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Abstract. The initial-boundary value problem for the (viscous) nonlinear scalar con-
servation law is considered,

uε
t + f(uε)x = εuε

xx, x ∈ R+ = (0,∞), 0 ≤ t ≤ T, ε > 0,

uε(x, 0) = u0(x),

uε(0, t) = g(t).

The flux f(ξ) ∈ C2(R) is assumed to be convex (but not strictly convex, i.e. f ′′(ξ) ≥ 0). It
is shown that a unique limit u = limε→0 uε exists. The classical duality method is used to
prove uniqueness. To this end parabolic estimates for both the direct and dual solutions
are obtained. In particular, no use is made of the Kružkov entropy considerations.
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1. Introduction

Consider the (viscous) nonlinear conservation law

uε
t + f(uε)x = εuε

xx, x ∈ R+ = (0,∞), 0 ≤ t ≤ T, ε > 0, (1.1)

subject to the initial condition

uε(x, 0) = u0(x), (1.2)
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and the boundary condition

uε(0, t) = g(t). (1.3)

We assume that the flux f(ξ) ∈ C2(R) is convex, f ′′(ξ) ≥ 0. In particular, we do
not assume strict convexity.

The aim of this paper is to provide a fully parabolic proof of the uniqueness of
the “zero viscosity” limit

u = lim
ε→0

uε,

which can then be viewed as the “physically correct” solution of the nonlinear
conservation law

ut + f(u)x = 0.

In particular, no entropy considerations (in the sense of Kruzkov [13]) are
employed. To the best of our knowledge, there has not been a previous attempt
to prove the uniqueness of the vanishing viscosity limit without resorting to those
entropy considerations.

This solution satisfies the initial condition (1.2), while the sense in which the
boundary condition is satisfied (in the inviscid case) is more delicate.

Throughout the paper we employ the following standard notations: We denote
by ‖ · ‖p the norm in Lp(R+), 1 ≤ p ≤ ∞.

For a normed (or semi-normed) spaceX , we denote by C([0, T ];X) (respectively,
B([0, T ];X)) the space of continuous (respectively, bounded) functions from [0, T ]
into X.

We denote by BV (R+) the space of functions of bounded variation on R+.

The basic theorem concerning the existence and uniqueness of solutions to (1.1)
is the following.

Theorem 1.1. Consider Eq. (1.1) subject to the initial condition (1.2) and the
boundary condition (1.3). Assume that

u0 ∈ L1(R+) ∩ L∞(R+) ∩BV (R+). (1.4)

Fix any T > 0 and assume that g ∈ C1[0, T ]. Then, there exists a unique solution

uε ∈ C([0, T ];L1
loc(R+)) ∩B([0, T ];L1(R+))

∩B([0, T ];L∞(R+)) ∩B([0, T ];BV (R+)).

The compactness properties of the family of solutions (0 < ε < 1) are summa-
rized in the following theorem.

Theorem 1.2. Fix T > 0 and let uε, 0 < ε < 1, be the solution given in Theo-
rem 1.1, where u0 satisfies (1.4) and g ∈ C1[0, T ].
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Then every subsequence {uεj (x, t), εj ↓ 0}, of solutions to (1.1), subject to the
initial condition (1.2) and the boundary condition (1.3), contains a subsequence
{uεjk (x, t)} converging in C([0, T ];L1

loc(R+)) to a function

u ∈ C([0, T ];L1
loc(R+))

∩B([0, T ];L1(R+)) ∩B([0, T ];L∞(R+)) ∩B([0, T ];BV (R+)).

The function u(x, t) is a weak solution to the non-viscous equation

ut + f(u)x = 0, x ∈ R+, 0 ≤ t ≤ T. (1.5)

The proofs are standard, see e.g. [9, Chap. 2] or [11] (with suitable modifications
due to the boundary).

As mentioned above, our purpose here is to provide a fully parabolic proof of
the uniqueness of the “zero-viscosity” limit, as stated in the following theorem.

Theorem 1.3. Let

u0 ∈ L1(R+) ∩ L∞(R+) ∩BV (R+).

Fix any T > 0 and let g ∈ C1[0, T ].
Then the weak solution u obtained as a “zero viscosity” limit is unique. In other

words, it is the limit

u(x, t) = lim
ε↓0

uε(x, t),

in C([0, T ];L1
loc(R+)).

Remark 1.4. It is therefore justified to call this solution the “zero-viscosity”
solution to (1.5). It is considered as the “physically meaningful” solution of the
hyperbolic problem.

This solution satisfies the initial condition (1.2) but, as is well-known, the bound-
ary condition (1.3) can only be satisfied on that part of the boundary where the
characteristic lines “enter” the domain. However, such considerations are not used
in our proof.

We emphasize that the uniqueness of the limit for the mixed initial-boundary
value problem has already been established, even in more general settings, in the
works of Bardos–Leroux–Nedelec [1], Dubois–LeFloch [5] and Otto [17]. We mention
also the similar study of Benabdallah [2] concerning the “p system”. However, these
authors have used the classical entropy approach of Kruzkov [13]. In other words,
certain “boundary entropy pairs” are introduced, and the uniqueness is obtained by
invoking suitable entropy inequalities. These inequalities are applied to the “bound-
ary trace” of the limit solution.

In contrast, our method of proof is “fully parabolic”. In other words, we make
no use of entropy functions but inspect more closely the dependence of the solutions
uε on the parameter ε. We apply the classical “duality method”, and in this sense
we are closer to the method of Oleinik [16], [6, Chap. 3].
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The basic estimates for the solution uε are derived in Sec. 2. In particular, these
estimates include those needed in the proof of Theorems 1.1 and 1.2 (using “nice”
initial and boundary data and an approximation argument).

In Sec. 3, we present our uniqueness proof, via the duality method. We first
assume strict convexity of the flux function and obtain “Oleinik-type” upper bound
estimates for the derivative of the solution uε up to the boundary (see Lemmas
3.3 and 3.7) as well as new surprising estimates for the dual solution (see Lemma
3.4 and Corollary 3.10). A stability argument then allows us to relax the strict
convexity assumption.

We remark that in the simpler case of the pure initial-value problem, which
we outline in Appendix A, the Oleinik estimate (for the hyperbolic case, ε = 0)
is certainly known [6, Chap. 3], [4]. In fact, it was shown in [10] that it entails
uniqueness if and only if the flux f is convex.

However, here we make use of it in a purely parabolic way. In particular, the
estimate for the dual solution (Lemma A.5) serves as an essential ingredient in our
proof.

2. Estimates for the Viscous Solution

Throughout this section we assume at least that

u0 ∈ L1(R+) ∩ L∞(R+) ∩BV (R+),

and that g ∈ C1[0, T ].
If additional requirements are needed for certain estimates, they will be explicitly

stated.
The solution uε is that given by Theorem 1.1.
Let

MT = max
(

sup
0≤τ≤T

|g(τ)|, ‖u0‖∞
)
,

NT = max
ξ∈[−MT ,MT ]

|f ′(ξ)|.
(2.1)

By the maximum principle, we have

|uε(x, t)| ≤MT , (x, t) ∈ R+ × [0, T ].

