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Recent Developments of the GRP Method*

Joseph FALCOVITZ** and Matania BEN-ARTZI***

A review of about a decade of development of the generalized Riemann
problem (GRP) scheme is presented. The method is briefly outlined, fol-
lowed by various numerical and physical extensions. The range of versatile
applications of the GRP method is illustrated through numerous examples.
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1. Introduction

The GRP (generalized Riemann problem) method
was introduced in Refs.(5)-(8), following the
pioneering work of van Leer®®.

Basically, the GRP is an “analytic high-resolu-
tion” (second-order) extension of the classical
Godunov"® scheme, designed to solve numerically
systems of conservation or “quasi-conservation”
laws. One can also describe the method as a sort of
“hybrid” scheme, incorporating the detailed analysis
of the characteristic structure at singularities (jumps,
edges of rarefaction, imposed boundaries, etc.) into a
robust “shock capturing” method, based on conserva-
tive differencing.

The fundamental GRP strategy can be summar-
ized as follows (for quasi 1-D problems).

(a) Use piecewise linear distribution of flow vari-
ables at a given time level.

(b) Apply the GRP analysis to evaluate fluxes at
“singularities”. These include, naturally, all jumps at
“cell boundaries”, but, optionally, also at selected
strong shocks, material interfaces and so on.

(¢) Use the fluxes in a straightforward time-
marching of flow variables, via
differencing.

(d) Apply once again the GRP analysis to deter-
mine the piecewise linear (i.e., constant slopes in
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cells) distribution of flow variables at the new time
level.

The above four steps have been used as the
underlying basis of a unified approach towards the
study of a wide range of fluid dynamical phenomena.
It is always expected that the (necessary) additional
technicalities (such as monotonicity algorithms or
spatial splitting for 2-D problems) are kept at the
simplest possible level.

The purpose of this review is to illustrate the
broad applicability of the GRP method, subject to its
fundamental principles as discussed above. We intend
to give an informative and clear description, yet avoid
excessive details. For the latter, references to origi-
nal articles are given.

The analysis of the GRP as presented here fol-
lows the original treatment®-®, where characteristic
coordinates are used in the resolution of centered
waves. We point out that another asymptotic
method, based on “similarity coordinates”, has been
developed and applied by Bourgeade, Le Floch and
Raviarto-.@s)

The plan of this paper is as follows. In Section 2
we discuss the general outline of the GRP methodol-
ogy and briefly review the underlying analysis. In
Section 3 we give some details of the numerical imple-
mentation of the method. We begin by presenting a
hierarchy of Lagrangian and Eulerian schemes which
stem from the GRP philosophy. In particular, we
discuss the fundamental L., E: schemes, which are
the simplest second-order extensions to Godunov’s
scheme. At the other extreme we have Lo, E~, where
the full power of the GRP analysis is invoked. As a
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result of the general GRP analysis, we are able to use
arbitrary points as grid-points and follow them,
achieving an “arbitrary Lagrangian Eulerian” (ALE)
version of the GRP scheme, which is also discussed
in Section 3. Finally, we discuss the (simple)
monotonicity algorithm used in our GRP codes and
conclude the section by presenting results for the
well-known “Sod shock-tube”. In Section 4 we give
some physical extensions of the basic fluid-dynamical
system and discuss the way they are incorporated in
the GRP approach. We concentrate mostly on com-
bustion problems, even though many other applica-
tions are possible. In Section 5 we discuss the
two-dimensional extension of the GRP method via
a suitable “split” scheme. We outline briefly the
modifications needed when many materials or moving
boundaries are present. Finally, in Section 6 we give
a variety of physically interesting numerical examples
(in addition to the examples presented in the previous
sections as illustrations of the mathematical aspects).

2. General Outline of the GRP Methodology

2.1 Compressible (quasi 1-D) duct flows
Consider the Euler equations that model the time-
dependent flow of an inviscid, compressible fluid
through a duct of smoothly varying cross-section. We
denote by 7 the spatial coordinate and by A(7) the
area of the cross-section at ». The Euler equations
can be written in the following form.

AU+ LIARUN+ AL G(U)=,
0 ou 0
U=| pu |, F(U)= ou’® , G)=|p .
oF (0E+p)u 0
(2.1)

Here p, p, u, E are, respectively, density, pressure,
velocity and total specific energy, where E=¢
+(1/2)u®, e being the internal specific energy. In
general, the thermodynamic variables p, o, e are
related by an “equation of state”. We shall frequently
refer to the most common case, that of an ideal “y-
law” gas, where

p=(y—1)pe, y>1. (2.2)

In order to describe the motivation for the ana-
lytic problem, let us recall first the approach, originat-
ed by Godunov“?®, for a conservative (“upwind”)
difference scheme for Eq. (2.1). Thus, suppose that
we use equally spaced grid - points 7»;=idr along
the »-axis and the (numerical) solution is sought at
equally spaced time levels tr=ndt. By “cell i” we
shall refer to the interval extending between the “cell-
boundaries” 7:+}=(i£1/2)dr. We label by Q! the

average value of a quantity (flow variable) @ over
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1
cell 7 at time level .. Similarly, Ql_:f is the value of
2

Q at the cell boundary 7:+4, averaged over the time

interval ( #i, tz+1). Generally speaking, a “quasi-
conservative” difference scheme for Eq.(2.1) is
given by

) W At wy

_A(ri~%)F(U):jﬂ

+AG) ey -cwy ), (2.3)

i I
2
e .
where AI/i:/ . A(r)dr is the volume of cell 7.
ri=g

In Eq. (2.3) we must still give an appropriate

1
interpretation to the “flux” values F(U)i;2 ,
2

G(U ):tf To do this, Godunov proposed to solve (at
every cell-boundary #:+1) the Riemann problem (RP),
0 3 ) _
WU‘FW‘[AF( U)]+Aa_rG(U)—0,
Ui"+l, ¥y > 7/i+%, (2 : 4)
Ur, 0= Ur,  r<rul

If the solution thus obtained (for # in the vicinity of »
=71 and t>0) is denoted by U(r,¢), then the

desired flux values are obtained by

nt n+t ntt
U =lim Uy, 0, FUY P =F(UTTT),
ity -0+ i 7

1
+3 i+

) i=6(U'}) (2.5)

2

In particular, if A(»)=1 (planar symmetry), the solu-
tion to the RP (2.4) is “self-similar” (i.e., depending
only on the similarity coordinate #/¢) and the classical
Godunov scheme is obtained. It is well known®® that
the resulting (first-order) scheme is stable and robust,
but also that jump discontinuities are poorly resolved
by it.

In order to obtain a second-order variant of the
Godunov scheme, van Leer®® proposed the following
idea. Assume that all flow variables are linearly
distributed in cells (with jumps at cell boundaries).
Let UM#»)=Ur+{(4U)}Ar}(r —»:)) be the linear
distribution of U in cell ¢ (at time #). In what
follows we shall refer to the constant vectors U7,
(1/47)(4U)?, respectively, as the average value and
slope of U in cell 7 (at time #).

Instead of Eq. (2.4), let us now solve the general-
ized Riemann problem, namely, the initial value prob-
lem given by
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9 d ) _
Agt—U—!—W[AF( U)] +AWG( U)=0,

UHX(r),

U(V, O)Z{Uz‘nﬂ(V), 7’>7’i+%.

Let U(r,t) be the solution to Eq.(2.6) near

(r, t):(7i+%, 0). Note that at the singularity the

initial value U(#,0) jumps from U?+(1/2)(4U)*
to Uki—(1/2)(4U)%.

The key idea of the GRP method is to solve the

system (2.6) “analytically”, and then replace Eq.
(2.5) by

L n
vr=unr g 2ol
2 ity

¥ <7risd, (2.6)

2.7

where
Uz‘n+%:1i_1'(1;},U(7’i+%, t) (as in Eq. (25)), (28)

O /1" i
[2u] , =lim U, 0. (2.9)

2

prd

Once U_ |

.1 is evaluated, one proceeds to compute the
2
fluxes as in Eq. (2.5).
It is seen from Egs. (2.8)-(2.9) that the analytic
requirements of the GRP method are actually reduced
to an analytic evaluation of the first two terms in the

Taylor expansion (in #) of U(7i+l, t).

In the following subsection we describe in more
detail the procedures leading to the computation of
the limits (2.8)-(2.9). We shall make here just the
following comments.

1) The evaluation of U%L by Eq. (2.8) requires

the solution of a Riemann problem of the type used in
the classical Godunov scheme, namely, Eq. (2.4) with
A=1.

2) In order to obtain a second-order upgrading of
Godunov’s scheme, it suffices to determine the time
derivative (2.9) with an O(d¢) error, since then, by
Eq. (2.7), the error in the evaluation of flux terms is
of order O(4t?). We shall see (Section 3.1, Ei
scheme) that allowing such an error enables us to
develop an extremely simple modification of

o"*
&

COoNTHCT

Fig. 1 Structure of solution to GRP in Eulerian
coordinates
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Godunov’s scheme. As a matter of fact, it is simple
enough to be incorporated easily in any existing code
using Godunov’s scheme. Furthermore, the numerical
examples discussed in this article show that, in the
majority of cases, it suffices to use the simplified
version. We actually recommend that a GRP-Code be
equipped with both the simplified (E:) scheme and the
“fully analytic” (E., in the language of Section 3)
scheme, where the use of the latter is restricted to
“difficult” grid-points (e.g., large jumps).

