
PLANAR NAVIER-STOKES EQUATIONSVORTICITY APPROACHMATANIA BEN-ARTZI1. Introdu
tionIn this survey we review the existen
e, uniqueness and regularitytheory of solutions to the Navier�stokes equations when they are for-mulated in �vorti
ity form�. We also dis
uss the large-time asymptoti
behavior of solutions for su�
iently small initial data. In fa
t, thethree-dimensional 
ase has hardly been studied (we refer to the arti
leby P. Constantin in this book), and we shall therefore 
on
entrate onthe two-dimensional 
ase.We re
all the basi
 equations [26℄, [11℄. Throughout the paper, weuse bold-fa
e notation for ve
tors and ve
tor�fun
tions (in R2 or R3).Their 
omponents are labeled as w = (w1; : : : ; wn) (n = 2; 3) andjwj2 =Pni=1(wi)2. The s
alar produ
t is denoted by a �b =Pni=1 ai �bi.If � 2 Zn+ is a multi�index, we let r� =Qni=1 ��ixi and j�j =Pni=1 �i.Denoting the velo
ity by u(x; t), the pressure by p(x; t) and the (
on-stant) 
oe�
ient of vis
osity by � (� > 0), the Navier�Stokes equationsin a domain 
 � Rn are,(1.1) �tu+ (u � r)u = �rp+ ��u; �t = ��t ;r � u = 0:The equations are supplemented by an initial 
ondition(1.2) u(x; 0) = u0(x);and, if 
 6= Rn , by boundary 
onditions (su
h as u = 0, the �no�slip�
ondition) on the boundary �
, for all t � 0. If 
 = Rn , growth (or,rather, de
ay) 
ondition must be imposed on u at in�nity.In the 
ase that u0 2 L2(
) (or u0 2 H1(
)) the well�posedness ofthe problem with suitably de�ned weak solutions (strong for H1(
))is well�known sin
e the pioneering work of Leray [27℄ (see also [29℄ forthe 
ase of the full plane) . The strong well�posedness is only lo
alin time if n = 3. We refer to [12℄, [25℄, [36℄ for full a

ounts of thistheory. In what 
on
erns well�posedness of the system (1.1) beyondDate: August 25, 2002. 1



2 MATANIA BEN-ARTZIthe L2�framework, we refer to [24℄ and referen
es therein, as well asearlier works by Kato and Pon
e using 
ommutator estimates in variousSobolev spa
es [19℄, [21℄, [22℄, [23℄, [34℄.Our interest here is to study well�posedness of the �ow, in �rough�spa
es, by using the vorti
ity formulation. We re
all this formulation inthe general three-dimensional 
ase. Taking the 
url of the �rst equationin (1.1), and denoting by ! = r� u the vorti
ity, we get(1.3) �t! + (u � r)! � (! � r)u = ��!:The 
onne
tion between u and ! = r � u is given by the �ve
torpotential� A,(1.4) u = r�A; �A = �!:Under mild growth assumptions, one 
an take(1.5) A = �G � !;where G is the fundamental solution of �. Note that the fa
t thatr�! = 0 for all t � 0 (a �stru
tural assumption� that must be veri�edfor any solution of (1.3)) implies that r �A = 0, hen
e, indeed, from(1.4),(1.6) r� u = ��A = !:Remark that when u is given by (1.4), then automati
ally r � u =0, so that (1.3)�(1.4) is equivalent to (1.1), at least in the 
ase ofsu�
iently regular solutions. The system is supplemented by the initial
ondition(1.7) !(x; 0) = !0(x); x 2 R3 :From the point of view of hydrodynami
al phenomena, an interest-ing 
ase is that of the evolution of vorti
ity (and its asso
iated velo
ity�eld) when it is initially given by isolated vorti
es, vortex �lamentsor sheets . Sin
e, in the "zero vis
osity limit" (i.e., � = 0, leading tothe Euler equations) the 
ir
ulation is preserved (Kelvin's theorem),the use of vorti
ity in numeri
al methods has be
ome very popular. Inparti
ular, in "vortex methods" ( [13℄), even smooth initial data are re-pla
ed by a distribution of singular "vorti
al obje
ts". Mathemati
allyspeaking, we need to study the system (1.3)�(1.4), (1.7), when !0(x) isa measure. This will be the main fo
us of this arti
le. Indeed, sin
e verylittle is known in the three dimensional 
ase, we shall deal here with



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 3the two�dimensional situation. We refer to the arti
le by P. Constantinin this volume, 
on
erning approximate solutions to the vorti
ity equa-tion in the three-dimensional 
ase. Also for simpli
ity, we have avoidedadding a sour
e term (external for
e) in the 
ase of Eq. (1.1) or (1.3).In fa
t, for issues 
onsidered here su
h as existen
e, uniqueness andregularity, the results 
an be extended to the non�homogeneous 
asein a rather standard way. When 
 6= Rn the system (1.3)�(1.4) mustbe supplemented with boundary 
onditions on !(x; t), x 2 �
, t � 0.The most 
ommon physi
ally plausible boundary 
onditions are statedin terms of u (su
h as the �non�slip� 
ondition). Casting these 
on-ditions in terms of ! is quite involved, and in fa
t, has hardly beentreated in theoreti
al studies. On the other hand, in numeri
al works,the methods used for the implementation of vorti
ity boundary 
on-ditions (or, in the hydrodynami
al language, �generation of vorti
ity�)are quite diverse. Some of them 
ould perhaps prove instrumental inthe rigorous treatment of the problem. However, in this survey we shallnot tou
h upon this topi
, and refer the reader to the book [13℄ andto [2℄ for more details.In order to avoid the boundary problem, we shall 
on
entrate in thissurvey on the 
ase of the full plane, 
 = R2 .The velo
ity u(x; t) is obtained from (1.6). In fa
t, in the two-dimensional 
ase we 
an easily obtain a 
onvolution integral 
onne
tingu to ! as follows.The velo
ity �eld is now two�dimensional u(x; t) = (u1(x1; x2; t),u2(x1; x2; t)) and the vorti
ity is given by !(x; t) = !(x; t)k,(1.8) !(x; t) = �x1u2 � �x2u1:Furthermore, the term (! � r)u vanishes identi
ally, so that Eq. (1.3)redu
es to a (nonlinear) 
onve
tion�di�usion equation for the s
alarvorti
ity !,(1.9) �t! + (u � r)! = ��!; !(x; 0) = !0(x):Carrying out the operations in (1.4)�(1.5) we obtain(1.10) u(x; t) = (K � !)(x; t) = ZR2 K(x� y)!(y; t)dy;where the �Biot�Savart� kernel K is given by(1.11) K(x) = 12� jxj�2(�x2; x1):Note thatr�K = 0, implying (by (1.7)) the in
ompressibility 
onditionr � u = 0.