We first estimate the L1 norm of the solution as follows.

Lemma 2.1. Let 0 < ε < 1. We have

‖uε(·, t)‖1 ≤ ‖u0‖1 + C[|g(0)| +
∫ t

0

|g′(τ)|dτ ], 0 ≤ t ≤ T, (2.2)

where C > 0 depends only on T,MT .

It will be seen in the proof that the convexity of f is not used.
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Proof. Let λ(x) ∈ C∞
0 [0,∞) satisfy λ(x) = 1 for 0 ≤ x ≤ 1 and λ(x) = 0 if x > 3.

Assume in addition that −1 ≤ λ′(x) ≤ 0. Then (with uε = uε(x, t) for simplicity)

(uε − λ(x)g(t))t + (νε(x, t)(uε − λ(x)g(t)))x − ε[uε − λ(x)g(t)]xx

= ελ′′(x)g(t) − λ(x)g′(t) − f ′(λ(x)g(t))λ′(x)g(t),

where

νε(x, t) =
f(uε) − f(λ(x)g(t))

uε − λ(x)g(t)
=
∫ 1

0

f ′(κuε + (1 − κ)λ(x)g(t))dκ.

The linear semigroup associated with the equation ∂
∂tψ(x, t)+ ∂

∂x (νε(x, t)ψ(x, t))−
ε ∂2

∂x2ψ(x, t) = 0, with zero boundary data, is an L1-contraction. From Duhamel’s
principle, we infer

‖uε − λ(x)g(t)‖1 ≤ ‖u0 − λ(x)g(0)‖1

+
∫ t

0

[‖λ(x)g′(τ) + λ′(x)g(τ)f ′(λ(x)g(τ))‖1 + ε‖λ′′(x)g(τ)‖1]dτ.

Noting that |f ′(λ(x)g(t))| ≤ NT and |g(t)| ≤ |g(0)| + ∫ t

0 |g′(τ)|dτ we get (2.2).

We next derive an estimate for the (spatial) total variation of the solution.

Remark. In what follows we perform formal integrations by parts, and take as
zero boundary terms at infinity. These steps can be justified in a standard way by
suitable smooth (and compactly supported) approximations.

We note that, as in the previous lemma, the proof of the following lemma does
not use the convexity of f.

Lemma 2.2. Assume that u′0(x) ∈ L1(R+). Then, the total variation of uε can be
estimated by the initial and boundary data as follows.

‖uε
x(·, t)‖1 ≤ ‖u′0‖1 +

∫ t

0

|g′(τ)|dτ, 0 ≤ t ≤ T. (2.3)

Proof. Differentiating (1.1) we get

(uε
x)t + (f ′(uε)uε

x)x − ε(uε
x)xx = 0. (2.4)

Multiplying by sgn(uε
x) and using the inequality (in the sense of distributions)

|θ|xx ≥ sgn(θ)θxx (2.5)

for any θ(x), we obtain

|uε
x|t + (f ′(uε)|uε

x|)x − ε|uε
x|xx ≤ 0. (2.6)

Integrating with respect to x over (0,∞) we get
d

dt
‖uε

x(·, t)‖1 ≤ [(f ′(uε)|uε
x|) − ε|uε

x|x]x=0 = −sgn(uε
x(0, t))g′(t), (2.7)

which yields (2.3) by integration.
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In order to study the continuity of the map t→ uε(·, t) ∈ L1(R+) for smoother
initial and boundary data, we need to estimate ‖uε

t (·, t)‖1.

Lemma 2.3. Assume that (in addition to the hypotheses of Theorem 1.1) u′0, u
′′
0 ∈

L1(R+), g′′ ∈ L1(0, T ). Let 0 < ε < 1. Then, there exists a constant C > 0, depend-
ing only on T,MT , such that

‖uε
t(·, t)‖1 ≤ 3ε

(
2|g′(0)| + ‖u′′0‖1 + 2

∫ t

0

|g′′(τ)|dτ
)

+C

{(
1 +

∫ t

0

|g′(τ)|dτ
)

(1 + ‖u′0‖1) +
(∫ t

0

|g′(τ)|dτ
)2
}
, 0 ≤ t ≤ T.

(2.8)

Proof. Differentiating (1.1) with respect to t we get

(uε
t )t + (f ′(uε)uε

t )x − ε(uε
t )xx = 0.

Let λε(x) = λ(x
ε ), where λ(x) is the function introduced above (see the proof of

Lemma 2.1). The equation can be rewritten as

(uε
t − λε(x)g′(t))t + [f ′(uε)(uε

t − λε(x)g′(t))]x − ε(uε
t − λε(x)g′(t))xx

= ε(λε)′′(x)g′(t) − λε(x)g′′(t) − (f ′(uε)λε(x)g′(t))x. (2.9)

The linear semigroup associated with the equation ∂
∂tψ(x, t) + ∂

∂x(f ′(uε)ψ(x, t)) −
ε ∂2

∂x2ψ(x, t) = 0, with zero boundary data, is an L1-contraction. Thus, as in the
proof of Lemma 2.1, we get

‖uε
t − λε(x)g′(t)‖1

≤ ‖uε
t (x, 0) − λε(x)g′(0)‖1 + 3ε

∫ t

0

|g′′(τ)|dτ +
∫ 3

0

|λ′′(x)|dx
∫ t

0

|g′(τ)|dτ

+
∫ t

0

|g′(τ)|‖(λε(·)f ′(uε)(·, τ))x‖1dτ.

In view of Lemma 2.2, we have

‖(λε(·)f ′(uε)(·, τ))x‖1 ≤ B(‖u′0‖1 +
∫ τ

0

|g′(s)|ds) + 3NT , (2.10)

where B = max[−MT ,MT ] f
′′(ξ).

We note that

2|g′(τ)|
∫ τ

0

|g′(s)|ds =
d

dτ

(∫ τ

0

|g′(s)|ds
)2

.

Combining this with uε
t (x, 0) = −f ′(u0(x))u′0(x) + εu′′0(x), we obtain (2.8).

Corollary 2.4. Let 0 < ε < 1. Then, under the assumptions imposed in Lemma 2.3,
there exists a constant L > 0, depending on T and on u0, g, up to second-order
derivatives, such that

‖uε(·, t2) − uε(·, t1)‖1 ≤ L(t2 − t1), 0 ≤ t1 < t2 ≤ T.
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An interesting and useful estimate that can be derived from the estimate (2.8)
is the following.