2.2 Analytic solution of the GRP
We formulate here the GRP (2.6) in a slightly
different form, namely,

0 0 0 _
AWU_*—W[AF( U)] +A‘a76( U)—O,
U++A—7;(AU)+, r >0, (2.10)
U(r,0)=

v
U—‘FZ;,—(AU)—, r<< 0,

In Eq. (2.10), U: and (4U) + are fixed vectors and 4d»
>0 is fixed. Note that U are the values of U(7, 0) on
the two sides of the initial discontinuity at » =0, while
(1/47)(4U)+ are the respective initial slopes.

Let U(r,t) be the solution to Eq. (2.10) (see
Fig. 1). As explained in the preceding subsection, we
focus on the exact evaluation of the quantities

Ue=lim U (0, 1), (2.11)
5. i 8
[ 2-u] =tim U, ». (2.12)

As a first step, we note that U, as well as the
whole “wave structure” of the solution near (7, #)=
(0, 0), depends only on U.. More precisely, we have
the following.

Theorem 2.1 Let Uze(7, t) be the solution to the
planar Riemann problem (“associated” to the GRP
(2.10)),

D -Use+ 2 F(Une) + G(Up)] =0,

Uzre(7,0)=U, for » >0,
Uge(r,0)=U- for »<0.
Then :
(a) The wave patterns of U and Uzr near the
singularity (0, 0) are identical.
(b) Along any fixed direction §=7r/t=const. we
have,

(2.13)

ltirgU(ﬁt, t)=Uzp(6t, t)=Uxre(6,1), (2.14)
and, in particular,
Us= Ure(0, 1). (2.15)
Remark 2. 2

(a) The meaning of the first conclusion of the
theorem is that the solutions U and Uge display the
same waves emanating from the origin (shocks, rare-
factions, contact discontinuities), and they propagate
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in the same directions, with the same initial speeds.
Both solutions are smooth in the zones (in the upper
half (7, ¢t)-plane) between waves, and also within
rarefaction fans (between tail and head characteris-
tics).

(b) As is well known, the solution Uz is “self-
similar”, i.e., along every fixed direction —oo< g < oo
and for all ¢ >0, Uge(6t, t)=Urp(6,1). On the other
hand the waves represented by U(r, ¢) are in general
curvilinear (see Fig.1). However, the asymptotic
formula (2.14) means that the two solutions coincide
“at the singularity” in every direction. This fact can
be viewed as a reflection of the “finite propagation
speed” property of the equations. It implies that the
resolved wave structure is not immediately affected
by either the varying cross-section or the nonconstant
initial data.

For a further discussion of Theorem 2.1 or its
proof we refer the reader to Refs. (7), (10), (27) and
references therein.

We are left with the task of determining
[(8/0t)Uls (see Eq. (2.12)). The main building block
in our solution is the following Lagrangian analysis.

Define a Lagrangian “mass” coordinate by,

dE=A()o(r,0)dr, £(0)=0. (2.16)

In terms of (&, ¢), the GRP (2.10) takes the form

'9— -[A@(V)]+A LU(V)=0,

T —u
V=<u), G)(V):< 0 >,
E pu

0
. 1,), .Y 2.17)
0

&
+—=2AAV)s, €0,
V(e 0)= ‘if
+»Z?(A V)., £€<0.

Observe that in V(&, 0) we assume linearity in £. This
is justified since, as follows from the discussion below,
the solution (2.12) depends in fact only on the limiting
values of the derivatives (9/0»)U(r,0) as r—0=.
Thus, we shall use the notation {(8/07)Q}+ for the
initial slopes of any variable € on either side of the
discontinuity and set

(a?) —A@0)"0(52) . (2.18)

In analogy with Fig. 1, we assume that the situa-
tion is as shown in Fig. 2, namely, a shock wave
propagates to the right and a centered rarefaction
wave travels to the left.

These waves are separated by a contact disconti-
nuity (£=0), and bound regions of smooth flow
(which is uniform only in the case that A(#)=const.
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B =normalized slope of C- at the origin,
B =1 at the head characteristic.
« = value of ¢ at point of intersection

of C+ with thecurve §=1.

~
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Fig. 2 Structure of solution to GRP in Lagrangian
coordinates

and (0V/0€).=(0V/3€)-=0). Let V(& t) be the solu-
tion to Eq. (2.17) (with (0V/0&).=(1/4£)(4V)s). We
set V"‘:liqrp+ V(0, t). Note that V* is obtained as the

solution along the contact discontinuity for the planar
Riemann problem (2.13). In analogy with Eq. (2.12),
we need to compute

AVN*_,. &
<W) =lima7V(0, ). (2.19)

Note that while «*, p* are continuous across the
contact discontinuity £=0, the density o experiences a
jump there. We shall use the obvious notation p¥ for
its values on either side. The main step in the evalua-
tion of Eq. (2.19) is contained in the following theo-
rem, where we follow an idea of van Leer®®, For a
detailed proof, see Ref. (5). Here we shall only
outline the proof for a y-law gas (see Eq. (2.2)).

Theorem 2.3 The derivatives (dp/ot)*, (9u/ot)*
are determined by a pair of linear equations,

o(3) +2(Z) e

o(G5) o (5 =

where as, b+, d. (resp. a-, b-, d-) can be determined
explicitly from V* V., (dV/0€), (resp. V*, V.
(0V/3&)-).

Sketch of proof (y-law gas) : We assume the wave
configuration of Fig. 2. Along the shock trajectory, for
t >0, let u-, pr, or be the pre-shock quantities, «, p the
post-shock ones. It follows from the Rankine-
Hugoniot jump conditions?® that

(2.20)

—u,:(pﬂ?r)[p W} (2.21)
_r—1 |
w= y+1°

Differentiate this identity along the shock trajectory
and let the point under consideration tend to the
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singularity (.e., (#, p)— (u*, p*), (ur, pr, 0r)— (us, D+,
0+)). Note that, using Eq. (2.17), the #-derivatives
ahead of the shock (i.e., of -, pr, 0r) can be replaced
by &-derivatives, which tend to the initial values
(8Q[98).. Also, behind the shock the &-derivatives of
u,p can be replaced by linear combinations of -
derivatives of these values, tending to (du/dt)*,
(oplot)*.

Carrying out all those differentiations and limit-
ing procedures we obtain the following explicit
expressions (y-law gas).

1 *— Dy
A
b+= W‘FA(O) W+
+A0) Wit ),

1.(9%
d =L 5) + 14 as)
00 A’(0)
LA 3).+A0) Lo
where W,=A(0){(p*—p+)/(u*—u+)} is the “Lagran-
gian” shock speed and,

Lu=—‘£2gl(u+—u*)(p++ﬂ
—A(O)Z W:lpici~ W,
— Lz p**ﬁ+
_A0) p*—p.

Le=" or
+
Lo=— W, AW0) ' u*(p* )"— w07 (u*— us)

1 1
X["'z*d(p*—pﬁ 2 e )+5]
(here and below c=speed of sound).

We now turn to the more delicate problem of
determining the coefficients a-, b-, d- in Eq. (2.20),
assuming the wave configuration of Fig. 2. Here, the
general idea is to replace the differentiation of “jump
conditions” by a “rotation procedure”, which trans-
lates the left-side spatial (initial) derivatives (0Q/0€)-
into the desired time derivatives (dV/o#)*. Such a
procedure constitutes the heart of the GRP method
and is based on a careful study of the “propagation of
singularities” across a centered rarefaction wave. We
remark that the strategy of van Leer®® at this point
was to replace the centered rarefaction wave by a
“rarefaction shock”, leading to jump equations analo-
gous to Eq. (2.21) and differentiating them. Such a
procedure leads to an “Ez-scheme” (see Section 3.1
on “classification of GRP schemes” below and the
Appendix in Ref. (5)).

To deal with the centered rarefaction wave we
refer to the configuration of Fig.2 and introduce
characteristic coordinates as follows.

B=Normalized slope (pc/o-c-) of I'" at the ori-

gin, where =1 at the head characteristic.

(2.22)

2 piCi >
P+ /JZZ)+
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a=Value of £ at point of intersection of I'* with

the curve 8=1.

Every flow variable @ is now represented
(throughout the rarefaction zone) by a smooth func-
tion Q(a, B), up to the singularity @=0. Observe that
(in analogy with the case of polar coordinates at the
origin) the singularity at =0 consists of a full inter-
val of £, corresponding to slopes of all I’~ characteris-
tic curves spanning the rarefaction. The directional
derivative (0Q/0a)(0, 8) (which, of course, vanishes
for the planar Riemann problem) measures the local
variation of @ at the singularity in the direction of the
I'" characteristic of (normalized) slope £.

The following lemma is essential in the above-
mentioned “rotation procedure” of directional deriva-
tives. We formulate it here for the y-law gas. See
Ref. (7) for a general equation of state and a com-
plete proof.

Lemma 2.4 Let a(B8)=(0u/oa)(0, 8), A*<B<1,
where 8*¥=p*_c*_Jo_c_ is the (normalized) slope of
the tail I'"-characteristic (Fig.2). Then a(f) is given
by

_ 2 d(oc)
a(B)=a(l)+ p_c_(37—1)[c‘( G%C )7

() i)
LA de 2
MV (VARG PR

R v Gl

=(38) - 2).