4 MATANIA BEN-ARTZIIn what follows we shall study the well�posedness of (1.9) in variousfun
tional spa
es X. This means (at the least), that given the initialvorti
ity !0 the solution evolves along a 
ontinuous traje
tory in X.The paper is organized as follows. In Se
tion 2 we re
all the derivationof solutions for smooth initial data. As is appropriate for paraboli
equations, the "maximum prin
iple" plays a fundamental role. In Se
-tion 3 we derive spa
e-time estimates for smooth solutions. They arethe main tools used in the extension of the solution operator to initialvorti
ities in L1(R2), as is done in Se
tion 4. In Se
tion 5 we dis
ussthe further extension to measure-valued initial data. We shall see thatuniqueness is still an open problem (for measures with large atomi
part). In Se
tion 6 we dis
uss the asymptoti
 behavior of the vorti
-ity for large time. We 
on
lude in Se
tion 7 with remarks 
on
erningvarious related open problems.NotationThe norm in Lp(Rn), 1 � p <1, is denoted byk kp = h ZRn j (x)jpdxi1=pwith the usual (ess�sup) modi�
ation for p = +1.The spa
e W s;p(Rn) (s positive integer) is the Lp Sobolev spa
e,normed by k kW s;p = sXk=0 Xj�j=k kr� kp:If X is a Bana
h spa
e, normed by k � kX , and I � R+ is a �nite orin�nite interval, we de�ne the following spa
es of X�valued fun
tionsf : I ! X.C(I;X) Continuous fun
tions (not ne
essarily bounded), topolo-gized by uniform 
onvergen
e over 
ompa
t subintervalsof I.Lp(I;X) Strongly measurable fun
tions, normed by(RI kf(t)kpXdt)1=p, 1 � p < 1, with the usualmodi�
ation for p =1.Lplo
(I;X) Strongly measurable fun
tions su
h that �f 2 Lp(I;X)for all � 2 C10 (I).If X1, X2 are Bana
h spa
es, then X = X1 \ X2 is normed byk � kX = k � kX1 + k � kX2 .



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 52. The 
ase of smooth initial dataOur �rst theorem is a theorem of M
Grath [31℄. It imposes ratherstrong regularity assumptions on !0(x). Set, for 0 < � < 1,C�(R2) = ff 2 C(R2) \ L1(R2); f is uniformly (��) Hölder 
ontinuous,jf(x)� f(y)j �Mf jx� yj�;x;y 2 R2	 :Ck;�(R2) = ff 2 Ck(R2);r�f 2 C�(R2); j�j � kg:Theorem 2.1 (M
Grath). Assume that for some 0 < � < 1, !0(x) 2L1(R2) \ C2;�(R2). Then there exists a solution to (1.9)�(1.10) su
hthat(a) The solution is 
lassi
al; all derivatives appearing in (1.9) are
ontinuous in R2 � (0;1).(b) !(x; t), u(x; t) are 
ontinuous and uniformly bounded in R2 �[0;1).(
) !(x; �) 2 L1([0;1); L1(R2)).(d) For every T > 0,sup0�t�T;jxj>R ju(x; t)j ! 0 as R!1:Under 
onditions (a)�(d) the solution is unique.Proof (outline). Fix T > 0 and let(2.1) QT = R2 � [0; T ℄;XT = C(QT ) \ L1(QT ) \ L1([0; T ℄; L1(R2));where k!(x; t)kXT = k!kL1(QT ) + sup0�t�T k!(�; t)k1. Let B0 � XT bethe ball B0 = f! 2 XT ; k!kXT � k!0k1 + k!0k1g:For � 2 B0, one de�nes the map A1� = v by means of (1.10), i.e.,v = K � �, 0 � t � T: In parti
ular it is easily seen that v 2 C(QT ) \L1(QT ) and by standard fa
ts 
on
erning linear paraboli
 equationsthe equation(2.2) �t� + (v � r)� = ���; �(x; 0) = !(x);has a unique 
lassi
al solution in QT , and in parti
ular � 2 XT . Welet A : B0 ! XT be the map � = A� (where v = A1� in (2.2)).Using the maximum prin
iple and its dual statement in L1 (note thatr � A1� = 0) it follows that AB0 � B0. Now the assumptions onelements of XT imply that fv = A1�, � 2 B0g is uniformly bounded



6 MATANIA BEN-ARTZIand equi
ontinuous in QT . The regularity hypothesis on !0 (and itsde
ay at in�nity) imply therefore that AB0, the set of all solutions of(2.2) with v 2 A1B0, is uniformly bounded and equi
ontinuous (infa
t, AB0 � W 1;1(QT )). Furthermore, the elements of AB0 vanishuniformly as jxj ! 1, 0 � t � T . Thus AB0 is 
ompa
tly imbeddedin B0 and , sin
e A is 
ontinuous, the S
hauder �xed point theoremyields ! 2 B0 su
h that ! = A!. This ! is a solution to (1.9) withu = A1!. The uniqueness is shown by a similar argument. �Remark 2.2. The maximum prin
iple 
an be applied to Eq. (2.2) andits dual (sin
e r � v = 0). We 
an therefore 
on
lude (for the solutionof (1.9)) that k!(�; t)k1 � k!0k1 and k!(�; t)k1 � k!0k1, t � 0 and byinterpolation,(2.3) k!(�; t)kp � k!0kp; 1 � p � 1:Observe that the interpolation argument used above is based onthe linear theory. Indeed, On
e the solution to (1.9) is obtained, thevelo
ity �eld u(x; t) is "frozen" and Eq. (1.9) is treated as a linear
onve
tion-di�usion equation. The Lp estimate (2.3) is then obtainedfor all solutions of equation (1.9), in
luding the original vorti
ity !. Asimilar reasoning is applied to justify the duality argument, and will beused also in the sequel (see the proofs of Eq. (3.4) and Theorem 6.1).If we limit further !0 2 C10 (R2) the solution ! 2 C1(R2 � R+) 
anbe obtained as a limit of a sequen
e of solutions to linear 
onve
tion�di�usion equations. We refer to [1℄ for details. In fa
t, 
ertain basi
estimates are easily derived in this 
ase and then extended to moregeneral spa
es. We designate by(2.4) S : C10 (R2)! C1(R2 � R+)the solution operator to (1.9)�(1.10), ! = S!0. The 
orrespondingvelo
ity �eld is given by (1.10), and we denote it by(2.5) U : C10 (R2)! C1(R2 � R+);u(�; t) = U!0(t) = K � (S!0)(t)(when there is no risk of 
onfusion we shall write !(t) instead of !(�; t)).3. Some estimates for smooth solutionsIt is 
onvenient to establish some of the basi
 estimates for the so-lution operators S; U, assuming that !0 2 C10 (R2).