Lemma 2.5. Let u0, g satisfy the assumptions imposed in Lemma 2.3. There exists
a constant C > 0, depending on T and on u0, g (up to second-order derivatives),
but not on ε > 0, such that

ε|uε
x(x, t)| ≤ C, (x, t) ∈ R+ × [0, T ], 0 < ε < 1. (2.11)

Proof. Clearly it suffices to have such an estimate for ‖uε
xx‖1. However, using

Eq. (1.1), this follows from the estimates in Lemmas 2.2 and 2.3.

The method used in the proof of Lemma 2.2 can be used to obtain a “stability”
result for the solution in terms of the initial and boundary data.

Lemma 2.6. Assume 0 < ε < 1. Let uε be a solution to (1.1), subject to the
boundary condition (1.3). Let ũε be a solution to the same equation but subject to
the initial and boundary conditions

ũε(0, x) = ũ0(x), ũε(0, t) = g̃(t).

Let M ′
T = max(MT , M̃T ), where

M̃T = max
(

sup
0≤τ≤T

|g̃(τ)|, ‖ũ0‖∞
)
.

Then, there exists a constant C > 0, depending only on T,M ′
T , such that

‖uε(·, t) − ũε(·, t)‖1 ≤ ‖u0 − ũ0‖1

+CK(|g(0)− g̃(0)| +
∫ t

0

|g′(τ) − g̃′(τ)|dτ), 0 ≤ t ≤ T,

(2.12)

where K = 1 + ‖u′0‖1 + ‖ũ′0‖1 +
∫ t

0 (|g′(τ)| + |g̃′(τ)|)dτ.

Proof. Let z = uε − ũε. It satisfies the equation

zt + (rεz)x = εzxx,

where

rε(x, t) =
f(uε) − f(ũε)

uε − ũε
=
∫ 1

0

f ′(κuε + (1 − κ)ũε)dκ.

This equation can be rewritten as

(z − λ(x)δg(t))t + [rε(x, t)(z − λ(x)δg(t))]x − ε(z − λ(x)δg(t))xx

= −λ(x)δg′(t) − δg(t)(λ(x)rε(x, t))x + ελ′′(x)δg(t),

where δg(t) = g(t) − g̃(t) and λ(x) is as above (see the proof of Lemma 2.1).
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The linear semigroup associated with the equation ∂
∂tψ(x, t) + ∂

∂x (rεψ(x, t)) −
ε ∂2

∂x2ψ(x, t) = 0, with zero boundary data, is an L1-contraction, so we have

‖z(·, t) − λ(·)δg(t)‖1

≤ ‖u0 − ũ0 − λ(x)δg(0)‖1

+
∫ t

0

[|δg(τ)|‖(λ(·)rε(·, τ))x‖1 + ‖λ(·)δg′(τ)‖1 + ε‖λ′′(·)δg(τ)‖1]dτ. (2.13)

Noting that

rε
x(x, t) =

∫ 1

0

f ′′(κuε + (1 − κ)ũε)(κuε
x + (1 − κ)ũε

x)dκ,

and using Lemmas 2.2 and 2.1, we have

‖(λ(·)rε(·, τ))x‖1 ≤ CK.

Clearly

|δg(τ)| ≤ |g(0) − g̃(0)| +
∫ τ

0

|g′(s) − g̃′(s)|ds.

Inserting these two estimates in (2.13) we get (2.12).

3. Uniqueness of the Solution

The proof of Theorem 1.3 is given now, in several steps. It is based on the classical
duality approach.

We first assume that the flux function is strictly convex,

A = min
ξ∈R

f ′′(ξ) > 0. (3.1)

At the very last step of the proof this assumption is relaxed (allowing convex fluxes
which are not strictly convex).

Without loss of generality we assume that there exists a point b ∈ R such that
f ′(b) = 0. Indeed, otherwise we can modify f outside the interval [−MT ,MT ] (see
Eq. (2.1)).

By a suitable shift we can therefore assume

f(0) = f ′(0) = 0. (3.2)

Some estimates obtained in the course of the proof are of interest in their own
right, as they represent “parabolic versions” of the well-known hyperbolic “entropy
inequalities”.

3.1. The case of nonnegative boundary data, g(t) ≥ 0

In addition to the hypotheses on u0, g in Theorem 1.1, we assume here that g ∈
C2[0, T ] and that u′0, u

′′
0 ∈ L1(R+). Thus, all the estimates obtained in Sec. 2 can

be used here. Observe that uε, uε
x decay as x → ∞ (to see this it suffices to note

the integrability results of Lemmas 2.2 and 2.3).
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For notational simplicity, we shall also use, in addition to uε (solution to (1.1)),
a solution to the same equation, subject to the same initial and boundary data, but
with a viscosity coefficient µ instead of ε.

So let vµ(x, t) be a solution of

vµ
t + f(vµ)x = µvµ

xx, x ∈ R+, 0 ≤ t ≤ T, µ > 0, (3.3)

subject to the same initial and boundary conditions ((1.2) and (1.3)).
Let wµ,ε = uε − vµ. It satisfies the equation

wµ,ε
t + (bµ,εwµ,ε)x − εwµ,ε

xx = (ε− µ)vµ
xx, (3.4)

where

bµ,ε(x, t) =
f(uε(x, t)) − f(vµ(x, t))

uε(x, t) − vµ(x, t)
. (3.5)

We have wµ,ε(0, t) = 0, wµ,ε(x, 0) = 0. We need to show that wµ,ε → 0 a.e. in
R+ × [0, T ] as µ, ε→ 0 (along any two decreasing sequences).

3.1.1. The dual equation

Let bµ,ε be given by (3.5) and consider the dual equation

φµ,ε
t + bµ,εφµ,ε

x + εφµ,ε
xx = 0, x ∈ R+, 0 ≤ t ≤ T, (3.6)

with “terminal” condition

φµ,ε(x, T ) = φT (x) ∈ C∞
0 (R+),

and boundary condition

φµ,ε(0, t) = 0, 0 ≤ t ≤ T.

By standard estimates, φµ,ε(x, t), as well as its derivatives, decay exponentially as
x → ∞, uniformly in t ∈ [0, T ], for every fixed ε > 0. In particular, the only
boundary terms in the integrations below are those at x = 0.

The obvious maximum principle

sup
[0,∞)×(0,T )

|φµ,ε(x, t)| ≤ ‖φT ‖∞,

can be strengthened as follows.

Lemma 3.1. The total variation TV (φµ,ε(·, t)) =
∫∞
0

|φµ,ε
x (x, t)|dx is an increasing

function of t ∈ [0, T ].

Proof. Differentiating Eq. (3.6) and multiplying by sgn(φµ,ε
x ), we get

|φµ,ε
x |t + (bµ,ε|φµ,ε

x |)x = −εφµ,ε
xxxsgn(φµ,ε

x ) ≥ −ε|φµ,ε
x |xx, (3.7)

where in the last step we have used |θ|xx ≥ sgn(θ)θxx for any θ(x).
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Observe that at x = 0 we have

bµ,ε|φµ,ε
x | + ε|φµ,ε

x |x = sgn(φµ,ε
x )[bµ,εφµ,ε

x + εφµ,ε
xx ] = −sgn(φµ,ε

x )φµ,ε
t = 0.