(Eq. (2.23) must be modified for y=5/3, 3).

Note that the expression (2.23) simplifies consid-
erably at a “flat” point, where A’(0)=0.

With a(B) as given by the lemma, we can continue
our outline of the proof of Theorem 2.3. We claim
that, given the configuration of Fig.2, the second
equation of (2.20) is satisfied with,

a-=1,

b-=(p*c*)7, (2.24)

a’7=—A(O)(p—pi‘C—ci")”za(B*)—ﬁu cX.

Again, we refer the reader to Ref. (7) for a
detailed proof, and give here a sketch as follows.

Write the characteristic equation along the tail
characteristic I'" at (0, %) in the form

90, g*)— 2L (0, g%

+ Lot ur(e 3L, gm=0.

It can be shown that,

(2.23)

(2.25)
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20, 8%)= (o c- AW) (B9,
a *) — *y1/2
(0, g%)=(8%)".

Since a(8*)=(0u/0a)(0, 8*) is known, (8p/0a)(0, 8*)
can be determined from Eq. (2.25). From the chain

rule we obtain
20, =) 2500, 9+(-) %0, 87,
(2.27)

From Eq. (2.17) we obtain (9p/0€)*=—A(0)"' X
(Qufot)*, and inserting this in (2.27) yields a linear
relation between (Ju/ot)*, (dp/ot)* (with a known
right-hand side), which is exactly the second equation
of (2.20), and the coefficients (2.24) are obtained
from Eqgs. (2.25)-(2.26).

This concludes the description of the proof of
Theorem 2.3. Q.E.D.

Now, we return to Eulerian analysis.

We need to compute [(3/3t)Ulo as in Eq. (2.12).
Assume the configuration of Fig. 1. In particular, we
assume that the line »=0 (f-axis) is non sonic, i.e.,
that it is not contained in a rarefaction fan. By means
of the transformation (2.16) we switch locally to
Lagrangian coordinates, adjusting the initial slopes as
in Eq. (2.18). In this new system the line »=0 is
represented by a curve £=&(¢) satisfying

B — — Ao, DulE, 1), EO)=0.

Indeed, this follows easily by differentiating the iden-
tity »(£(¢), £)=0.

Applying the chain rule and Eq. (2.28) we obtain
the following formula for the time derivative (0Q/dt)o
of any flow variable @ (Q=op, p, u).

(G D=5 - A0 58)

(Uo= U#* in the configuration of Fig. 1).
In Eq. (2.29) one must note the following.
(a) While (dp/ot)*, (0u/ot)* are well defined, we
have for the density,

() -cor{2)

Obviously, the sign is determined by the side on which
r=0 falls, relative to the contact discontinuity.

(b) The derivatives (9p/0€)*, (0u/3&)%, ie., the
Lagrangian derivatives at the contact discontinuity,
are determined from (du/ot)*, (9p/ot)* via Eq. (2.17).
Note that (9u/0€)* is discontinuous.

(¢) The derivatives (90/0€)% cannot be deter-
mined directly from Eq. (2.17). See Ref. (5) for the
details of this derivation.

(d) Inthe case that the line » =0 lies either to the
left of the rarefaction wave or to the right of the
shock wave (Fig.1), Eq. (2.29) can be replaced sim-
ply by (2.10), using the appropriate initial slopes.

(2.26)

(2.28)

(2.29)
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(e) The sonic case. This is the case where the
centered rarefaction wave contains the line »=0.
Thus, at the singularity the line »=0 is tangent to a
I'"—characteristic having slope 8. Let (a(%), B(¢)) be
the trajectory =0 in the (e, 8) plane, with («(0),
B(0))=(0, 5). Since the limiting values at the singu-
larity are those obtained for the planar Riemann
problem, it follows that for a y-law gas

1
_[r=1 (_u_. 2 )]%T
Bo [7+1 c_+yv1 :

(In the planar case the I' -characteristic of slope A is
a straight line which coincides with »=0).

In the domain covered by the rarefaction fan all
flow variables are represented as functions of (a, 8)
and Eq. (2.29) is now replaced by

(92),= 5240, 89 20)+52(0, 8)- 8O,

(2.31)
where one can show that
a'(0)=—A(0)p-c-55",

B0 =5 B AW -2, (0)(0, B~ (0u)(0, 8]

(2.32)

We again refer the reader to Ref. (5) for a detailed
discussion and derivation of Egs. (2.30)-(2.32). Note
that in Eq. (2.31) the derivatives (0Q/98)(0, B,) are
evaluated by the solution Uzr to the planar Riemann
problem (Theorem 2.1 above) while (0Q/0a)(0, B) are
obtained from the treatment of the centered rarefac-
tion wave (Lemma 2.3).

(2.30)

3. Numerical Implementation

3.1 Classification of GRP schemes: L), L.; E,,
E.

In the previous section we described the GRP
scheme and how it leads to an analytic study of the
equations in a neighborhood of a singularity.

The full numerical procedure (for the Eulerian
equations (2.1)) may now be summarized as follows.

(a) Start with piecewise linear distributions of
flow variables in computational cells, at time level £
=ndt.

(b) Use the GRP analysis to evaluate the deriva-
tives [(9/0¢) /U]

(¢) Compute the new cell averages U*! by Eqgs.
(2.3), (2.7-(2.9).

(d) Compute new slopes in cells by,

(Quyr=uii-uin,

where, in analogy with (2.7),
a n

e[S U]

(e) Modify (4U)**' by a monotonicity algorithm

(see Section 3.4 below).

n+l

U,‘+%: (31)
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As was clear from the discussion in the preceding
section, the above steps could be modified so as to
produce a Lagrangian scheme (where grid-points
automatically follow paricle trajectories). In fact,
Eq. (2.29) expresses the Eulerian time derivatives
in terms of Lagrangian derivatives, which must be
calculated first.

Step (b) above requires the application of the
full GRP analysis, so that no error is made in the
evaluation of the time derivatives at singularities
(given the initial slopes). Therefore we label this
scheme as an E«-GRP scheme (and the corresponding
Lagrangian version as L«).

However, as is seen from Eq. (2.7), if one is only
interested in second-order accuracy of the scheme
then it suffices to determine [(8/0¢t)U]%L up to an

2
O(4t) error (since the fluxes are evaluated to within
an O(4t?) error).

This observation motivates the following claim,
which is formulated in the Lagrangian context of the
preceding section.

Lemma 3.1 Set in Egs. (2.20)
a:=7F1, br=p3'c!,

tim- 0o 3) (). A

(3.2)

Then, in regions of smoot flow, (0u/d¢)*, (dp/ot)* are
obtained from (2.20) to within an O(4t) error.

Proof We give the proof for the “+” sign. In a
region of smooth flow we may assume that the right
wave is, within an O(J¢) error, an “acoustic” wave,
namely, a single characteristic curve of slope df/dt=
Apc. Across this curve all variables (hence also their
tangential derivatives) are continuous. We may
therefore evaluate the directional derivative of »
along the curve by using the values either ahead of or
behind the wave, obtaining

A(O)p+0+(g—§>*+<%)*
=A(0)p+c+(§-§>+ +<~g—§l>+, (3.3)

where (9p/0£€)* is evaluated just behind the wave while
(0p/dt)+ is evaluated ahead of it. From Eq. (2.17) we
obtain

(38) =-A0(%)"

(), ()~ o],

where we have used the fact that the entropy is
constant along a streamline £=const. Noting Eq.
(2.16), we have

0 _ u:A0) (_91)

[agA“]f 0. A00) TAO 58 ).
Inserting all these relations in Eq. (3.3) yields Eq.
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(3.2). Q.E.D.

‘We may rephrase the above discussion by saying
that, a second-order scheme is still obtained if all
waves are viewed as “acoustic” waves.

Note, however, that the value of ,-'5,% (see Eq.

(3.1)), which is also needed in Eq. (2.29) (where it is
denoted as Uhb), is obtained as a result of a solution to
the associated Riemann problem, as given in Eq.
(2.15). In fact, since the underlying assumption for
the use of the Li, E1 schemes is that all waves
involved are “weak”, one could use (within the same
order of accuracy) a simplified (i.e., approximate)
solution to the associated Riemann problem.

As already noted above, the original van Leer
scheme®® is classified in the present hierarchy as an
E>-scheme (see Appendix in Ref. (5)).

To deal with the Eulerian case, we note that if all
waves are “acoustic” (i.e., of “zero strength”), then
there is no “sonic case” and the applicable formula for
time derivatives is now always Eq. (2.29). We can
summarize all these as follows.

Ly, E:-Schemes

(i) Use the coefficients as, bs, dx as given by Eq.
(3.2) in Eq. (2.20) and evaluate (du/dt)*, (dp/ot)*.

(ii) Use Eq.(2.29) in order to evaluate time
derivatives (8Q/0t)o in the Eulerian frame.

(iii) Repeat the procedure given by steps (C)-
(e) in the beginning of this section.

Thus, we obtain either a Lagrangian or an Euler-
ian scheme, which we label, respectively, as L, and E\.

It is important to note that there is virtually no
additional computational effort involved in upgrading
Godunov’s scheme by the above analysis, and that it
can be implemented in any existing code.