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 7Multiplying (1.9) by ! and integrating over R2 we obtain(3.1) �tk!(�; t)k22 = �2�kr!(�; t)k22;sin
e ZR2 !(u � r)!dx = 0 by r � u = 0. Re
all that by the Nashinequality [14℄, [8℄ , if � is a smooth de
aying fun
tion in R2 , then, forsome � > 0, k�k22 � ��1k�k1kr�k2:Using this inequality in (3.1) and noting (2.3) with p = 1 we get,(3.2) �tk!(�; t)k22 � �2��k!0k�21 k!(�; t)k42;hen
e(3.3) k!(�; t)k2 � (2��t)�1=2k!0k1:By duality (using again r � u = 0),k!(�; t)k1 � (2��t)�1=2k!0k2;so that(3.4) k!(�; t)k1 � (��t)�1k!0k1:To estimate ku(�; t)k1, note that jK(y)j � (2�)�1jyj�1, so that,
(3.5) ju(x; t)j � Zjyj�( ��t2� )1=2 + Zjyj�( ��t2� )1=2 jK(y)!(x� y; t)jdy� ���t2� �1=2k!(�; t)k1 + (2�)�1=2(��t)�1=2k!(�; t)k1� ( 2�)1=2(��t)�1=2k!0k1:Note that in view of the Hardy-Littlewood-Sobolev inequality [28, Chap-ter 4℄ or the fa
t thatrK is a Calderon�Zygmund kernel , we also have,(3.6) ku(�; t)kq � Ck!(�; t)kp; 1 < p < 2; 1q = 1p � 12 ;with C = Cp.We shall now re�ne these estimates by looking more 
losely at Eq.(1.9). Using the heat kernelG�(x; t) = (4��t)�1 exp �� jxj24�t �;the solution !(x; t) 
an be written as,(3.7) !(x; t) = RR2 G�(x� y; t)!0(y)dy� R t0 RR2 ryG�(x� y; t� s) � u(y; s)!(y; s)dyds:



8 MATANIA BEN-ARTZIOur �rst aim is to derive uniform estimates for solutions having initialdata !0 2 K � C10 (R2), where K is pre
ompa
t in the L1(R2) topol-ogy. We use the following notational 
onvention. The 
onstant C > 0stands for a generi
 positive 
onstant and Æ(t) stands for a monotonenonde
reasing, uniformly bounded, generi
 fun
tion de�ned for t � 0,su
h that limt!0 Æ(t) = 0. Both C and Æ(t) may depend on variousparameters (p; �; : : :) but not on the solution fun
tions. However, theymay depend on 
ertain subsets of initial data. We sometimes indi
atespe
i�
 dependen
ies by adding parameters, e.g., C(p) or Æ(t;K).Sin
e t1�1=pG�(�; t)� is a bounded operator from L1(R2) to Lp(R2),1 � p � 1, and t1�1=pG�(�; t)�!0 ! 0 as t! 0, in Lp(R2), 1 < p � 1,for every smooth !0, we 
on
lude that if K � C10 (R2) is pre
ompa
tin L1(R2) then, for 1 < p � 1,(3.8) t1�1=pkG�(�; t) � !0kp � Æ(t;K); !0 2 K(Æ(t;K) depends on p, �).Next we note that(3.9) krG�(�; t)kr = Ct� 32+ 1r ; 1 � r � 1:Inserting (3.6), (3.8)�(3.9) in (3.7) and using the Young and Hölderinequalities we get,(3.10)k!(�; t)kp � Æ(t;K)t�1+ 1p + C Z t0 (t� s)� 32+ 1r k!(�; s)u(�; s)kpds� Æ(t;K)t�1+ 1p + C Z t0 (t� s)� 32+ 1r k!(�; s)k2pdswhere 1q + 1r = 1p + 1, 1p + 1r = 32 , 1 < p < 2. Setting Mp(t) =sup0���t � 1� 1pk!(�; t)kp for !0 2 K and noting that sin
e !0 is smoothMp(t) is 
ontinuous, Mp(0) = 0, we infer from (3.10),Mp(t) � Æ(t;K) + CMp(t)2;hen
e Mp(t) � Æ(t;K) (1 < p < 2) and, interpolating with (3.4) wehave(3.11) k!(�; t)kp � Æ(t;K)t�1+ 1p ; !0 2 K; 1 < p � 1:(The 
ase p =1 is obtained by duality as in (3.4)).Finally we note that the estimate (3.5) 
an be strengthened to yield(3.12) ku(�; t)k1 � Æ(t;K)t� 12 ; !0 2 K;(K � C10 (R2), pre
ompa
t in the L1(R2) topology). Indeed, this fol-lows by repla
ing in (3.5) the term (��t2� )1=2 by ( ��t2�Æ(t;K))1=2 and using(3.11).



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 9Remark 3.1. Note the similarity of the estimates (3.8) for the heat(linear) equation and (3.11) for the vorti
ity (nonlinear) equation. Inwhat 
on
erns the L1�L1 de
ay estimate, we have (3.4), where � > 0is the �best 
onstant� in the Nash inequality. As pointed out in [8℄,� � 3:67� whereas the 
orresponding estimate for the heat kernel iskG�(�; t)k1 = (4��t)�1. The estimate (3.4) was derived in [1℄, [20℄and was improved by Carlen and Loss [9℄, repla
ing � by 4�. Thus,quitesurprisingly, in spite of the nonlinearity, the L1 estimate for !(�; t)(in terms of k!0k1) is identi
al to that of the linear heat solution.Observe,however, that radial solutions of (1.9) are also solutions of theheat equation, sin
e the nonlinear term vanishes identi
ally. It followsalso [9, Th.2℄, that � in (3.5) 
an be repla
ed by 4�.
4. Extension of the solution operatorWe shall now study the extension of the solution operator S, U (see(2.4)�(2.5)) to initial data in L1(R2). Our goal is to show that thesystem (1.9)�(1.10) is well-posed in L1(R2).As in the 
ase of the heat equation, the solution �regularizes� forpositive time. Thus, estimates over time intervals [�;1), � > 0, areeasy to obtain, using data at t = �. It is 
onvenient to introdu
e an�intermediate� spa
e Y = L1(R2) \ C0(R2)(where C0(R2) 
onsists of 
ontinuous fun
tions tending to zero at in-�nity, normed by k � k1). The spa
e Y has a
tually been used in thestudy of vorti
ity by Mar
hioro and Pulvirenti [30℄ in their treatmentof �di�usive vorti
ies� (approximation by �nite�dimensional di�usionpro
esses). In addition to the interest in Y as a �persisten
e� spa
e forvorti
ity, some basi
 estimates in this spa
e serve in the study of �zerovis
osity� limit, being independent of � > 0 [1℄.It is easy to see that the 
onvolution operator K� : Y ! C0(R2) isbounded. We have the following lemma.Lemma 4.1. (a) (Existen
e). The operators S, U 
an be extended
ontinuously as(4.1) S : Y ! C(R+; Y )U : Y ! C(R+;C0(R2)):