Thus integrating (3.7) over R+×[t1, t2] for any two values 0 ≤ t1 < t2 ≤ T concludes
the proof.

Remark 3.2. Note that Lemma 3.1 implies that the total variation of φµ,ε(·, t) is
bounded by that of φT .

3.1.2. The entropy inequality and its dual analog

We show that the following “entropy” inequality (in the sense of Oleinik) holds,
when a suitable positivity condition is imposed on the boundary data g.

Lemma 3.3. Assume g(t) ≥ 0 and that for some K > 0

g′(t) +Kg(t) ≥ 0. (3.8)

Then

uε
x(x, t) ≤ Et−1, x ∈ R+, 0 < t ≤ T, (3.9)

where E ≥ A−1 depends on K but is independent of ε > 0, and of the initial data.

Proof. We first show that uε
x(x, t) − (At)−1 cannot have an interior positive max-

imum at any x > 0, 0 < t ≤ T. Indeed, the function uε
x(x, t) − (At)−1 satisfies the

equation (compare (2.4))

(uε
x − (At)−1)t + f ′(uε)(uε

x − (At)−1)x − ε(uε
x − (At)−1)xx

= A−1t−2 − f ′′(uε)(uε
x)2. (3.10)

Let γ = max[0,∞)×[0,T ] |uε
x|.

Assume to the contrary that,

uε
x(x0, t0) − (At0)−1 = max

[0,∞)×[0,T ]
(uε

x − (At)−1) > 0,

for some

(x0, t0) ∈ R+ × [δ, T ], 0 < δ < (γA)−1.

Clearly t0 > δ and at (x0, t0) the left-hand side of (3.10) is nonnegative while

[A−1t−2 − f ′′(uε)(uε
x)2](x0,t0) < A−1t−2

0 −A(At0)−2 = 0.

Thus, it remains to check the function uε
x(x, t) − (At)−1 at the boundary x = 0.

Define the function

ψ(x, t) = uε(x, t) − g(t) − Ex

t
, t > 0,
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where E > 0 will be determined in the process of the proof.
In view of Eq. (1.1) it satisfies

ψt + f ′(uε)ψx − εψxx = −g′(t) +
Ex

t2
− E

t
f ′(uε). (3.11)

Suppose that ψ has a positive maximum at (x0, t0) ∈ (0,∞) × (0, T ]. Then the
left-hand side of Eq. (3.11) is nonnegative at this point.

On the other hand, since f ′′ ≥ A, and g(t0) ≥ 0 by assumption,

f ′(uε(x0, t0)) > f ′
(
g(t0) +

Ex0

t0

)
≥ A

(
g(t0) +

Ex0

t0

)
,

and for right-hand side of Eq. (3.11) we have at this point,

−g′(t0) +
Ex0

t20
− E

t0
f ′(uε(x0, t0)) < −g′(t0) +

Ex0

t20
− EA

t0

(
g(t0) +

Ex0

t0

)
.

We now take E > 0 so large that

EA ≥ 1,
EA

T
≥ K,

where K is as in the above assumption on g.
It follows that for this choice of E the right-hand side of Eq. (3.11) is negative

at (x0, t0), which is a contradiction.
Since ψ(0, t) = 0, and limt→0+ ψ(x, t) = −∞, we conclude that ψ(x, t) ≤ 0.
In particular, we obtain on the boundary

uε
x(0, t) ≤ E

t
, t > 0.

Recalling the fact that uε
x − 1

At does not have an interior positive maximum, the
proof is complete.

Let vµ(x, t) be the solution to (3.3) subject to the same initial and boundary
conditions ((1.2) and (1.3)). In particular, it satisfies the same entropy inequality
(3.9).

Let wµ,ε = uε − vµ. It satisfies Eq. (3.4), with bµ,ε(x, t) as in Eq. (3.5), and
wµ,ε(0, t) ≡ 0, wµ,ε(x, 0) ≡ 0. We have

bµ,ε =
∫ 1

0

f ′(κuε + (1 − κ)vµ)dκ.

It follows from the entropy inequality that also

bµ,ε
x (x, t) < st−1, x ∈ R+, 0 < t ≤ T, (3.12)

for s > BE > 1, B = max[−MT ,MT ] f
′′(ξ). In particular, s is independent of ε, µ.
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Lemma 3.4. Assume that g satisfies the condition in Lemma 3.3. Assume further
that φT ≥ 0. Then, the x-derivative of φµ,ε satisfies the estimate

tsφµ,ε
x (x, t) ≥ −T s‖φ′T ‖∞, x ∈ R+, 0 < t ≤ T. (3.13)

Proof. Differentiating (3.6) with respect to x and multiplying by ts, we get

(φµ,ε
x ts)t +

(
bµ,ε
x − s

t

)
φµ,ε

x ts + bµ,ε(φµ,ε
x ts)x + ε(φµ,ε

x ts)xx = 0,

x ∈ R+, 0 < t ≤ T. (3.14)

We check that φµ,ε
x ts has no negative minimum in R+ × [τ, T ) for any τ ∈ (0, T ).

Indeed, suppose to the contrary that the function has a negative minimum at
(x0, τ0) ∈ R+ × [τ, T ). However, at this point the left-hand side of (3.14) is strictly
positive, in view of (3.12).

On the other hand, the maximum principle, the zero boundary condition for
φµ,ε and the assumption that φT ≥ 0 imply that φµ,ε ≥ 0 and in particular

φµ,ε
x (0, t) ≥ 0,

which concludes the proof.

3.1.3. Concluding the uniqueness argument, g ≥ 0

Multiplying (3.4) by φµ,ε, integrating over R+ × [0, T ] and noting (3.6), we obtain∫ ∞

0

wµ,ε(x, T )φT (x)dx = (µ− ε)
∫ T

0

∫ ∞

0

φµ,ε
x (x, t)vµ

x (x, t)dxdt. (3.15)

We now estimate the right-hand side of (3.15).

Lemma 3.5. Assume that g satisfies the condition in Lemma 3.3. Assume further
that φT ≥ 0. Then for any two sequences µi > εi > 0, µi → 0,

lim sup
µi→0

(µi − εi)
∫ T

0

∫ ∞

0

φµi,εi
x (x, t)vµi

x (x, t)dxdt ≤ 0. (3.16)

Proof. In view of Remark 3.2 and the estimate (2.11) (applied to vµ) we have, for
0 < δ < T,

|(µi − εi)
∫ δ

0

∫ ∞

0

φµi,εi
x (x, t)vµi

x (x, t)dxdt| ≤ C‖φ′T ‖1δ, (3.17)

where C > 0 is independent of µ, ε, δ. Denote

Dµ,ε
1 = {(x, t) ∈ R+ × [δ, T ], φµ,ε

x (x, t) > 0, vµ
x(x, t) > 0},

Dµ,ε
2 = {(x, t) ∈ R+ × [δ, T ], φµ,ε

x (x, t) < 0, vµ
x(x, t) < 0}.