Observe also that in the Li, £: analysis, the
coefficients a-, b+, d+ depend only on the initial data
Ve, (3V/0€)+, and not even on V*. In particular, the
detailed GRP analysis of the preceding section is not
needed here. Most examples presented in the follow-
ing sections have been computed in terms of the Ei
scheme.

3.2 ALE analysis

The so-called “arbitrary Lagrangian Eulerian”
(ALE) extension is designed to avoid mesh tangling in
flows involving large deformations. Our motivation in
using an arbitray mesh comes also from the following
consideration. It is desirable to follow (=“track”)
various singularities in the flow (shocks, material
interfaces, edges of rarefaction waves, etc.) and to use
them as grid-points.

The moving grid extension to GRP is formulated
as follows.

Consider the Euler duct flow equations (2.1)
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in a smoothly moving zone D.={rla(t)<r<b(¢)}.
Assuming that the flow in D: is smooth so that all flow
variables can be differentiated, we obtain the follow-
ing integral relation.

U

d _ (U
’EL, vAGdr= [ 2L A(rar

+o' ()AL U(L), t)

—a'()A(a()) U(a(t),t). (3.4)
Using the flow equations (2.1), Eq. (3.4) can be re-
written as

’f? A UA(r)dr =[(AU = F(U)) ALalé::

- [ AEcwar, (3.5)

where Aa(t), )y=a'(t), Ab(2), )=b'(1).

In the present ALE implementation, the interval
D: represents a grid cell moving in an arbitrary fash-
ion with respect to the underlying Eulerian mesh. Its
endpoints, denoted now by Viir%(t), correspond, respec-

tively, to a(¢), b(¢) in (3.5). Furthermore, we set 771
=r:s1(ndt) to be the endpoint values at the z-th time

level .. For a given flow variable @, we define @7 and
1

Q.{f, respectively, as the average value in cell 7 at £,
Py

and the time average value at 7i+} (between ¢, and

tr+1). In analogy with the difference equation (2.3),
Eq. (3.5) is now discretized as

R+l 4avyr n

Uz’ - (AV):ZH Ul
+— AL (AU—F(U)A]"?
vy

el

L
2

~[(AU—-F(U)A]

1 1

i 8 n+ nil e+ i
~51G( U= GU) FI(AL AT ),
(3.6)
+ ! nt rl
where A /=A(#, ) and the cell volume (4V)i=
2 2
fr:’:fA(r)dr.

In order to obtain second-order accuracy for the
scheme (3.6) we assume again that the values U” are
linearly distributed in cells. The boundary values

va] .
U | are then determined by the GRP analytic
i+ 3

method as described above. Note that since cell-
boundaries are moving relative to the Eulerian grid,
the full GRP method is needed in order to determine
the time evolution of flow quantities along curves
emanating from the singularity.

Thus, assume that #(¢) is a curve such that »(0)
=741, Using the previous notation, let A=7"(0) be
its initial slope. If Q(7,t) is any flow variable, its
derivative in the direction of #(#) at t=0 is given by,
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%:<%ﬁ>o+<%>o"d' (3.7

In this equation the derivatives (8Q/0t), (0Q/37)o
are obtained from the GRP analysis. More precisely,
while (9Q/0t)o is directly linked to the solution of the
GRP (see Eq. (2.12)), the limiting value of the spatial
derivative 0Q/d» at the singularity, denoted in Eq.
(3.7) as (dQ/dr)o, is obtained from corresponding time
derivatives via the flow equations (2.10) (compare
the discussion preceding Eq. (2.22)). In particular,
observe that these derivatives must be interpreted in
an appropriate one-sided sense when »(#) is a curve of
discontinuity in flow variables (or their derivatives).
We refer the reader to Ref. (3) for a more extensive
discussion of the ALE analysis. In view of the practi-
cal significance of this analysis when applied to the
tracking of flow singularities, we consider some
aspects of this subject in the next subsection.

3.3 Singularity tracking

As is well known, the tracking of hydrodynamic
singularities (shock or contact discontinuities) great-
ly enhances the accuracy and level of resolution of
flow simulations. As discussed in the previous subsec-
tion, the GRP analysis, when applied at a given cell
boundary, yields full information about the wave
structure of the local flow, including directional
derivatives along any trajectory emanating from the
singularity. Consequently, a “singularity” scheme,
of second-order accuracy, is naturally obtained. In
particular, grid - points can be made to follow not
only jump discontinuities (shocks, contacts) but also
paths of secondary waves, such as end characteristics
of rarefaction waves.

The resulting grid, whose points (=cell bound-
aries) we denote by #:+1(#), comprises an ordered set

of fixed Eulerian points, Lagrangian points (following
contact discontinuities, material interfaces, etc.) and
points assigned to follow various waves (shocks etc.).
Thus, every grid-point is assigned a speed Ai+%(t)=
r{+.;_(t). Clearly, A+L1=0 for a fixed Eulerian point,
while A:+1 (as well as (dfdt) A:+1()) is obtained from
the local GRP analysis for those grid-points assigned
to track flow singularities.

The difference scheme is given by Eq. (3.6). In
order to maintain second-order accuracy, one must
evaluate the time-centered fluxes in Eq. (3.6) by,

n+~1

[((AU-F(U)AL, _;‘: (AU—F(U) AL

1 d n o
+gdt-— (AU - F(U)) AL, (3.8)

(compare Eq. (2.7)). The first term in the right-hand
side of Eq. (3.8) is obtained from the solution of the
associated Riemann problem (see Eq. (2.15)) while
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the second term follows from the GRP analysis.

In order to avoid formation of excessively small
cells in the grid, an Eulerian grid-point located within
a fraction 8 of cell size from a (moving) neighboring
gridpoint is temporarily deleted (typically 8=0.25).
The deletion (restoration) of Eulerian grid-points
is performed as a “cell-merging” (“cell-splitting”)
operation. In cell-merging the conserved variables
(density, momentum, energy) are averaged over the
merged cell so that total values are conserved. An
analogous algorithm is applied in the case of cell-
splitting. For full details of the “singularity tracking”
method, we refer the reader to Refs. (17), (18).

3.4 Monotonicity algorithm

Following the evaluation of the new cell averages
U!*', one must determine the new slopes (4U)7** (see
steps (d)-(e€) in the description of the numerical
procedure given in the beginning of this section).

In fact, one first computes the slopes as a straight-
forward application of the GRP analysis (see Eq.
(3.1)). It should be emphasized that the determina-
tion of slopes at this stage is totally independent of the
conservative scheme leading to the evaluation of the
new cell averages U/*'. Indeed, one might argue that
the GRP analysis is used (indirectly) in the (numeri-
cal) time integration of the evolution equation
satisfied by the slope (8/d»)U (obtained formally by
differentiating Eq. (2.1) with respect to 7). Note that
the discrete slopes (4U)?*'/(#:+1—7:-1) approximate

oU/dr with first-order accuracy only.

As has already been observed by van Leer®¥,
using these slopes with no further modification would
lead to unstable computations. Note, in particular,
that near large jumps, such slopes may lead to nega-
tive values of density at cell boundaries etc. Thus, one
must “correct” these slopes by imposing suitable
“limiters” on their magnitude, designed, generally
speaking, to maintain monotonic behavior of flow
profiles across cell boundaries. (This procedure is
equivalent to the use of “limiters” in other high-reso-
lution schemes, and at least in the case of a single
conservation law, is needed to ensure that the scheme
possesses the TVD property).

The philosophy of the GRP scheme is to keep to
a minimum all numerical “interventions” not directly
related to the GRP analysis. Thus, for our
monotonicity algorithm we adopted the basic (and
simplest) one introduced by van Lee®®. It can be
summarized as follows.

Let @ be any flow variable (pressure, velocity
etc.) and let Q& QF Q%1 be the values of its
averages in three consecutive cells. Let @Al =Q7

£(1/2)(4Q)? be its values at the boundaries of cell ¢,

JSME International Journal

505

DENSITY AT T= 20.00

VELOCITY AT T= 20.00

0.0 0.0
0. 1000 0. 100.0

Fig. 3 Sod’s shock-tube problem. No tracking

DENSITY AT T= 20.00 VELOCITY AT T= 20.00

0.0 0.0
0. 100.0 0. 100.0

Fig. 4 Sod’s shock-tube problem. Tracking of contact

as _determined by the unmodified slope (4Q).  Let
(4Q)7 be the modified slope, leading to modified values
~?¢%= Qr+(1/2)(4Q)?. Then:

(a) If QFis an extremum for the triplet {QM,, Q7
Q%1}, then set (4Q)?=0.

(b) Otherwise, {Q~1, QF Q%) is a monotonic
triplet.

In this case, if {Q%1, QLL, QF, Q4L Q) is not
monotonic, “tilt” (4Q)? by the minimum amount (i. e.,
|(4Q)7—(4Q)7 is as small as possible) needed in order
to obtain a monotonic sequence {Q%1, C){’-%, Qr, Q{‘%,
QF1).

Note that under all circumstances the cell aver-
ages U, as computed by the conservative scheme,
are never subject to any modification.

3.5 Sod’s example

The well-known shock tube problem proposed by
Sod®? has served as a standard test case for the
evaluation of numerical schemes. We present here
our results for this problem, using the basic Eo-
scheme for a fixed Eulerian grid and two improve-
ments due to an application of the “singularity
tracking” technique.