10 MATANIA BEN-ARTZIIndeed, the maps rS and rU 
an be extended 
ontinuously as(4.2) rS : Y ! C(R+; Y ) \ Lplo
(R+; Y )rU : Y ! C(R+;C0(R2)) \ Lplo
(R+;C0(R2))for any 1 � p � 2. Furthermore, the fun
tions ! = S!0, u = U!0 =K � S!0 give a weak solution to (1.9)-(1.10).(b) (Uniqueness). Let �(x; t), v(x; t) = K � � be a weak solution inR2 � R+ , of(4.3) �t� + (v � r)� = ���where, for some 1 < p < 2,�(�; t) 2 C(R+; Y ) \ C(R+ ;W 1;1 \W 1;1) \ Lplo
(R+ ;W 1;1 \W 1;1);�(x; 0) = !0(x) 2 Y:Then �(�; t) = S!(t) for all t � 0.(
) (Regularity). For every !0 2 Y the fun
tions !(x; t) = S!0(t),u(x; t) = U!0(t) are in C1(R2 � R+) and Eq. (1.9) is satis�ed in the
lassi
al sense. Furthermore, for every integer k and double�index �,the maps �ktr�S : Y ! C(R+ ; Y );�ktr�U : Y ! C(R+ ;C0(R2))are 
ontinuous.Proof (outline ,see [1℄ for details). Di�erentiating (3.7) we obtain(4.4)r!(x; t) = RR2 rxG�(x� y; t)!0(y)dy+ R t0 RR2 rxG�(x� y; t� s) � (u(y; s) � r)!(y; s)dyds:In view of (2.3) and the boundedness of K� we have(4.5) A := sup0�t�T ku(�; t)k1 � Ck!0kY ; C = C(T );so that, using (3.9) in (4.4), and denotingN(t) = sup0<��t kr!(�; �)k1,(4.6) N(t) � Cht�1=2k!0k1 + A Z t0 (t� s)�1=2N(s)dsi:A similar inequality is obtained for kr!(�; t)k1. We dedu
e(4.7) kr!(�; t)kY � Ct�1=2; C = C(�; T; k!0kY ):If �(x; t) is another solution to (1.9), �(x; 0) = �0(x) 2 C10 (R2), asimilar derivation yields(4.8) k!(�; t)� �(�; t)kY � Ck!0 � �0kY ;



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 11(4.9) kr!(�; t)�r�(�; t)kY � Ct�1=2k!0 � �0kY ;C = C(�; T; k!0kY ; k�0kY ):The 
on
lusion of the proof of (a) is now standard. For !0 2 Y wetake a sequen
e f!(j)0 g1j=1 � C10 (R2) 
onverging to !0 in Y , and using(4.8)�(4.9) we obtain !(t) = limj!1 S!(j)0 (t); u(t) = limj!1U!(j)0 (t):To prove the uniqueness assertion, we note that v = K�� 2 C0(R2),so that (3.7) holds, with !, !0, u repla
ed by �, �0, v. We 
an thenderive an estimate analogous to (4.8).Finally the regularity 
laim follows from standard arguments 
on-
erning paraboli
 equations [35℄. �We may now pro
eed to the main result of this se
tion.Theorem 4.2. (a) (Existen
e). The operators S, U 
an be extended
ontinuously as(4.10) S : L1(R2)! C(R+; L1(R2)) \ C(R+ ;W 1;1 \W 1;1);U : L1(R2)! C(R+;C0(R2)):For every !0 2 L1(R2) and t > 0 we haveu = K � (S!0)(t);and !, u give a weak solution to (1.9). Furthermore, the estimates(3.4)�(3.5) are valid.(b) (Uniqueness). Let �(x; t), v(x; t) = K � � be a weak solution to(4.3) in R2 � R+ . Assume that(4.11) �(�; t) 2 C(R+; L1(R2)) \ C(R+ ; L1(R2));�(x; 0) = !0(x) 2 L1(R):Then �(�; t) = S!0(t) for all 0 � t <1.(
) (Regularity). For every !0 2 L1(R2) the fun
tions !(x; t) =S!0(t), u(x; t) = U!0(t) are in C1(R2�R+) and Eq. (1.9) is satis�edin the 
lassi
al sense. Furthermore, for every integer k and double�index �, the maps�ktr�S : L1(R2)! C(R+ ; L1(R2) \ L1(R2));�ktr�U : L1(R2)! C(R+ ;C0(R2))are 
ontinuous.Proof. Let K � C10 (R2)\L1(R2) be pre
ompa
t (in the L1 topology).We �rst show that the family of maps(4.12) t! S!0(t); t � 0; !0 2 K



12 MATANIA BEN-ARTZIis equi
ontinuous. Indeed, it follows from (3.7), using (3.9) (with r = 1)and (2.3),(3.12) that(4.13) kS!0(t)� !0k1 � kG� � !0 � !0k1 + Æ(t;K);whi
h 
onverges to 0 (as t ! 0) uniformly in !0 2 K. Next it followsfrom (3.11) and Lemma 4.1(
) that, for any � > 0, � = (�1; �2),(4.14) sup��t<1 sup!02Kfkr�S!0(t)kY g <1;whi
h implies, by (3.5) and (1.9),(4.15) sup��t<1 sup!02KfkU!0(t)k1 + k�tS!0(t)k1g <1:The estimates (4.13)�(4.15) imply the equi
ontinuity of (4.12) in L1(R2).Now let f!(n)0 (x)g1n=1 � C10 (R2) 
onverge to !0 2 L1(R2) in L1.Taking K = f!(n)0 (x)g1n=1 the foregoing argument yields the equi
on-tinuity (in L1) of the traje
tories !(n)(t) = S!(n)0 (t). In what fol-lows we prove the uniform 
onvergen
e of these traje
tories. Writingu(n)(t) = U!(n)0 (t) we have,
(4.16) !(n)(t)� !(m)(t) = G�(�; t) � (!(n)0 � !(m)0 )+ R t0 rG�(�; t� s) � u(n)(s)(!(n)(s)� !(m)(s))ds+ Z t0 rG�(�; t� s) � (u(n)(s)� u(m)(s))!(m)(s)ds= I1(�; t) + I2(�; t) + I3(�; t):Let p 2 (1; 2). Clearly,(4.17) kI1(�; t)kp � Ct�1+ 1p k!(n)0 � !(m)0 k1:In view of (3.12) we obtain in I2, for 0 < s � t,(4.18)ku(n)(�; s)(!(n)(�; s)� !(m)(�; s))kp � ku(n)(�; s)k1k(!(n)(�; s)� !(m)(�; s))kp� Æ(t;K) � s�1=2k(!(n)(�; s)� !(m)(�; s))kp;and using (3.6), (3.11), we have in I3,(4.19)k(u(n)(s)� u(m)(s))!(m)(s)kp � Cku(n)(s)� u(m)(s)kqk!(m)(s)k2� Æ(t;K) � s�1=2k!(n) � !(m)(s)kp:



