed s > 1, the �nite set of real nonpositive numbers(6.3) �(k) = n�j = �j2 ; j = 0; 1; : : : ; koonsists of isolated eigenvalues of L if k < s� 1 (in the spae L2;s).Gallay and Wayne [15℄ onstrut �nite-dimensional invariant mani-folds for the semi�ow of Eq. (6.2) (whih an easily be translated tothe solutions of (1.9)), for su�iently small initial data. It is based onthis spetral struture, and on methods used in the study of dynamialsystems. The onstrution an be desribed as follows.Fix k 2 N and s � k + 2. Let Hk � L2;s be the �nite-dimensionalsubspae spanned by the eigenvetors assoiated with �(k), and letJk = L2;s	Hk be its orthogonal omplement. For r > 0 we denote byBr the ball of radius r in L2;s (entered at 0).



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 21Theorem 6.4. Fix r > 0 su�iently small and s; k as above. Let� 2 (k2 ; k+12 ).(a)There exists a globally Lipshitz C1 map g : Hk ! Jk suhthat g(0) = 0; Dg(0) = 0 and suh that the manifoldTg = fw + g(w); w 2 Hkgis loally invariant in the following sense.There exists 0 < r1 < r suh that the semi�ow assoiated with (6.2),ommening at any point �0 2 Tg \ Br1 stays in Tg \ Br for all � � 0.(b)This invariant manifold "attrats" all trajetories having smallinitial data. More expliitly, for every �0 2 Tg \ Br there exists amanifold S�0 , suh that all trajetories beginning at points of S�0 \ Br1(with �0 restrited also to Br1) approah the trajetory �(�; �) startingat �0. We have, if �(�; �) is a solution to (6.2), with �(�; 0) = �0 2S�0 \ Br1 ,(6.4) lim sup�!1 ��1 ln k�(�; �)� �(�; �)kL2;s � ��:() The manifold S�0 is a ontinuous map of Jk . It intersetsTg \ Br only at �0 and the familyfS�0 ; �0 2 Tg \ Brgis a foliation of Br1 .We refer to [15, Setion 3℄ for a proof of the theorem.Remark 6.5. Observe that the deay rate in Eq. (6.4) orresponds toa deay rate of t�� for solutions of the vortiity equation (1.9). Thus,for su�iently small initial data in weighted-L2 spaes, the asymp-toti behavior of the vortiity is determined, to any order, by "�nite-dimensional dynamis".Remark 6.6. In analogy with Theorem 6.1, if RR2 �0(�)d� = 0 thenk�(�; �)ks ! 0 as � ! 0 (see [15, Theorem 3.2℄) and Theorem 6.4 anbe applied to determine its asymptoti behavior. Note that in this asethe veloity �eld is square-integrable (assuming s > 1).The GaussianG(�) = (4�)�1 exp(�j�j24 ); � 2 R2is a stationary solution of (6.2) and an eigenfuntion of L (with zeroeigenvalue). In terms of the original vortiity, it orresponds to thesolution of (1.9) obtained by the heat kernel with singularity at t =�1. It is alled the "Oseen Vortex". Taking k = 0 and s = 2 inTheorem 6.4, it is easily seen that H0 is the one-dimensional subspae



22 MATANIA BEN-ARTZIspanned by G and oinides with the invariant manifold T (i.e., g � 0).Thus,ombining Theorem 6.4 and the onservation of RR2 �(�; �)d� wegetCorollary 6.7 (stability of Oseen's vortex). Fix 0 < � < 12 . Thereexists r > 0 suh that if �(�; �) is a solution to (6.2) with k�0kL2;2 < rand RR2 �0(�)d� = a then(6.5) k�(�; �)� aG(�)kL2;2 � Ce��� ; � � 0:We refer to [15, Setion 4℄ for a detailed analysis of this onvergene.7. Conluding remarks and open problemsIt is ommon to say that the ase of the Navier-Stokes equationsin two-dimensional is "resolved". Admittedly, the situation here ismuh better than that of the 3-D ase. Furthermore, the L2 theoryof existene and uniqueness is omplete. However, as we have seen,there are important problems, related to "rough" initial data, thatremain yet unresolved. Rather than "purely mathematial", they touhupon very relevant issues of �uid dynamis and numerial simulationsof singular �ows. Even in the (weighted)-L2 ontext, the asymptotiresults disussed in Setion 6 show that the two-dimensional ase stillarries muh interest. Another aspet of this interest is the (relatively)reent interplay between the methods used here and those used in thestudy of various lasses of nonlinear paraboli equations.In what follows we list a number of yet unresolved problems.(1) Uniqueness for measure-valued initial data with largeatomi partAs was mentioned in Setion 5, the uniqueness of the solutionto (1.9)-(1.10) when !0 is a measure with large atomi part isunknown. It seems that tools developed in this ontext ouldprove useful for other lasses of nonlinear paraboli equations.(2) Uniform estimates with respet to � and Euler's equa-tionsIt is known that for smooth initial data one an obtain esti-mates whih are uniform in � 2 (0; 1℄, where � is the oe�ientof visosity (see [18℄, [31℄). The solutions onverge, as � ! 0, tothe unique solution ("zero visosity limit") to Euler's equationswith the same initial data. When the initial data is not su�-iently smooth (say, in L1 \ Lp; p > 2) we an still obtain theonvergene of a subsequene to a solution of Euler's equations.However, the uniqueness of suh a solution is not known. Thus,
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