The tube extends from »=0 to »=100 (with
planar symmetry, A(»)=1) and is divided into 100
equal cells. The fluid is a y-law perfect gas with y=
1.4. The initial conditions are ¥ =0, p=p=1 for 0<»
<50; #=0, p=0.1, p=0.125 for 50< » <100.

In Fig. 3 we show the flow profiles at t=20 (the
exact self-similar solution is given by the solid curve),
where the E.-scheme is used to obtain the solution on
a fixed Eulerian grid. While a sharp resolution of the
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DENSITY AT T= 20.00 VELOCITY AT T= 20.00
10 10
|
|
|
|
|
|
|
00 L__ 00 |
0. 1000 0. 100.0

Fig. 5 Sod’s shock-tube problem. Tracking of shock,
contact and tail of rarefaction

shock wave is obtained, it is seen that the contact
discontinuity, as well as the tail characteristic of the
rarefaction wave, are less accurately resolved. In Fig.
4, we modify the fixed Eulerian grid by adding the
contact discontinuity as a “tracked” grid point, as
discussed in subsection 3.3. Clearly, this discontinuity
is now sharply resolved, while the profiles near the tail
characteristic of the rarefaction wave are unchanged.
Finally, in Fig. 5, three grid points, namely, the shock,
contact discontinuity and tail characteristic of the
rarefaction wave, are all tracked. The improved
sharpness of the profiles is evident.

4. Physical Extensions

The philosophy underlying the GRP method can
be applied to a variety of nonlinear hyperbolic sys-
tems, which extend the basic fluid dynamical system
(2.1). A system of special interest is that of reacting
flows. In such a system the mass fractions of the
various components (depending on space and time)
are governed by suitable reaction equations. These
equations are coupled with the basic conservation
laws, resulting in a nonlinear hyperbolic system which
is multiply “linearly degenerate” along the character-
istic curve dr/dt=u.

We emphasize that the GRP method enables us to
treat the fully coupled system, and there is no need to
use a “split” algorithm, in which the “fluid dynamical”
step is separated from the “chemical” step (compare
Ref. (12)). In the following we outline briefly the GRP
treatment of

(a) reacting gas, assuming planar symmetry, and

(b) reacting gas, in quasi 1-D geometries, where
external potentials are also present.

4.1 Combustion

Consider the Euler equations that model the time-
dependent flow of an inviscid, compressible, reacting
gas. Assuming plane symmetry, and denoting by x the
spatial coordinate, the equations can be written in

“quasi-conservative” form as
dr, 0 _
T U+ axF(U)—G(U),
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o ou
| ou _ ou’+p
U= oE , F(U) ouE+pu | 4.1
02 oz
0
0
G(U)= 0
—k(p, p, 2)0

Here o, p, E, u are as in Eq. (2.1) and z is the
mass fraction of the unburnt gas. Thus z=1(z=0)
represents the completely unburnt (burnt) gas. Note,
however, that the total specific energy E=e+u?/2
contains also the “internal chemical energy”, incorpo-
rated in the specific internal energy e¢. The equation
of state here takes the form p=p(e, o, z). In addition,
the fourth equation in (4.1) (to which we refer below
as the “chemical” equation) involves a “reaction rate”
function k(p, p, z). We assume in general that £ >0, so
that the process is “irreversible”. Note that this

equation can also be written as

dz

dx
‘d—iz-k along ar % (4.2)

As was the case with the system (2. 1), one is led
to a “quasi-conservative” difference scheme analo-
gous to Eq. (2.3), which in turn gives rise to a GRP
algorithm as in Egs. (2.7)-(2.9). We refer the reader
to Ref. (2) for full details concerning the solution to
the GRP in this case.

There are two important aspects of Eq. (4.1)
which are not present in the case of the fluid dynami-
cal system (2.1), and which have both theoretical
and numerical ramifications. These are (a) the
significance of the coupling between the fluid dynami-
cal and chemical equations, and (b) the effect of
“stiffness” of the chemical equation.

To understand the coupling effect, we need to
clarify first the definition of the speed of sound ¢ in
our case. To this end, we take e, p, 2z as the basic
thermodynamic variables and express the entropy S
as a function S(e, o, 2). The entropy satisfies, for
every fixed value of z, the second law of thermo-

dynamics,
Tds.=T(-%-de +7‘O—dp) —de+ pd(%). (4.3)

Observe that Eq. (4.3) expresses the underlying idea
that the whole process involves a “continuum” of
fluids, labeled by z. Fixing a value of 2z, we obtain a
“material” which satisfies all the thermodynamic
requirements and in particular Eq. (4.3). In Eq. (4.3)
the temperature 7 is assumed to be a known function
of (e, o, 2).

The function S=S(e, o, 2) can be inverted to
yield e=e(p, S, 2), and a substitution in p=p(e, p, 2)
gives p=p(S, p, 2). We then set

oS
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Remark : We note an interesting mathematical fact
related to the basic law of thermodynamics, as expres-
sed by Eq. (4.3). In the “classical” case, as is well
known, there are only two independent variables, for
example e, p. With p=p(e, p), one is then looking for
a function T=TY(e, p) >0, such that the expression

{aerr(3))

is a total differential of a functions S(e, o). Thus, 1/T
is an “integrating factor”, which always exists in the
two-variable case. However, if three independent
variables are assumed (for example e, p, 2) then such
an integrating factor in general does not exist and one
can require Eq. (4.3) to hold only for fixed values
of z.

To illustrate the above discussion, we specialize
to the case of a “y-law gas”, where, instead of Eq.
(2.2), we now have

p=(r—Dole—qoz), 7>1, go>0. (4.5)
The quantity go is the amount of “chemical” energy
released in full burning, go>0 being equivalent to an
“exothermic” process.

It is assumed that y>1 is independent of z, for
simplicity. A more realistic model, even for ideal
gases, assumes some dependence of y on z.

From our definition of entropy it folllows that in
this case

— 1 L o=
S= e o' (4.6)

so that, expressed in terms of o, S, 2z, p=(y—1)0’S,
and, by Eq. (4.4).

2 O0p_ D
=0 = """ 4.7

"(e— qo2),

It is easily checked that the first three equations
of (4.1) yield the characteristic relation
d d dx
e+pﬁ( > 0 along ~jr=u. (4.8)
Using Eq. (4.2) and the fourth equation of (4.1) we
obtain

%zg—iS(e, 0, z) —k(e, 0, 2) 5~ S(e 0, 2)
along %=u. (4.9)

In general, the behavior of the reaction rate func-
tion &£ can be quite complex. However, in many cases
it suffices to take an “Arrhenius” law, namely,

F=Kz¥(T), K>0, (4.10)
where ¥(T) is a suitable function of the temperature.
We refer the reader to Ref. (23), where the GRP is
treated with £ as given by Eq. (4.10).
simplify the model further, and assume that

k=KzH(T—T.), K>0, T=%,

Here we

(4.11)
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where the Heaviside function H is given by
1, y>0,
H={; *

y<0.

Thus, there is no chemical reaction if the temperature
does not reach a critical level T, beyond which the
reaction rate is linearly proportional to the mass
fraction z (see Refs. (2) and (12) where Eq. (4.11) is
used).

Plugging the simplified model (4.5), (4.11), into
the characteristic equation (4.9) leads to

Cé‘? —Kaqop* 7zH(T — T:) along a’t
(4.12)
Also, the other characteristic relations in this case are
given by
ocdutdp=*+(y—1)KqopzH(T — T¢)
along %=uic. (4.13)

We refer the reader to Ref. (2) for a derivation of
Eq. (4.13).

Observe that in the absence of a chemical process,
the right-hand sides of Eqs. (4.12)-(4.13) vanish iden-
tically. On the other hand, if the product Kqo is large,
it follows that the “Riemann invariants” undergo
rapid changes along their respective characteristic
curves and there exists strong coupling between the
fluid dynamical and the chemical phases of the flow.
In this case, a numerical algorithm that splits the two
phases can lead to large errors, as we shall see below.

The “stiff” aspect of the chemical equation is a
well-known topic in numerical analysis. The basic
facts are simple, and can be demonstrated in terms of
the linear equation dy/dt=—Ky, K >0.

To discretize the equation (whose solution is a

decaying exponential) one can use an “explicit”
scheme,
n+l n
=Ky (4.14)
leading to y*"'=(1—K4t)y», or an “implicit” scheme,
YUyt gy (4.15)
At ’ :

leading to y""'=(14+Kd4t)'y". Clearly, the implicit
scheme is stable for all 4¢, while the explicit scheme
requires 4¢t<K™', which becomes more and more
restrictive as K increases, namely, as the equation
becomes “stiffer”.

We emphasize that the GRP scheme for Eq. (4.1)
does not attempt to resolve the stifiness issue of the
system. Thus, in accordance with our general
approach, an explicit version of the algorithm is used
to handle the chemical equation. We refer the reader
to Ref. (2) for full details. In Figs.6{(a), (b) below
we show results obtained by using the explicit and
implicit schemes. It is shown that the implicit scheme
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leads to “non physical” solutions. This numerical
effect, related to the combination of a “high-resolu-
tion” scheme for the fluid dynamical equations and an
“implicit” scheme for the chemical equation, was
studied in Ref. (12), where a full “analytic” solution
for the chemical equation was used.