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 13Inserting (4.17)�(4.19) in (4.16) we have(4.20) k!(n)(t)� !(m)(t)kp � Ct�1+ 1pk!(n)0 � !(m)0 k1+Æ(t;K) R t0 (t� s)�1=2s�1=2k!(n)(s)� !(m)(s)kpds:Denoting N(t) = sup0���t � 1� 1p k!(n)(�) � !(m)(�)kp, (4.20) 
an berewritten as, N(t) � Ck!(n)0 � !(m)0 k1 + Æ(t;K)N(t)whi
h implies, for 0 < t � t� = t�(K),(4.21) k!(n)(t)� !(m)(t)kp � Cpk!(n)0 � !(m)0 k1 � t�1+ 1p ; 1 < p < 2:Turning ba
k to (4.16) we now obtain,(4.22)k!(n)(t)� !(m)(t)k1 � C nk!(n)0 � !(m)0 k1+ R t0 (t� s)�1=2ku(n)(s)(!(n)(s)� !(m)(s))k1ds+ R t0 (t� s)�1=2k(u(n)(s)� u(m)(s))!(m)(s)k1dso :Take p = 43 and use (3.6), (3.11), (4.21), to estimate,ku(n)(s)(w(n)(s)� !(m)(s))k1 � ku(n)(s)k4k!(n)(s)� !(m)(s)k 43� Cs� 14k!(n)0 k1 � s� 14k!(n)0 � !(m)0 k1;k(u(n)(s)� u(m)(s))!(m)(s)k1 � ku(n)(s)� u(m)(s)k4k!(m)(s)k 43� Cs� 14k!(n)0 (s)� !(m)0 (s)k1 � s� 14k!(m)0 k1Inserting these inequalities in (4.22) yields, for 0 < t < t�,(4.23) k!(n)(t)� !(m)(t)k1 � Ck!(n)0 � !(m)0 k1:We 
an now 
on
lude the proof of the theorem. In view of (4.14)�(4.15), (4.23) and Lemma 4.1 the sequen
e !(n)(t) = S!(n)0 (t) 
onvergesin C(R+; L1(R2)) to a fun
tion !(t) 2 C(R+; L1(R2)). Lemma 4.1 nowimplies that the sequen
e 
onverges also in C(R+ ; Y ) (in fa
t, with allderivatives), hen
e the regularity 
laim.To establish the uniqueness 
laim, we note �rst that in view of theequi
ontinuity (4.12) the estimate (3.11) extends to(4.24) kS!0(t)kp � Æ(t;K)t�1+ 1p ; !0 2 K; 1 < p � 1;



14 MATANIA BEN-ARTZIwhen K � L1(R2) is pre
ompa
t. Assume �rst that �0 2 L1(R2).Then �(x; t) satis�es (3.7) (with !, !0, u repla
ed respe
tively by �,�0, v) and repeating the argument leading up to (3.11) we get,(4.25) k�(�; t)k1 � Æ(t)t�1; t > 0;(4.26) kv(�; t)k1 � Æ(t)t�1=2; t > 0:Setting ~�(�; t) = S�0(t), we get, as in (4.20), for 1 < p < 2,k~�(�; t)� �(�; t)kp � Æ(t) Z t0 (t� s)�1=2s�1=2k~�(�; s)� �(�; s)kpds;whi
h implies that ~�(�; t) = �(�; t), 0 � t � t�, for some t� > 0. One
an then pro
eed stepwise in time to obtain ~�(�; t) = �(�; t), t > 0. Thisproves uniqueness if �0 2 L1(R2) \ L1(R2). Dropping the assumption�0 2 L1(R2), we still have by hypothesis, for any s > 0, that �(�; s) 2L1(R2). Invoking the foregoing argument (with �(�; s) as initial data)we obtain(4.27) S�(�; s)(t) = �(�; t+ s); s > 0; t � 0:Also, sin
e �(�; t) 2 C(R+; L1(R2)), the set K = f�(�; s); 0 < s � 1g �L1(R2) is pre
ompa
t. Hen
e, 
ombining (4.24) and (4.27)(4.28) k�(�; t+ s)kp � Æ(t;K)t�1+ 1p ; ; 0 < s � 1; ; 1 < p � 1:Letting s! 0 in (4.28) we have, with t > 0,(4.29) k�(�; t)kp � Æ(t;K)t�1+ 1p ; 1 < p � 1;and, in parti
ular, we obtain (4.25) and (4.26). We 
an now repeat the�rst part of the proof to obtain �(�; t) = ~�(�; t) = S�0(t), t > 0. �Remark 4.3. The existen
e of a solution to the vorti
ity equation(1.9)�(1.10), when !0 2 L1(R2), was �rst proved by Giga, Miyakawaand Osada [16℄,using a deli
ate estimate for Green's fun
tion of a per-turbed heat equation. The 
onstants appearing in their treatment areunspe
i�ed and depend nonlinearly on k!0k1, in 
ontrast to the lineardependen
e in (3.4)�(3.5). The proof given here follows [1℄ and theuniqueness part relies also on [6℄. Observe that only the 
lassi
al esti-mates for the heat kernel have been used. A similar approa
h has beenused by Kato [20℄, using also the 
lassi
al heat kernel but di�erent fun
-tional spa
es. Kato derives (3.4), but not (3.5), (3.11)�(3.12), whi
hare essential in the uniqueness proof here. We refer to the impli
ationsof this uniqueness proof to nonlinear paraboli
 equations in Remark 5.3below.