April 9, 2010 15:11 WSPC/S0219-8916 JHDE 00208

Conservation Laws on Half-Line 177

Clearly ∫ T

δ

∫ ∞

0

φµ,ε
x (x, t)vµ

x (x, t)dxdt

≤
∫ ∫
Dµ,ε

1

φµ,ε
x (x, t)vµ

x (x, t)dxdt +
∫ ∫
Dµ,ε

2

φµ,ε
x (x, t)vµ

x (x, t)dxdt. (3.18)

Now, for (x, t) ∈ Dµ,ε
1 , we have, due to Lemma 3.3,

0 < φµ,ε
x (x, t)vµ

x (x, t) ≤ |φµ,ε
x (x, t)|E

t
≤ |φµ,ε

x (x, t)|E
δ
.

For (x, t) ∈ Dµ,ε
2 , we have, by Lemma 3.4,

0 < φµ,ε
x (x, t)vµ

x (x, t) ≤
(
T

t

)s

‖φ′T ‖∞|vµ
x (x, t)| ≤

(
T

δ

)s

‖φ′T ‖∞|vµ
x (x, t)|.

Thus, by (3.18) and the above estimates,

(µi − εi)
∫ T

δ

∫ ∞

0

φµi,εi
x (x, t)vµi

x (x, t)dxdt

≤ (µi − εi)

(
E

δ

∫ T

δ

‖φµi,εi
x (·, t)‖1dt+

(
T

δ

)s

‖φ′T ‖∞
∫ T

δ

‖vµi
x (·, t)‖1dt

)
In view of Remark 3.2 and Lemma 2.2 (applied to vµ), we have

lim sup
µi→0

(µi − εi)
∫ T

δ

∫ ∞

0

φµi,εi
x (x, t)vµi

x (x, t)dxdt ≤ 0,

and combining this with (3.17) we obtain (3.16).

We can now complete the proof of the uniqueness Theorem 1.3 in this case (sub-
ject to the additional restrictions imposed on the initial and boundary conditions)
as follows.

Let uε be a solution to (1.1) and let vµ be a solution to (3.3), both subject to
the same initial and boundary conditions ((1.2) and (1.3)).

Assume that uεi →
εi→0

ũ, vµi →
µ→0

ṽ. We want to show that ũ ≡ ṽ.

Assume first that the boundary function g satisfies the condition in Lemma 3.3.
Let w̃ = ũ − ṽ. Let 0 ≤ φT ∈ C∞

0 (R+). In view of Eq. (3.15) and Lemma 3.5,
we have ∫ ∞

0

w̃(x, T )φT (x)dx ≤ 0,

which implies (w̃)+(x, T ) = max(w̃(x, T ), 0) = 0. Since the roles of ũ and ṽ can be
interchanged, it follows that w̃ = 0.

Now take a general function g ≥ 0, which we assume to be (at least) continuously
differentiable on [0, T ]. We denote by gθ = g + θ, for any nonnegative constant θ.
Clearly, if θ > 0, the condition of Lemma 3.3 is satisfied, hence, by the above
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argument, the solution uε,θ of (1.1), subject to the boundary condition gθ, has a
unique limit as ε→ 0. In view of the stability Lemma 2.6, the set of values of θ for
which the solution uε,θ of (1.1) has a unique “zero viscosity” limit is closed. Thus,
we can take θ = 0. This completes the proof for g ≥ 0.

3.2. The case of nonpositive boundary data, g(t) ≤ 0

In addition to the hypotheses imposed in Theorem 1.1, we assume that the initial
function

u0 ∈ C2
0 (c, d), (3.19)

where [c, d] ⊆ (0,∞), and that g ∈ C2[0, T ]. These assumptions are made in order to
guarantee a rapid decay of the solutions (as |x| → ∞) and will eventually be relaxed.
Recall that we are still assuming the strict convexity (3.1) of the flux function.

Lemma 3.6. For a suitable constant C > 0, the function θ(x, t) = Cx
t is a super-

solution to (1.1) in R+ × (0, T ], for all 0 < ε < 1.

Proof. We note that

f(θ(x, t))x =
C

t
f ′(θ(x, t)) ≥ A

C2x

t2
,

where we have used the strict convexity assumption (3.1).
It follows that

θt + f(θ)x − εθxx ≥
(
−C
t2

+A
C2

t2

)
x ≥ 0, (x, t) ∈ R+ × (0, T ],

provided we take C > A−1.

Lemma 3.7. Let uε be a solution to (1.1), where the initial function satisfies (3.19)
and the boundary function g is nonpositive. Then, for 0 < ε < 1, and C > 0 as in
Claim 3.6,

uε ≤ Cx

t
, (x, t) ∈ R+ × (0, T ].

Proof. For any fixed 0 < ε < 1 there exists τ > 0 such that

uε(x, t) ≤ Cx

t
, x ∈ R+, t ∈ (0, τ), (3.20)

where we take into account the assumption g(t) ≤ 0 and Lemma 2.5.
The assertion of the lemma now follows from the previous claim and the com-

parison principle.

Our approach here is to show that the effect of the boundary data “disappears”
as ε → 0, namely, that the limiting solution will be identical to that obtained
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with g ≡ 0. This is understandable from the “hyperbolic point-of-view”, since the
characteristic lines from the boundary “escape to the left” (as t increases).

To that end, we take another boundary function 0 ≥ g̃(t) ≥ g(t), t ∈ [0, T ]. Let
ũε(x, t) be the solution to (1.1), subject to the initial data (1.2) (which satisfies
(3.19)), but with boundary condition g̃.

The difference wε = ũε − uε satisfies the equation

wε
t + (rεwε)x = εwε

xx, (x, t) ∈ R+ × (0, T ), (3.21)

where

rε(x, t) =
f(ũε) − f(uε)

ũε − uε
=
∫ 1

0

f ′(κũε(x, t) + (1 − κ)uε(x, t))dκ,

(x, t) ∈ R+ × (0, T ). (3.22)

By the comparison principle, wε ≥ 0. Furthermore, in view of Lemma 3.7 we have

rε(x, t) ≤
∫ 1

0

f ′(κũε(x, t) + (1 − κ)uε(x, t))+dκ ≤ BC
x

t
, (x, t) ∈ R+ × (0, T ),

(3.23)

where B = max {f ′′(ξ), |ξ| ≤MT } .