Before presenting the numerical results for Eq.
(4.1), we recall briefly the structure of a C-J detona-
tion wave in the Z-N-D model for the solutions of the
system (see Ref. (13) for details). The wave (corre-
sponding to C-J sharp front in the Chapman-Jouguet
theory) consists of a reaction zone of finite width
moving at the C-] speed, across which the mass frac-
tion z varies from z=1 to 2=0. The edge of the
reaction zone facing the unburnt (z=1) gas is a fluid-
dynamical shock wave which raises the pressure and
density to values significantly higher than the C-J
values. We refer to this shock at the “Z-N-D spike”.
Following the spike, the pressure and density drop
monotonically and continuously to their C-J values at
the other edge of the reaction zone.

» YELOCITY AT T= .10000€-06 PRESSURE AT T= .10000E-06
.1DE-D 15E40
e s———
| S ——
+00E + 00l ~ SOE + 06l s
S1IE-01 - 16E-0L ~1IE-01 16€-01
(a)
DENSITY AT T: .10DDOE-06 7 AT 7= .1000CE-08
.80E-02, 126401
PUES—
——
- 10€-03
-LIE-01 16€-01 -11€-01 16E-01
p VELOCITY AT 1= .1000E-06 PRESSURE AT T= .]1000E-CE
L10E406 15E+ 0!
—_— I
. —
+00€ + 00| SOE+0 e
(b) SHIE-01 -16E-01 S11E-0L -16€-01
DENSITY AT T= .1GODE-O06 H4 AT T= .1000€-06
.80E-02 126401
e
ceoe-03____ ) .
L11E-01 -18E-01 ~11E-01 -16E-01
Fig. 6 (a) C-J wave, explicit scheme (b) C-J wave,

implicit scheme (Reaction zone=1 cell)
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As a test case let us consider the ozone decompo-
sition discussed in Refs. (2) and (12). The equation
of state is given by Eq. (4.5) (in CGS units), and the
reaction rate by Eq. (4.11) where

y=14, ¢=0.5196-10",

K=0.5825-10", T.=0.1155-10".

The initial data was taken as the piecewise constant
data defining a C-J detonation as a single wave (recall
that such a wave in the Chapman-Jouguet theory is a
sonic detonation). The initial state was given by
8.321-10°% 1.201-107%,0, 1
x >504zx,
6.270-10°, 1.945-107%, 4.162+10%, 0,
x<504x.

In Figs.6(a), (b), we give the results for the
explicit and implicit calculations, respectively. We
have used 100 cells with 4x=>5-10"°cm. In this case,
the reaction zone is of roughly the same size as one
computational cell. It is seen that the explicit scheme
(which is the one used in the GRP scheme) produces
a Z-N-D spike moving at the right speed (the spike is
truncated since the reaction zone is now averaged out
over the cell). On the other hand, the implicit scheme
produces a non physical weak detonation wave
(which is supersonic with respect to the flow behind
it) followed by an “adjusting” fluid dynamical shock
wave in the totally “burnt” (i.e. in our case, the
totally decomposed ozone) gas. Observe that such a
solution, while not satisfying the entropy condition (or
the “geometrical Lax condition”, since it involves a
shock wave which is supersonic with respect to both
sides) is still a valid “weak solution* of Eq. (4.1). We
have here an interesting example of the interplay
between the numerical algorithm and the theoretical
aspects of stiffness and non uniqueness for solutions of
Eq. (4.1). Thus, if dx is increased, the reaction zone
is absorbed in a fraction of a cell and the spike is
(almost entirely) “clipped”. This has the same effect
as that of increasing the reaction coefficient K (thus
narrowing the reaction zone in the profile). As the
discussion following Eq. (4.15) indicates, this in turn
results in total burning (i.e., transition from z=1to z
=0) of a cell in one time-step 4¢. The speed of the
resulting detonation wave is dx/4t. Such a speed is
achieved as that of a suitable weak detonation
(selected from the one-parameter family of such
solutions) with a trailing fluid-dynamical shock.

We refer to Ref. (9) for a different approach to
the GRP problem in this case, and to Ref. (25), where
a simplified model of combustion is studied theoreti-
cally and numerically, using a GRP approach.

4.2 Combustion with external potentials, in
quasi 1-D geometries

As was the case in Eq. (2.1), we can formulate

(6, 0,u,2)=
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the conservation laws of compressible flow through a
duct of smoothly varying cross—section, when this flow
involves chemical reactions and is also subject to
external potentials.- Such equations occur in astro-
physical studies, where spherical symmetries (stars,
gas clusters, etc.) are quite natural. In such cases the
external potential represents gravity forces, and the
chemical equations can be quite general (see Ref. (4)
and references therein).

Denoting by # the spatial coordinate, by A(7) the
area of the cross-section at » and by ¢(#) the exter-
nal potential, and using all other notations as in Eq.
(4.1), the equations can be written as

A(r)=; o U+—(AF(U))+A G(U)

+AH(U)=0, (4.16)
0 ou 0
| ou _ ou? [ »
U= oE , F(U) (pE+p)u , G(U) 0 )
0z 02U 0
0
H(U)= p¢0(7)
ko

We refer the reader to Ref. (4), where the GRP
scheme for Eq. (4.16) is discussed and various exam-
ples are presented, including the computation of spher-
ical “Taylor profiles”.

Another interesting case of a two-phase flow in
quasi 1-D geometry was studied by Wang and Wu®%.
In their case the two phases consist of an ideal
(compressible) gas phase and a particle (suspension)
phase. Physical effects, such as heat transfer between
the phases, are treated as “source terms” in the
extended nonlinear system, and, as in the case of
external potentials, are included in the analogue of the
vector H(U) in Eq. (4.16).

5. Two-Dimensional Extensions

5.1 Operator splitting

In constructing a two-dimensional scheme for
time-dependent compressible flow, we exploit a well-
known technique of operator splitting as proposed
by Strang®?®. An outline of the method and the key
ideas are presented below. The equations governing
compressible flow of an inviscid fluid in two space
dimensions in conservation form are

d

atU+——F(U)+ G(U) 0, (5.1)
o ou
2
Ula,y, )=| 7% |, F(y=| ** 77 |
ouv
oE (0E+p)u
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ov
ouv
ov’+p |

(0E+p)v
where o, p, E are as in Eq. (2.1), and («, v) are the
velocity components corresponding to the Cartesian
coordinates (x, y).

Operator splitting is obtained by decomposing the
spatial operator in Eq. (5.1) into two one-dimensional
operators in the following manner.

a—Lt]Jr(AJrB)U:O,

G(U)=

-9
AU=7-F(U), (5.2)

=9

leading to splitting of the single two-dimensional
conservation system into a set of two one-dimensional
systems, as follows.

i (1) 1) —
(a) 8tU +AUP =0,

9 @ @ —
(b) atU + BU¥=0.

Let S(¢) be the solution operator for Eq. (5.2), i.e., for
a given initial condition Us= U(z, ¥, 0) the solution to
Eq. (5.2) is given by U(x, y, t)=S(¢)Us. Similarly,
let SU(¢), S®(¢) be the solution operators to Egs.
(5.3)(2), (5.3)(b), respectively. Then Strang®?
has shown that if LY(4¢), L®(A4¢t) are second-order
accurate finite-difference approximations to S"(J4¢),
S®(4t), respectively, the operator

Lian=Lo(4L re(anLo(4L)

is a second-order accurate finite-difference approxi-
mation to S(4¢).
Observe that to within second-order accuracy

L(2At)=L‘1)< )L(Z)(At)[,‘”( At)
X L(1)< At >L(2)(dt)[,“)< At)

:Lm( 4t )L‘”(At)L“)(At)L‘Z)(At)L‘“< >

(5.5)
which implies that in the sequence of operators corre-
sponding to L(»ndt), all but the first and last ones are
whole-step operators.

Given an Eulerian rectangular grid (in the x-y
plane), the operators L and L*® are obtained as in
Section 2 above. Thus, we assume that in every
computational cell all flow variables have constant x
and y derivatives. In implementing L™ (the “x-
sweep”) we ignore all y-derivatives, thus obtaining a
conservative scheme in the x-direction. This scheme
is used in the evaluation of the fluxes in the x-direc-
tion (i.e., across the sides parallel to the y-axis). The

(5.3)

(5.4)
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updated values obtained in this way serve as initial
values for the following “y-sweep” (implementation
of L®). At each step, the monotonicity algorithm is
applied. The reader is referred to Refs.(14)-(16) for
more details. However, it is emphasized here that
while each of the operators L, L® is obtained by the
GRP guidelines, the split scheme (5.4) follows the
standard application of the Strang scheme. In particu-
lar, one can use for LY and L® the basic Ei-schemes
(see Section 3.1 above). Observe that the third
equation in (5.1), gives rise, by Eq. (5.3) (a), to a
conservation equation for the transverse momentum
components, namely

2 (ov) +2-(ouv) =0. (5.6)

This equation is a pure advection of v along the one-
dimensional “particle path” dx/dt=w. In this respect,
the quantity v is analogous to the mass fraction z
discussed in the previous section.

Some examples using this scheme are outlined in
the following section.

5.2 Moving boundary tracking (MBT)

Numerous physical and engineering applications
call for the computation of time dependent compress-
ible flows involving interaction with a moving imper-
meable surface. Assuming in our case that the motion
of any such surface is given as a function of time, the
MBT scheme is designed to compute the evolving flow
in two space dimensions. In the following, we provide
a brief outline of this scheme and its key ideas. A
more detailed account of MBT can be found in
Ref. (15).