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 155. Measures as initial dataLetM be the Bana
h spa
e of �nite (signed) measures on R2 , normedby total variation k � kM, so that naturally L1(R2) � M. FollowingKato [20℄, we shall now extend the solution operators S, U toM. Theestimates obtained in Theorem 4.2 and the weak density of L1 in Mlead to a straightforward result 
on
erning existen
e and regularity.However, uniqueness remains partially open.For simpli
ity we hen
eforth assume � = 1 and write G = G1 for theheat kernel. A measure � 2 M 
an be de
omposed as(5.1) � = �
 + �a = �
 + 1Xj=1 bjÆ(x� xj);where �
 is 
ontinuous and �a is the atomi
 part of �. The de
omposi-tion is �orthogonal�,(5.2) k�kM = k�
kM + k�akM = k�
kM + 1Xj=1 jbjj:In what follows we write b = (b1; b2; : : :) and(5.3) kbkp = � 1Xj=1 jbjjp�1=p; 1 � p � 1:We 
an now state the extension theorem for initial data in M.Theorem 5.1. Let !0 = (!0)
 + (!0)a 2 M. Then the system (1.9)�(1.10) has a solution !(�; t) 2 C(R+ ;W 1;1\W 1;1), u(�; t) = K�!(�; t)su
h that(a) !(�; t)! !0 as t! 0, in the weak� topology of M.(b) For every 1 � p � 1, k!(�; t)kp is a de
reasing fun
tion oft 2 R+ , and(5.4) sup0<t<1 t1� 1pk!(�; t)kp <1:Furthermore, if (!0)a = 0, then(5.5) limt!0 t1� 1pk!(�; t)kp = 0; 1 < p � 1 (
ompare (3.11)):(
) Let (!0)a = b = (b1; b2; � � � ). For ea
h 43 < p < 2 there are
onstants Æp, �p > 0, su
h that if kbkp < Æp then(5.6) lim supt!0 t1� 1pk!(�; t)kp < �p; 43 � p < 2:



16 MATANIA BEN-ARTZIThis 
ondition (and (a)) determines uniquely the solution !. In par-ti
ular, if (!0)a = 0 then the 
ondition (5.5) (for any single 43 < p < 2)determines ! uniquely.Remark 5.2. Sin
e for � > 0, !(�; �) 2 L1(R2), Theorem 4.2 
an beapplied to t � � . Thus !(x; t) 2 C1(R2 �R+) and estimates like (5.4)follow for t � � (see (3.11)) and need to be established only in (0; �).Proof. Using a standard molli�er, we 
onstru
t a sequen
e f!(j)0 g1j=1 �L1(R2), k!(j)0 k1 � k!0kM and !(j)0 ! !0 (in the weak� topology ofM).Let !(j) be the solution given by Theorem 4.2, !(j)(�; 0) = !(j)0 . Usingthe estimates (2.3), (3.4) we see that there exists a subsequen
e, whi
hwe relabel as f!(j)g1j=1, su
h that, for any �xed � > 0, !(j)(�; �)
onverges to a fun
tion !(�; �) in Y (in fa
t, with all derivatives, seeLemma 4.1). In parti
ular, we have also !(j)u(j) ! !u, u = K � !. Itis easy to verify that (!;u) 
onstitutes a solution to (1.9)�(1.10) andsatis�es (2.3) (with p = 1) and (3.4), with k!0k1 repla
ed by k!0kM.The estimate (5.4) follows by interpolation. To prove (a) it is 
learlysu�
ient to show (
ompare (4.12)) that the family(5.7) t! !(j)(�; t); j = 1; 2; : : : ; 0 � t � T;is equi
ontinuous in the weak� topology of M. Taking  2 C10 (R2),(5.8) �t < !(j)(�; t);  >=< !(j)(�; t);� > + < !(j)u(j)(�; t);r >(< ; > is the (M; C0(R2)) pairing). Using the estimateku(j)(�; t)!(j)(�; t)k1 � Ck!0k2Mt�1=2(see the derivation pre
eding (4.23)) we obtain the equi
ontinuity of(5.7) from the uniform integrability of �t < !(j)(�; t);  > in [0; T ℄.Finally, it remains to prove (5.5) and the uniqueness part (
). We usethe integral equation (3.7). Note �rst that the heat kernel G satis�es,for any � 2 M,(5.9)sup0<t<1 t1� 1pkG(�; t) � �kp � 
pk�kM; 
p = (4�)�(1� 1p )p�1=p; 1 � p � 1;and, with the atomi
 part b = �a,(5.10) lim supt!0 t1� 1pkG(�; t) � �kp = 
pkbkp; 1 < p � 1:With �p > 0 to be determined, take Æp = �p2
p . The hypothesis kbkp < Æpthen implies, by (5.10), that there exists T > 0 su
h that for the
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e !(j)0 ,(5.11) sup0<t�T t1� 1pkG(�; t) � !(j)0 kp � � < �p2 ;where we have used the fa
t that !(j)0 are obtained from !0 by molli�-
ation (whi
h 
ommutes with G�). Arguing as in (3.10), with Æ(t;K)repla
ed by a fun
tion h(t) � �, we obtain a solution to the integralequation (3.7) for 0 � t � T and 43 � p < 2, if �p is su�
iently small.Sin
e !(j)0 is smooth, the solution is ne
essarily !(j)(�; t), as 
onstru
tedabove. As in the derivation of (3.11), we have, for some �0 < �p,sup0<t�T t1� 1pk!(j)(�; t)kp � �0; j = 1; 2; : : : ; 43 � p < 2;hen
e also(5.12) sup0<t�T t1� 1pk!(�; t)kp � �0;where !(�; t) is the solution 
onstru
ted in the �rst part of the proof.Now if �(�; t) is another solution of Eq. (3.7), satisfying (5.12), we maypro
eed as in the uniqueness part in the proof of Theorem 4.2 (theargument following (4.26)) to obtain�(�; t) = !(�; t) for t � T;provided that �p satis�es(5.13) �p Z 10 s� 32+ 1p (1� s)� 12ds < 1:We 
an then prove the identity � = ! for all time by pro
eeding step-wise.Finally (5.5) follows readily from (5.12). �Remark 5.3. The smallness 
ondition (5.6) has been extensively usedin proving uniqueness for solutions of nonlinear paraboli
 equations(see "note added in proof" in [6℄), and is 
ommonly referred to asthe "Kato�Fujita" 
ondition. In Theorem 4.2 (i.e, for initial datain L1(R2)) we have avoided it by assuming that the solution � is inC(R+; L1(R2))TC(R+ ; L1(R2)), thus obtaining (4.28). The require-ment �(�; t) 2 L1 for t>0 
an be 
onsiderably relaxed, still avoiding a"Kato-Fujita" 
ondition. We refer to [4℄, [7℄ where similar uniquenessarguments have been used in the study of nonlinear paraboli
 equations.When the atomi
 part of the initial measure is not small, a suitableuniqueness 
ondition is still unknown.