3.2.1. The dual equation

Let rε be given by (3.22) and consider the dual equation

φε
t + rεφε

x + εφε
xx = 0, x ∈ R+, 0 ≤ t ≤ T, (3.24)

with “terminal” condition

φε(x, T ) = φT (x) ∈ C∞
0 (R+),

and boundary condition

φε(0, t) = 0, 0 ≤ t ≤ T.

The obvious maximum principle

sup
[0,∞)×(0,T )

|φε(x, t)| ≤ ‖φT ‖∞,

can be strengthened exactly as in the case of Lemma 3.1 (and with identical proof)
as follows.

Lemma 3.8. The total variation TV (φε(·, t)) =
∫∞
0

|φε
x(x, t)|dx is an increasing

function of t ∈ [0, T ].

In analogy with Lemma 3.6, we have

Lemma 3.9. For suitable constants C1, β > 0, the function θ(x, t) = C1x
tβ is a

subsolution to (3.24) in R+ × (0, T ], for all 0 < ε < 1.
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Proof. By the estimate (3.23) we have

rεθx ≤ BC
x

t
· C1

tβ
= B

CC1x

tβ+1
.

Thus

θt + rεθx + εθxx ≤ −βC1x

tβ+1
+B

CC1x

tβ+1
,

and the right-hand side is nonpositive if β > BC.

In addition, since φT is compactly supported we can determine C1 > 0 so that

φT (x) ≤ C1x

T β
, x ∈ R+.

The comparison principle now yields (since we consider a terminal value
problem),

Corollary 3.10. Let φε be a solution to (3.24), where the terminal function is
φT (x) ∈ C∞

0 (R+) and φε(0, t) ≡ 0. Then, for β,C1 > 0 as in Lemma 3.9,

φε ≤ C1x

tβ
, (x, t) ∈ R+ × (0, T ].

3.2.2. The duality argument, concluding uniqueness for g ≤ 0

Lemma 3.11. The difference wε = ũε −uε of the two solutions associated with the
boundary data g ≤ g̃ ≤ 0, respectively, satisfies

lim
ε→0

wε(x, t) = 0, in L1
loc(R+ × (0, T )).

Proof. Let φε be the solution to (3.24) and assume that the terminal value φT ≥ 0.
Fix 0 < η < T. Multiplying (3.21) by φε and integrating over R+ × [η, T ] we get, in
view of (3.24),∫ ∞

0

[wε(x, T )φT (x) − wε(x, η)φε(x, η)]dx = ε

∫ T

η

wε(0, t)φε
x(0, t)dt. (3.25)

We note that by Corollary 2.4∣∣∣∣∫ ∞

0

wε(x, η)φε(x, η)dx
∣∣∣∣ ≤ Lη‖φT ‖∞.

By Corollary 3.10 and the assumption φT ≥ 0, we have

0 ≤ φε
x(0, t) ≤ C1

ηβ
, t ∈ (η, T ].

Using the last two estimates in (3.25),

lim sup
ε→0

∫ ∞

0

wε(x, T )φT (x)dx ≤ Lη‖φT ‖∞,
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and letting now η → 0, we conclude

lim sup
ε→0

∫ ∞

0

wε(x, T )φT (x)dx ≤ 0.

Since wε(x, T ) ≥ 0 and T can be replaced by any value t ∈ [0, T ] the lemma is
proved.

Take now g̃ ≡ 0. We know from the treatment above (g ≥ 0) that ũε converges
to a unique limit as ε → 0. Hence by Lemma 3.11 the same is true for uε. This
concludes the proof of Theorem 1.3 in this case.

3.3. The general case for the boundary function g(t)

3.3.1. Conclusion of the proof of Theorem 1.3

Fix T > 0. We still assume the strict convexity (3.1). In addition to the hypotheses
imposed on u0, g in Theorem 1.1, we assume also that:

(i) u0 ∈ C2
0 (R+),

(ii) g ∈ C2[0, T ],
(iii) For every τ ∈ [0, T ) there exists a δ > 0 such that

g(t1)g(t2) ≥ 0 for any τ ≤ t1 < t2 < τ + δ.

(3.26)

Let uε, ε > 0, be the unique solution given by Theorem 1.1.
Let t̄ be defined by:

t̄ = sup{τ ∈ [0, T ], uε(x, t) converges as ε ↓ 0 to a unique limit

u ∈ C([0, τ ];L1
loc(R+)) ∩B([0, τ ];L1(R+))

∩B([0, τ ];L∞(R+)) ∩B([0, τ ];BV (R+))}
By our assumption on g and the above treatments (where g has unique sign) we
have t̄ > 0. Suppose that t̄ < T.

Let η > 0 and let R > 0 be sufficiently large so that∫ ∞

R

(|u(x, t̄)| + |uε(x, t̄)|)dx < η, 0 < ε < 1.

The existence of such a number R follows from the (uniform) rapid decay of
{uε}0<ε<1 as x→ ∞ [11].

Let 0 < ε0 < 1 be such that∫ R

0

|u(x, t̄) − uε(x, t̄)|dx < η, 0 < ε < ε0.

We can choose v0 ∈ C∞
0 (0, R) such that∫ R

0

|u(x, t̄) − v0(x)|dx < η.

By the results above and the assumption on g there exists a δ > 0 such that
the solution vε to (1.1), subject to the initial condition vε(x, t̄) = v0(x) and the
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boundary condition g, exists in [t̄, t̄ + δ] and converges to a unique limit v(x, t)
(as ε ↓ 0).

In view of the stability Lemma 2.6, we have∫ ∞

0

|vε(x, t) − uε(x, t)|dx < 3η, 0 < ε < ε0, t ∈ [t̄, t̄+ δ].

It follows that if u, ū are two limits of subsequences of {uε}0<ε<ε0
, then∫ ∞

0

|u(x, t) − ū(x, t)|dx < 6η, t ∈ [t̄, t̄+ δ].

Since η > 0 is arbitrary, it follows that in fact the limit is unique also in [t̄, t̄+ δ].
Thus, t̄ = T.

Finally, let g, u0 satisfy the hypotheses of Theorem 1.3, and let uε be the solution
given in Theorem 1.1. Let {gn(t)}∞n=1 ⊆ C2[0, T ] be a sequence of polynomials such
that: (a) ‖g′(·) − g′n(·)‖1 −−−−→

n→∞ 0.

(b) gn(0) = g(0).

Let {u0,n(x)}∞n=1 ⊆ C∞
0 (R+) be a sequence converging to u0 in L1(R+). For every

n = 1, 2, . . . , let uε,n be the solution given by Theorem 1.1, subject to the initial
condition u0,n(x) and the boundary condition gn(t).

In view of Lemma 2.6, we have

sup
0<ε<1

sup
0≤t≤T

‖uε(·, t) − uε,n(·, t)‖1 −−−−→
n→∞ 0.

On the other hand, since gn is a polynomial, it certainly satisfies (3.26)(iii), so that
by the above considerations, there exists a unique limit (as ε→ 0) to uε,n, for every
fixed n. Hence, there is a unique limit to uε.