The MBT scheme consists of the split 2-D GRP
scheme outlined abhove, in conjunction with several
modifications which are needed in the partial cells
formed by the intersection of the moving boundary
surface with the underlying Cartesian grid. In keeping
with the spirit of operator splitting, the motion of the
tracked boundary is also split into x, ¥ displacement
components, which are treated separately at the
respective split integration phase.

We illustrate the principles of MBT by con-
centrating on a representative part of the entire
scheme, namely the L(4¢) integration (as noted in
Egs. (5.4), (5.5) above) of the mass conservation
law. Furthermore, we restrict the discussion to the
typical boundary configuration depicted in Fig. 7.

The finite-difference approximation to the first
equation of (5.3)(a) is given by (compare Eq.
(2.3)),

wt ) ntd il ntl
—At[A,. i (ou) ,ﬁ—Aiwlz(pu)i‘jB (5.7)
2 2 2 2
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Fig. 7 x-split phase of moving boundary tracking

where dt=tn1—ts, and V7, VI*' are, respectively,
the areas of cell 7 at %, t+1. Note that for the sake of
simplicity we use here a single subscript “i” to denote
a cell in the two-dimensional grid. Asin Eq. (2.3) the
subscripts 7%1/2 refer to left and right segments of

1
the cell-boundary, having lengths AI,:IZ. These
-2

lengths are appropriate time-averaged values related
to the detailed motion of the boundary. Similarly,

n+

(ou),,

ol

are time-averaged values of the mass flux

ol

across the respective cell-boundary segments.

As specific cases of boundary cells, highlighting
features of the MBT scheme, we consider Cell 1 and
Cell 2 in Fig.7. Cell 1 is a relatively simple case:

1
A.:LZ:O and the sole intricate task is to evaluate
)

1

A:f. At ?. the exposed face is AB and at some
2

intermediate moment tn < fnra <t (0< @< 1) point D

becomes exposed. We then take as the approximate

average length the weighted sum
s
A Y =%a[Length (AB)+Length(AD)]
2
+(1—a)Length (AD).

1
nt . . .
The flux puiff is determined in the usual manner for
2

the 1-D GRP scheme by solving the generalized
Riemann problem centered about cell-interface i
—1/2.

Turning to Cell 2, we encounter a new type of
complexity : the neighboring cell, Cell 3, is newly
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exposed during the time interval #, fz+1. Evidently, no
flux can reasonably be computed for the newly
exposed face DL. This case is appropriately dealt
with by merging new Cells 2 and 3, while the old Cell
2 is identical to the corresponding old polygon. Sub-
sequently, the mass density o?*' thus evaluated, is
assigned as the new density of both Cell 2 and Cell 3.
5.3 Material interface tracking (MIT)

The method of material interface tracking (MIT)
is designed to enable a multi-material, fully Eulerian
calculation, using the split GRP scheme as described
above.

Material interfaces in complex flows can break
up or rejoin in an arbitrary fashion. Thus, an accurate
tracking of boundaries, using the MBT algorithm
as described above (subsection 5.2), is not possible
for all practical purposes. (See Ref. (28), where
full boundary tracking is used, though only for
“Eulerian-Lagrangian” boundaries.)

We refer the reader to Ref. (16) for an account of
the MIT scheme. The key idea is basically to forsake
the accurate boundary condition at a material inter-
face, replacing it by a simulated (approximate) one.
Cells intersected by the interface are, in some sense,
treated as though they contain a heterogeneous mix-
ture of fluids. By that we mean that the fluid in multi-
material cells is assumed to have uniform pressure
and velocity, thereby imposing a “no-slip” boundary
condition (instead of a mere continuity of the normal
component of velocity). The distinct identity of each
fluid is maintained, however, for computing the fluxes
of conserved quantities (separately for each fluid).

6. Examples

6.1 Nozzle flow

Consider a typical over-expanded (steady) flow
of a compressible inviscid fluid in a converging-diver-
ging nozzle. The flow field is characterized by Mach
number M <1 in the converging section, M =1 at the
throat (minimal cross-section area), M >1 down-
stream of the throat, then it jumps to M <1 at a shock
located before the exit plane. An exit Mach number
Me <1, ensures matching of pressure, i.e., the exit flow
pressure is equal to the ambient pressure. It is com-
monly assumed (as the duct-flow approximation),
that this flow is governed by the one-dimensional
equations (2.1). In this example we apply the GRP
scheme (2.3) to the computation of over-expanded
nozzle flow, obtaining a nearly steady solution at large
times.

The nozzle extends through the interval —1<x<
1, which is divided into 100 cells. The cross-section
area function is taken as
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A(x)=exp {—%log (4.2346)[1—cos (mc)]}.

For a perfect gas having y=1.40, this area would
produce an exit Mach number Me=3, when ambient
pressure is low enough to enable supersonic flow at
the nozzle exit. The initial conditions are u(x, 0)=0,
px,0)=0.5, o(x, 0)=0.5, where u, p, 0 are velocity,
pressure and density, respectively.

The boundary conditions (BC) deserve special
attention, as they in effect enable simulation of an
actual nozzle flow, without explicitly incorporating
the flow upstream of the nozzle entrance and down-
stream of the nozzle exit into the mathematical
model.

The inflow BC (at x=—1) is designed to simu-
late a chamber feeding the nozzle with flow having
constant stagnation conditions Py=1, po=1. The
boundary point (x=—1) is treated as an internal point
in the GRP scheme, i.e., fluxes of mass, momentum
and energy are computed from the solution to a local
generalized Riemann problem. However, for the
boundary point, the required GRP data are available
only on the inner (right) side, i.e., u, Pk, or and the
respective spatial gradients. The BC scheme consists
of specifying the corresponding data on the external
(left) side of the boundary point. The following
scheme was found to simulate given stagnation inflow
conditions. We set all spatial gradients to zero, since
they are nearly zero within the nozzle at steady flow.
The pressure is taken to be continuous, P.= Pk, then
ur, or are evaluated from standard relations for
steady isentropic flow, so that the inflow stagnation
pressure and density are equal to the given Fo, o.

The outflow BC (at x=1) is designed to simulate
a prevailing ambient pressure P,=0.5. Again, spatial
gradients of u, p, o are set equal to zero. The pres-
sure is set equal to the ambient pressure Pr=P,, and
the velocity and density are taken to be continuous %z
=UL, OrR=—PL.

The results at £=10, where the flow was seeming-
ly steady, are shown as spatial distribution of pressure
and Mach number in Fig.8. We note that the Mach
number distribution agrees with the description given
above, and in particular that M =1 at the throat (xr=
0) and M jumps from M >1 to M <1 at the shock.
Also, the pressure distribution exhibits agreement
with both boundary conditions. At the nozzle inlet (x
=—1), the pressure P= P, (since there (M <1), and at
the nozzle exit (x=1) P=P,, ie., the exit pressure
matching condition is obtained.

A different type of nozzle flow is the interaction
of shock waves or rarefaction waves with a smooth
area - change segment separating two long ducts
of uniform cross - section. A GRP computational
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analysis of such flows was performed and is presented
in Ref. (22).
6.2 Exploding helium sphere

This computational example was originally sug-
gested by Saito and Glass®?. A high-pressure helium
bubble is surrounded by air, both are taken to be
perfect gases with y=5/3 and y=7/5, respectively.
The initial conditions for u, p, 0 (velocity, pressure,
density) are u=0 everywhere, p=18.25 and p=2.523
in the helium, =1 and po=1 in the air. The computa-
tion takes place in the domain (0<x<10), where the
helium occupies the interval (0<x<2.5). The uni-
form cell size is 4x=0.1. The boundary condition at
x=0 and at x=10 is zero velocity (z=0).

The computation is performed by the singularity
tracking scheme GRP/ST pressented in Section 3.3
above. We track three singularity points: the tail
characteristic of the rarefaction propagating into the

MACH No. ATT= 100 PRESSURE ATT= 100

]

1 ..".

0. o. N

-1, 1 -1 1

Fig. 8 Steady flow with shock in a converging-diverging
nozzle

VELOCITY AT T= .60

40
-

1.0

0 10.0

a)

DENSITY AT T= .60

3.0
0.0

0. 10.0

helium, the helium/air interface point and the air
shock. The results are shown at times #=0.60 (Fig. 9
(a)) and ¢t=2.40 (Fig.9(b)). Both density and
velocity spatial distributions are shown.

At +=0.60 the shock and interface discontinuities
are clearly visible on the density plot, whereas the
velocity plot exhibits solely the shock discontinuity.
Also, the tracked tail of the rarefaction is clearly
visible as a “corner”, i.e., a point of discontinuity in
flow gradients. At £=2.40 a second (converging)
shock has appeared. This shock results from an over-
expansion of the helium sphere. It was computed as a
captured shock, but as it caught up with the tracked
gradient discontinuity (a sound wave), its computa-
tion automatically reverted to a tracked shock mode,
so that at ¢£=2.40 it appears as a perfectly sharp
discontinuity. (See Refs. (3), (17) for more details).