18 MATANIA BEN-ARTZIRemark 5.4. We refer the reader to [5℄ where the results of this se
-tion are extended to well�posedness for initial data in fun
tional spa
esbeyond M(R2). In fa
t, these fun
tional spa
es are de�ned by suitablerestri
tions of the a
tion of the heat kernel on the initial data.6. Asymptoti
 behavior for large timeWe assume now that !0 2 L1(R2). Then, for any t > 0, the solution!(x; t) to (1.9)-(1.10) satis�esZR2 !(x; t)dx = ZR2 !0(x)dx:Thus, in general, there is no de
ay (for large time) in L1 norm. On theother hand, by (3.4), the vorti
ity de
ays in all Lp norms, p 2 (0;1℄:As mentioned earlier (see Remark 3.1), the 
onstant � in (3.4) (andthe subsequent inequalities) 
an be repla
ed by 4�, thus equalizing theL1 � Lp estimates for vorti
ity with those of the heat equation. Theproof of this improvement (see [9, Theorem 5℄) is obtained by using alogarithmi
 Sobolev inequality instead of the Nash inequality used in(3.2).As in the 
ase of uniqueness arguments (see Remark 5.3), the meth-ods used in the study of the vorti
ity equation (1.9) 
an be su

ess-fully applied in the study of various types of nonlinear paraboli
 equa-tions (and vi
e versa). This is 
ertainly true in what 
on
erns large-time de
ay estimates. The study of su
h estimates for Navier-Stokesequations is well established ( [10℄, [15℄, [33℄ and referen
es there).We refer to [3℄, [9℄ for L1 de
ay estimates of solutions to "vis
ous"Hamilton-Ja
obi and 
onservation equations. In parti
ular, in the two-dimensional 
ase, the fa
t that equation (1.9) is s
alar renders thevorti
ity a 
onvenient obje
t of study.A solution to the heat equation in Rn de
ays in L1 norm if the integralof the initial value vanishes. It is remarkable that a similar fa
t holdsfor vorti
ity in the two-dimensional 
ase.Theorem 6.1. Consider the system (1.9)-(1.10) and assume that !0 2L1(R2) and RR2 !0(x)dx = 0. Then(a) limt!1 k!(�; t)k1 = 0:(b) Suppose in addition that !0 is 
ompa
tly supported. Then(6.1) limt!1 t1� 1pk!(�; t)kp = 0; p 2 [1;1℄Proof. We refer to [9, Theorem 4℄ for a proof of (a). The proof for (b)follows [15, Theorem 2.4℄.
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ing (1.10) byu0(x) = ZR2(K(x� y)�K(x))!0(y)dywe get u0 2 L2. From the L2 theory of the Navier-Stokes equations itfollows that ru(x; t) 2 L2(R2 � R+), hen
e so is !(x; t). In view of(3.1) the fun
tion k!(�; t)k2 is de
reasing in t, sotk!(�; t)k22 � 2 Z tt=2 k!(�; s)k22dswhi
h proves (6.1) with p = 2. To prove the 
ase p = 1 use the integralequation (3.7). Sin
e the de
ay is known for the heat equation, we needonly estimate the se
ond term in the RHS of (3.7), in the L1(R2) norm.Denoting �(s) = s 12k!(�; s)k2 we haveku(�; s)!(�; s)k1 � s� 12 �(s)ku0k2:In view of (3.9) (with r = 1) we 
on
ludek!(�; t)�G�(�; t) � !0k1 � Cku0k2 Z t0 (t� s)� 12 s� 12 �(s)dsand the RHS tends to 0 as t ! 1 by the Lebesgue dominated 
on-vergen
e theorem. By interpolation we get (6.1) for 1 � p � 2. The
on
lusion for 2 < p � 1 follows by duality, as in the proof of [1, Eq.(3.47)℄. �Remark 6.2. The 
on
lusion in part (b) of the theorem 
an be 
on-siderably improved. In fa
t, under the same assumptions (in fa
t, onlyexponential de
ay of !0 is required) we havesup0�t<1 t 12k!(�; t)k1 <1and 
ombining this with (3.4) we obtainsup0<t<1 t 32k!(�; t)k1 <1:These estimates are identi
al to those obtained for the heat equation.We refer to [9, Theorem 4℄ for details and sharp 
onstants.The asymptoti
 behavior of solutions to the vorti
ity equation (1.9)
an be studied in detail in terms of "s
aling variables" ( [10℄, [17℄, [15℄).They are de�ned by� = (1 + t)� 12x; � = ln(1 + t):De�ning new fun
tions v; � byv(�; �) = (1 + t) 12u(x; t); �(�; �) = (1 + t) 12!(x; t)