3.3.2. Removing the strict convexity assumption

We now assume only f ′′(ξ) ≥ 0.
Fix T > 0. We consider the solution uε to (1.1), subject to the initial condition

(1.2) and the boundary condition (1.3).
For δ > 0 we define fδ(ξ) = f(ξ) + δξ2 and let uε,δ be the solution to

uε,δ
t + fδ(uε,δ)x = εuε,δ

xx ,

subject to the same initial and boundary conditions.
The function wε,δ = uε − uε,δ satisfies the equation

wε,δ
t + (bε,δwε,δ)x = εwε,δ

xx + 2δuε,δuε,δ
x ,

where

bε,δ =
f(uε) − f(uε,δ)

uε − uε,δ
.
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The linear semigroup associated with the equation ∂
∂tψ(x, t) + ∂

∂x (bε,δψ(x, t)) −
ε ∂2

∂x2ψ(x, t) = 0, with zero boundary data, is an L1-contraction. Taking into account
the maximum principle and the total variation estimate for uε,δ (Lemma 2.2), we
obtain from the Duhamel principle

‖wε,δ(·, t)‖1 ≤ 2δTMT (‖u′0‖1 +
∫ T

0

|g′(τ)|dτ), 0 ≤ t ≤ T,

where MT is as in (2.1).
Since fδ is strictly convex, there exists a unique limit u0,δ = limε→0 u

ε,δ. It is
sufficient to take this convergence in the sense of C([0, T ];L1

loc(R+)). The function
zε,δ = uε − u0,δ satisfies therefore the same estimate

‖zε,δ(·, t)‖1 ≤ 2δTMT (‖u′0‖1 +
∫ T

0

|g′(τ)|dτ), 0 ≤ t ≤ T. (3.27)

Invoking Theorem 1.2, let {uεj (x, t), εj ↓ 0} , {uµj (x, t), µj ↓ 0} , be two subse-
quences of solutions converging in C([0, T ];L1

loc(R+)) to limit functions u, v, respec-
tively.

From (3.27), it follows that

‖u(·, t) − v(·, t)‖1 ≤ 4δTMT

(
‖u′0‖1 +

∫ T

0

|g′(τ)|dτ
)
, 0 ≤ t ≤ T,

and since δ > 0 is arbitrary, we conclude that u = v.

Appendix A. The Conservation Law on the Whole Line

The method used in the paper to prove the uniqueness of the zero-viscosity limit
to solutions of (1.1) is of interest even in the simpler case of the pure Cauchy
problem. It avoids completely the classical entropy argument [13] and instead uses
a “duality” approach. In this sense, it is close to the duality argument used by
Oleinik [16], [6, Chap. 3]. However, the latter treated directly the hyperbolic limit
(ε = 0), while our method deals solely with the parabolic equation and yields new
interesting estimates for the solution of the dual equation.

We consider

uε
t (x, t) + f(uε(x, t))x = εuε

xx(x, t), (x, t) ∈ R × [0, T ], ε > 0. (A.1)

subject to the initial condition

uε(x, 0) = u0(x). (A.2)

We assume that the flux function f(u) is convex, and that without loss of generality,
it satisfies (3.2). Furthermore, using an argument as in the end of the preceding
section, we may in fact assume that f is strictly convex and satisfies (3.1).

By a density argument we may assume that the initial data u0(x) is smooth
and rapidly decaying at infinity, so that the initial value problem (A.1), (A.2) has
a unique smooth solution uε(x, t) for any fixed ε > 0. Such a solution uε(x, t)
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can be constructed by the fixed point argument (see [9, Chap. 2]). By extension,
using the notation introduced at the end of the Introduction, with R+ replaced
by R, if

u0 ∈ L1(R) ∩ L∞(R) ∩BV (R), (A.3)

then for every sequence {uεj , εj → 0} , there exists a converging subsequence
{uεjk (x, t)},

lim
εjk

→0+
uεjk (·, t) = u(·, t) in C([0, T ];L1

loc(R)).

We need to show that this limit is unique.

A.1. Estimates for uεεε

In analogy with (2.1) we denote

M = ‖u0‖∞,
N = max

|p|≤M
|f ′(p)| . (A.4)

The flux f is assumed to satisfy (3.1) and we define

B = max
|p|≤M

f ′′(p). (A.5)

We have the basic estimates [9], which certainly do not depend on the convexity
of f,

Lemma A.1. The solution to (A.1) satisfies the estimates

(i) ‖uε(·, t)‖∞ ≤M.

(ii) ‖uε(·, t)‖1 ≤ ‖u0‖1.

(iii) The total variation of uε is a non-increasing function of time,

TV (uε(·, t)) = ‖uε
x(·, t)‖1 ≤ ‖u′0‖1, for any t ∈ [0, T ]. (A.6)

We note that the total variation estimate has been generalized [18, Theorem
1.4] to any monotone continuous function of the solution. We refer also to [20,
Theorem 2.1] for precise total variation estimates in the (non-convex hyperbolic,
ε = 0) case f(u) = uk (and compactly supported initial data).

We have here also the analog of the estimate (2.11), but with weaker conditions
(and a very different proof):

Lemma A.2. The space derivative of the direct equation solution can be estimated
by the initial data,

‖uε
x(·, t)‖∞ ≤ ‖u′0‖∞ +

2N‖u0‖∞
ε

. (A.7)
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Proof. We check directly that

(εuε
x − f(uε))t + f ′(uε)(εuε

x − f(uε))x − ε(εuε
x − f(uε))xx = 0, (A.8)

so that the maximum principle yields

‖(εuε
x − f(uε))(·, t)‖∞ ≤ ‖(εuε

x − f(uε))(·, 0)‖∞. (A.9)

Since f(0) = 0, it follows from (A.4) that ‖f(uε(·, t))‖∞ ≤ N‖u0‖∞. Thus (A.9)
leads to

‖(εuε
x − f(uε))(·, t)‖∞ ≤ N‖u0‖∞ + ε‖u′0‖∞,

which proves (A.7).

In Lemma 3.3 we derived an upper bound estimate for the x-derivative of uε, for
a certain class of boundary conditions. In the case of the whole line, such a condition
is known, even for more general (degenerate) parabolic equations [7, Sec. 3]. It is
independent of ε (and the initial data u0), and constitutes a viscous version of
Oleinik’s (hyperbolic) entropy condition for the case of a convex flux ([6, Chap. 3],
[4]).

Lemma A.3. Let uε be a solution to (A.1), then

uε
x(x, t) ≤ 1

At
, (A.10)

(A is as in (3.1)).