6.3 Accelerated piston

A piston initially at £ =0, is accelerated from rest
with constant acceleration ¢=10.024 65 driving a com-
pression wave into a quiescent perfect gas (y=1.40,
pressure and density po=1, po=1). The computation
domain is (0<x<100) and is divided into 100 equal
cells. An exact solution is available to this classical
problem (Ref. (24), p.382), up unitl the moment of
initial shock formation given by t.=2co/a(y+1),
where co=+7po/0o. Using the GRP/ST scheme (Sec-
tion 3. 3 above) to obtain the moving piston boundary

VELOCITY AT T= 240
1.0
P
"/'. B
-4.0
0. 10.0
(b)
DENSITY AT T= 240
3.0
0.0 Lo e
0. 10.0

Fig. 9 Exploding helium sphere in air. Pressure ratio 18.25, density ratio 2.5.
Computation by GRP/ST scheme. (2) ¢=0.60, (b) t=2.40
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condition, we performed two computations: one in
which the formed shock was computed as a captured
shock, and one in which the shock was tracked by
initially tracking the leading characteristic of the
compression wave. Spatial distributions of the pres-
sure are presented.

In Fig.10(a) we show the numerical solution
together with the exact one (smooth line), at the
moment of shock inception #=40. The agreement
between the numerical and the exact solutions is
nearly perfect. At the later time #=60, no exact
solution is available. Here we compare the untracked
solution (Fig.10(b)) to the tracked one (Fig.10
(c)). Note that the captured shock is spread over
one to two cells, whereas the tracked one is a perfect-
ly sharp discontinuity.

PRESSURE AT T= 40.00
5.0

(a)

0.0

0. 100.0
(a) At the moment of shock inception #=40

PRESSURE AT T= 60.00
5.0

(b

0.0

0. 100.0
(b) At ¢t=60 with shock capturing

PRESSURE AT T= 60.00
50

()

0.0

0. 100.0
(c) At t=60 with shock tracking

Fig. 10 Piston with constant acceleration
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6.4 Shock diffraction at an expansive 90° corner
The two-dimensional diffraction of a planar
shock wave by an expansive 90° corner gives rise to a
variety of fluid dynamical phenomena that have been
the subject of numerous experimental and theoretical
studies. Our example is taken from a computational
study by Hillier®® who used a GRP scheme with an
operator splitting as in Section 5.1 above. The car-
tesian coordinates are (x, y) and the corner point is (0,
0) with the negative parts of the x-axis and the y-axis
forming the corner edges. The fluid (taken as perfect
gas with y=1.403) occupies the quadrant (x<0, y >0)
and the half-space (x>0). The mesh size is dx=4dy
=0.008. The shock is initially located at the corner
(the line x=0) and its Mach number is Ms=2.5. The
initial conditions for velocity, pressure, density (#, P,
o) are: at (x>0) u=w=0, P=P,=1, p=p1=1. At
(x<0, y>0) u=us, P=P;, p=0:, where us, P, 02 are
the post-shock flow variables corresponding to Ms=
2.5 and the pre-shock variables ui, Pi, 0. The bound-
ary conditions are #=0 on the y-axis (x=0, y<0)
and v=0 on the z-axis (x<0,y=0). On the left
boundary of the quadrant (x<0, y¥>0), the flow is
prescribed as the post-shock flow #z, P, 02. Since the
post-shock flow is supersonic relative to the corner,
this latter boundary can be taken as near to the corner
as desirable, without affecting the results of the com-
putation.
Density contours are presented in Fig. 11, with an
increment of 4p=0.020,. The time is #=0.844 3,
which corresponds to the location xs=2.5 for the

- 15 t 1 1 1 1 1

0.5 1.0 1.5 2.0 2.5

Diffraction of Ms=2.5 shock at a 90° expansive
corner. Density contours with 4o=0.020:
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incident shock. From Fig. 11 it is apparent that the
diffracted shock has moved along the y-axis at speed
roughly 75% that of the incident shock. This is an
indication of a substantial drop in the post-shock
pressure, due to the flow around the corner. Indeed,
the density contours at the corner have the typical
centered-fan structure of a steady supersonic flow
deflected by an expansive corner, which is always
accompanied by a reduction in pressure. Moreover,
this pressure drop gives rise to the S-shape shock
(located midway between the corner and the
diffracted shock) which brings about a match between
the pressure in the corner-deflected stream and the
pressure in the fluid compressed by the diffracted
curved shock.

An interesting piece of information was reported
by Hillier®® concerning the £\ scheme (Section 3.1
above) which he used. Only 19 of the generalized
Riemann problems solved required the more accurate
(and computationally intensive) scheme E.

6.5 Interaction of regular reflection with a com-
pressive corner

The subject of this example is shock reflection by
a particular kind of double wedge, where the second
wedge surface is parallel to the incident shock (in the
experiments the second wedge was simply part of the
shock tube endwall). This reflection was studied both
numerically and experimentally, and as reported in
Ref. (14), a good agreement was obtained between
computed and experimental data. The computation
was performed by means of the GRP/MBT scheme
(Section 5.2 above), where the oblique wedge wall
was simulated by a stationary boundary surface.

Here we present the following example taken

(a) Holographic interferogram

from Ref. (14). The incident shock Mach number was
Ms=1491, and the wedge angle §=55°. The fluid in
the experiment was dry air at ambient pressure, and it
is taken as a perfect -gas having y=1.40. The
computational domain is a rectangle of 11.2X15.0 cm,
and it is divided into a mesh of 525X 705 square cells.
The wedge starts at the midpoint (5.60,0), and the
shock is initially located several cells before that
point. The initial conditions ahead of the shock are u
=u=0, P=P=0.1[MPa], 0=0=0.0012[g/cm?].
After the shock u=u., P=PF,, po=p., where uz, P, 02
correspond to the post-shock flow variables, derived
from Ms=1.491 and u,, P, o1 as above. The boundary
conditions are »=0 on the lower and upper walls (y=
0, y=15.0), #=0 at the endwall (x=11.2) and («, P,
0)=(uz, P, p2) at the inflow boundary (r=0). The
time at which results are shown was chosen by
matching the position of the computed head-on
reflected shock to the experimental one.

In Fig.12(a) the experimental interferogram is
reproduced. It is estimated that density increment
between consecutive lines was 4o=0.043p., and thus
the computed density contours were also calculated
with that value of dp. A good agreement is observed
between computed density contours in Fig. 12(b) and
the experimental interferogram. All the shock fronts
and sliplines observable in the interferogram are also
present in the computed density contour map, with a
reasonable agreement in shape and location. More-
over, if we examine line counts we also obtain a
reasonable agreement. Take, for instance, the region
bounded by the lower curved shock, the slip surface
and the wedge. There are 10 expeimental fringes and
11 computed density contour lines in that region,

(b) Computed density contours

Fig. 12 Shock diffraction by a second wedge parallel to incident shock. Incident shock
Ms=1.491, wedge angle 6=55°, Density increment Jpo=0.0430,
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(d) T=600ps

Fig. 13 Interaction of Ms=1.25 air shock with a spherical helium bubble

which is a fairly good agreement.
6.6 Interaction of an air shock with a spherical
helium bubble

The interation of a planar air shock wave with a
bubble of gas having different acoustic impedance
generates a strong vorticity at the interface, leading
to bubble breakup and subsequent mixing. The break-
up process in such interactions was studied experi-
mentally by Haas and Sturtevant®®, who recorded
shadowgraphs at a sequence of time points. The air
shock Mach number was Ms=1.25 and the helium
bubble diameter was 4.5cm. Their experimental
results are compared in Figs.13(a)-(d) with the
corresponding computations, which were performed
by means of the GRP/MIT scheme outlined in Section
5.3 above.

The computation domain was the rectangle (0<x
<x, 0<y<wmy) with ;=27 cm, »1=9 cm, and it was
divided into 27090 square cells. The center of the
spherical helium bubble was initially at (13.5, 0) (only
half a circle). Ahead of the shock the pressure was p
= P,=0.1 [MPa] everywhere, the air density was o=
01=1.20x107%[g/cm®], the helium density was o»=
(4/29) 01, and the velocity was #=u1=0, v=0 every-
where. The initial location of the shock was (11.25, 0)
(it was tangent to the sphere of radius 2.25), and the
post-shock initial conditions were # =1u,, v=0, P=PF,
0= p2, which were obtained as the post-shock values
corresponding to Ms=1.25 and the pre-shock state u,
Py, o1 given above. The helium and air were taken to
be perfect gases, with y=>5/3 and y=7/5, respectively.

At t=20 pus (Fig. 13(a)), the computation (veloc-
ity arrows) shows that the shock within the bubble
has traversed a much larger distance than the shock in
air (apparent on the shadowgraph). At =282 ps (Fig.
13(b)), the incident air shock has just passed the
bubble center, and a curved shock transmitted
through the bubble into the air is apparent on both the

JSME' International Journal

shadowgraph and the computation, with good agree-
ment between the two. There is also good agreement
between computed and observed interfaces. At ¢=350
us (Fig.13(c)), the bubble has already become a
torus, and a good agreement between the computed
and shadowgraph interfaces is noted. This agreement
persists to t=600 pus (Fig. 13(d)), although the shad-
owgraph is already blurred at that late time, possibly
due to onset of diffusion.

This example demonstrates the capabilities of the
GRP/MIT scheme, both in terms of accuracy and
topological flexibility.
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