20 MATANIA BEN-ARTZIand setting for simpli
ity � = 1, Eq. (1.9) is transformed into(6.2) ��� = L� � (v � r)�; �(�; 0) = �0(�)L� = �� + 12(� � r)� + � :(spatial derivatives are now with respe
t to �). Clearly, the relationv(�; �) = K � �(�; �) is still valid. The results of Se
. 4 yield readilythe well-posedness of Eq. (6.2) in L1(R2), as well as de
ay estimatesin � . However, the interest in this transformed equation lies in itswell-posedness in a s
ale of weighted-L2 spa
es de�ned as follows.L2;s = nf; kfk2L2;s := ZR2(1 + j�j2)sjf(�)j2d�o:Proposition 6.3. Equation (6.2) is well-posed in L2;s for any s > 1.More expli
itly, for any �0 2 L2;s there exists a unique global solution�(�; �) 2 C(R+; L2;s):Furthermore, for any M > 0 there exists a 
onstant C = C(M; s) su
hthat k�0kL2;s �M ) k�(�; �)kL2;s � C; � 2 [0;1)and C ! 0 as M ! 0.We refer to [15, Se
tion 3℄ for a proof. Observe that L2;s � L1 if s >1. By Proposition 6.3 it is a "persisten
e" spa
e for the vorti
ity, inanalogy with the spa
e Y in Lemma 4.1.The spe
trum �(L) of L in L2;s, for any s > 0, is given by (see [15,Appendix A℄)�(L) = n� 2 C ; Re(�) � �s� 12 o[n� k2 ; k = 0; 1; 2; : : :o:In parti
ular, for a �xed s > 1, the �nite set of real nonpositive numbers(6.3) �(k) = n�j = �j2 ; j = 0; 1; : : : ; ko
onsists of isolated eigenvalues of L if k < s� 1 (in the spa
e L2;s).Gallay and Wayne [15℄ 
onstru
t �nite-dimensional invariant mani-folds for the semi�ow of Eq. (6.2) (whi
h 
an easily be translated tothe solutions of (1.9)), for su�
iently small initial data. It is based onthis spe
tral stru
ture, and on methods used in the study of dynami
alsystems. The 
onstru
tion 
an be des
ribed as follows.Fix k 2 N and s � k + 2. Let Hk � L2;s be the �nite-dimensionalsubspa
e spanned by the eigenve
tors asso
iated with �(k), and letJk = L2;s	Hk be its orthogonal 
omplement. For r > 0 we denote byBr the ball of radius r in L2;s (
entered at 0).
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iently small and s; k as above. Let� 2 (k2 ; k+12 ).(a)There exists a globally Lips
hitz C1 map g : Hk ! Jk su
hthat g(0) = 0; Dg(0) = 0 and su
h that the manifoldTg = fw + g(w); w 2 Hkgis lo
ally invariant in the following sense.There exists 0 < r1 < r su
h that the semi�ow asso
iated with (6.2),
ommen
ing at any point �0 2 Tg \ Br1 stays in Tg \ Br for all � � 0.(b)This invariant manifold "attra
ts" all traje
tories having smallinitial data. More expli
itly, for every �0 2 Tg \ Br there exists amanifold S�0 , su
h that all traje
tories beginning at points of S�0 \ Br1(with �0 restri
ted also to Br1) approa
h the traje
tory �(�; �) startingat �0. We have, if �(�; �) is a solution to (6.2), with �(�; 0) = �0 2S�0 \ Br1 ,(6.4) lim sup�!1 ��1 ln k�(�; �)� �(�; �)kL2;s � ��:(
) The manifold S�0 is a 
ontinuous map of Jk . It interse
tsTg \ Br only at �0 and the familyfS�0 ; �0 2 Tg \ Brgis a foliation of Br1 .We refer to [15, Se
tion 3℄ for a proof of the theorem.Remark 6.5. Observe that the de
ay rate in Eq. (6.4) 
orresponds toa de
ay rate of t�� for solutions of the vorti
ity equation (1.9). Thus,for su�
iently small initial data in weighted-L2 spa
es, the asymp-toti
 behavior of the vorti
ity is determined, to any order, by "�nite-dimensional dynami
s".Remark 6.6. In analogy with Theorem 6.1, if RR2 �0(�)d� = 0 thenk�(�; �)ks ! 0 as � ! 0 (see [15, Theorem 3.2℄) and Theorem 6.4 
anbe applied to determine its asymptoti
 behavior. Note that in this 
asethe velo
ity �eld is square-integrable (assuming s > 1).The GaussianG(�) = (4�)�1 exp(�j�j24 ); � 2 R2is a stationary solution of (6.2) and an eigenfun
tion of L (with zeroeigenvalue). In terms of the original vorti
ity, it 
orresponds to thesolution of (1.9) obtained by the heat kernel with singularity at t =�1. It is 
alled the "Oseen Vortex". Taking k = 0 and s = 2 inTheorem 6.4, it is easily seen that H0 is the one-dimensional subspa
e
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oin
ides with the invariant manifold T (i.e., g � 0).Thus,
ombining Theorem 6.4 and the 
onservation of RR2 �(�; �)d� wegetCorollary 6.7 (stability of Oseen's vortex). Fix 0 < � < 12 . Thereexists r > 0 su
h that if �(�; �) is a solution to (6.2) with k�0kL2;2 < rand RR2 �0(�)d� = a then(6.5) k�(�; �)� aG(�)kL2;2 � Ce��� ; � � 0:We refer to [15, Se
tion 4℄ for a detailed analysis of this 
onvergen
e.7. Con
luding remarks and open problemsIt is 
ommon to say that the 
ase of the Navier-Stokes equationsin two-dimensional is "resolved". Admittedly, the situation here ismu
h better than that of the 3-D 
ase. Furthermore, the L2 theoryof existen
e and uniqueness is 
omplete. However, as we have seen,there are important problems, related to "rough" initial data, thatremain yet unresolved. Rather than "purely mathemati
al", they tou
hupon very relevant issues of �uid dynami
s and numeri
al simulationsof singular �ows. Even in the (weighted)-L2 
ontext, the asymptoti
results dis
ussed in Se
tion 6 show that the two-dimensional 
ase still
arries mu
h interest. Another aspe
t of this interest is the (relatively)re
ent interplay between the methods used here and those used in thestudy of various 
lasses of nonlinear paraboli
 equations.In what follows we list a number of yet unresolved problems.(1) Uniqueness for measure-valued initial data with largeatomi
 partAs was mentioned in Se
tion 5, the uniqueness of the solutionto (1.9)-(1.10) when !0 is a measure with large atomi
 part isunknown. It seems that tools developed in this 
ontext 
ouldprove useful for other 
lasses of nonlinear paraboli
 equations.(2) Uniform estimates with respe
t to � and Euler's equa-tionsIt is known that for smooth initial data one 
an obtain esti-mates whi
h are uniform in � 2 (0; 1℄, where � is the 
oe�
ientof vis
osity (see [18℄, [31℄). The solutions 
onverge, as � ! 0, tothe unique solution ("zero vis
osity limit") to Euler's equationswith the same initial data. When the initial data is not su�-
iently smooth (say, in L1 \ Lp; p > 2) we 
an still obtain the
onvergen
e of a subsequen
e to a solution of Euler's equations.However, the uniqueness of su
h a solution is not known. Thus,



PLANAR NAVIER-STOKES EQUATIONS VORTICITY APPROACH 23one might try to establish at least the uniqueness of the "zerovis
osity limit".(3) The 
ase of bounded domainsIn this 
ase there is no existen
e theory for solutions of theNavier-Stokes equations in vorti
ity form (with "no-slip" bound-ary 
onditions), if the initial vorti
ity is only known to be in L1.We refer to [32℄ for the 
ase of measures as initial data, but withhomogeneous boundary 
ondition on the vorti
ity. As alreadymentioned in the Introdu
tion, this is a 
ase of prime impor-tan
e in appli
ations. Indeed, if this problem is ill-posed, thenthe numeri
al pro
edure of approximating singular vorti
itiesby smooth ones needs to be justi�ed.Referen
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