A.2. The duality approach

We proceed as in Sec. 3.1. Let

εj > 0, µj > 0, lim
j→∞

εj = 0, lim
j→∞

µj = 0

be such that the corresponding sequences of solutions of the parabolic equations

u
εj

t + f(uεj )x = εju
εj
xx (A.11)

and

v
µj

t + f(vµj )x = µjv
µj
xx (A.12)

subject to the same initial data

uεj (x, 0) = vµj (x, 0) = u0(x), (A.13)

converge in C([0, T ];L1
loc(R))-space.

Without loss of generality we can assume

µj > εj > 0 for all j = 0, 1, 2, . . . (A.14)
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Let uεj (·, t) → u(·, t) and vµj (·, t) → v(·, t). We want to prove

u = v a.e. in R × [0, T ]. (A.15)

Denote

wj(x, t) = uεj (x, t) − vµj (x, t),

and let w(·, t) = u(·, t) − v(·, t) be the limit of wj(·, t) in C([0, T ];L1
loc(R)). Thus,

we have to show that

w = 0 a.e. in R × [0, T ]. (A.16)

Let

bj(x, t) =
f(uεj ) − f(vµj )

uεj − vµj
=
f(uεj ) − f(vµj )

wj
, (A.17)

so bj(x, t) is smooth and satisfies
∣∣bj(x, t)∣∣ ≤ N .

By (A.10) we have

bjx ≤ B

At
for all t > 0, (A.18)

where A and B are as in (3.1) and (A.5). Fix τ ∈ (0, T ]. For t ∈ [0, τ ], wj(x, t)
satisfies the parabolic non-homogeneous equation.

wj
t + (bjwj)x − εjw

j
xx + (µj − εj)v

µj
xx = 0, (A.19)

wj(x, 0) = 0. (A.20)

The dual equation is given by

ϕj
t + bjϕj

x + εjϕ
j
xx = 0, 0 < t < τ, (A.21)

with the terminal condition

ϕj(x, τ) = ϕτ (x) ∈ C∞
0 (R). (A.22)

Multiplying (A.19) by ϕj(x, t), and integrating over R × [0, τ ], we obtain∫
R

wj(x, τ)ϕτ (x)dx = (µj − εj)
∫ τ

0

∫
R

ϕj
xv

µj
x dxdt. (A.23)

It suffices to show that

(µj − εj)
∫ τ

0

∫
R

ϕj
x(x, t)vµj

x (x, t)dxdt → 0 as j → ∞. (A.24)

To this end, we require various estimates of ϕj
x(·, t).
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A.2.1. Estimates for the dual solution

We list estimates of the dual solution ϕj , which are analogous to the estimates in
Lemma A.1.

Lemma A.4.

‖ϕj(·, t)‖∞ ≤ ‖ϕτ‖∞, t ∈ [0, τ ], (A.25)

‖ϕj
x(·, t)‖1 ≤ ‖ϕ′

τ‖1, t ∈ [0, τ ]. (A.26)

(For the estimate (A.26), see the proof of Lemma 3.1.)
Our key estimate on the dual solution is an L∞-estimate for ϕj

x(·, t), independent
of εj and µj (compare the one-sided estimate (3.13)).

Lemma A.5. Let s > B
A ≥ 1, where A, B are as in Eqs. (3.1) and (A.5). Then

‖ϕj
x(·, t)‖∞ ≤

(τ
t

)s

‖ϕ′
τ‖∞, t ∈ (0, τ ]. (A.27)

Proof. Differentiating (A.21) with respect to x leads to

(ϕj
x)t + bj(ϕj

x)x + bjxϕ
j
x + εj(ϕj

x)xx = 0, (A.28)

thus

(tsϕj
x)t + bj(tsϕj

x)x +
(
bjx − s

t

)
tsϕj

x + εj(tsϕj
x)xx = 0, (A.29)

with the terminal condition

τsϕj
x(x, τ) = τsϕ′

τ (x). (A.30)

In view of (A.18), since s > B
A ,

bjx − s

t
< 0. (A.31)

By the maximum principle, tsϕj
x(x, t) does not attain a positive maximum or a

negative minimum in R×(0, τ), therefore ts‖ϕj
x(·, t)‖∞ ≤ τs‖ϕ′

τ‖∞ for all t ∈ (0, τ ],
which proves the lemma.

A.3. The main result

Theorem A.6. Let u, v be the limit functions of subsequences uεj , vµj as in
Sec. A.2. Then u = v a.e. in R × [0, T ].

Proof. As observed in Sec. A.2, the proof that w = u− v vanishes a.e. in R× [0, T ]
reduces to the proof of (A.24).

We assume ϕτ (x) ∈ C∞
0 . In fact, we show that

(µj − εj)
∫ τ

0

‖ϕj
x(·, t)vµj

x (·, t)‖1dt→ 0 as j → ∞. (A.32)
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Interpolating the estimates

‖ϕj
x(·, t)vµj

x (·, t)‖1 ≤ ‖ϕj
x(·, t)‖∞‖vµj

x (·, t)‖1,

‖ϕj
x(·, t)vµj

x (·, t)‖1 ≤ ‖ϕj
x(·, t)‖1‖vµj

x (·, t)‖∞,
we get, for any 0 ≤ γ ≤ 1

‖ϕj
x(·, t)vµj

x (·, t)‖1 ≤ (‖ϕj
x(·, t)‖∞‖vµj

x (·, t)‖1)γ(‖ϕj
x(·, t)‖1‖vµj

x (·, t)‖∞)1−γ .

Using the four estimates (A.6), (A.7), (A.26) and (A.27) (assuming j sufficiently
large), we can write for 0 < t ≤ τ

‖ϕj
x(·, t)vµj

x (·, t)‖1 ≤
((τ

t

)s

‖ϕ′
τ‖∞‖u′0‖1

)γ
(
‖ϕ′

τ‖1
2N‖u0‖∞ + 1

µj

)1−γ

.

We choose γ > 0 such that γs < 1. Then∫ τ

0

‖ϕj
x(·, t)vµj

x (·, t)‖1dt

≤ τγs‖ϕ′
τ‖γ

∞‖u′0‖1
γ‖ϕ′

τ‖1
1−γ (2N‖u0‖∞ + 1)1−γ

µj
1−γ

∫ τ

0

t−γsdt,

so that

(µj − εj)
∫ τ

0

‖ϕj
x(·, t)vµj

x (·, t)‖1dt ≤ τ(µj − εj)
µj

1−γ(1 − γs)
K, (A.33)

where

K = ‖ϕ′
τ‖γ

∞‖u′0‖1
γ‖ϕ′

τ‖1
1−γ(2N‖u0‖∞ + 1)1−γ

.

Then since µj > εj > 0 (see (A.14)),

(µj − εj)
∫ τ

0

‖ϕj
x(·, t)vµj

x (·, t)‖1dt ≤ τµj
γ

(1 − γs)
K. (A.34)

The right-hand side of (A.34) tends to 0 as j → ∞, which proves (A.32) and
thus concludes the proof of the theorem.
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