
THE NASH INEQUALITY IN GENERAL DOMAINS WITH

APPLICATION TO THE LINEAR STOKES SYSTEM

MATANIA BEN-ARTZI

Abstract. The well-known Nash inequality is extended to functions satisfying

a weak Dirichlet condition in a subset of Rn. Two versions of the inequality
are established, with constants independent of the domain. The inequality is

applied to obtain an estimate for the sup-norm of a solution to the linearized

Stokes system, independent of the velocity field.

1. INTRODUCTION

Let φ be an integrable Lipschitz function on Rn, n ≥ 1. The classical Nash’s
inequality [10] is

(1.1) (

∫
Rn

|φ|2dx)
n+2
n ≤ Cn

∫
Rn

|∇φ|2dx · (
∫
Rn

|φ|dx)
4
n ,

where Cn > 0 depends only on n.
Immediately after the publication of the paper by Nash, the whole array of the

Gagliardo-Nirenberg-Sobolev (GNS) inequalities was established by Gagliardo [9]
and Nirenberg [11]. We refer to [8, Part I, Theorem 9.3] for a full proof.

In fact, in the case of the full space Rn, the Nash inequality is included (except
for dimension n = 2) in the GNS inequalities [8, Part I, Theorem 9.3].

The significance of the Nash inequality is demonstrated by the variety of subse-
quent proofs; a proof based on the Fourier transform can be found in [7] and the best
constant Cn was determined in [5]. A geometric proof, based on the logarithmic
Sobolev inequality, was given in [1].

We recall the basic role played by this inequality in the study of the 2 − D
Navier-Stokes equations with singular initial vorticity [2] or the study of stability
of travelling waves in conservation laws [12]. In Section 3 the inequality is used in
the derivation of an estimate for the sup-norm of a solution to the linearized Stokes
system. This estimate is independent of the velocity field.

Let Ω ⊆ Rn, n ≥ 1, be any domain and let φ ∈ C1
0 (Ω), the space of continuously

differentiable, with compact support in Ω. Clearly, extending φ as zero outside Ω,
the inequality (1.1) remains valid. However, consideration of more general situa-
tions needs a more detailed investigation. In a recent paper [4] Brezis and Mironescu
study the GNS inequalities in a “standard domain” Ω, which is either the full or
half-space Rn, or a Lipschitz bounded domain. More specifically, they establish in
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these domains inequalities of the type

(1.2) ‖f‖W r,q(Ω) . ‖f‖θW s1,p1 (Ω)‖f‖
1−θ
W s2,p2 (Ω),

for suitable values of the various parameters.
Suppose that we want a “Nash inequality” of the type

(1.3) (

∫
Ω

|φ|2dx)
n+2
n ≤ An

∫
Ω

|∇φ|2dx · (
∫

Ω

|φ|dx)
4
n ,

where Ω $ Rn, and An may depend on Ω. Of course it fails if no additional condi-
tions are imposed (for example, a constant function in a bounded domain). In [4]
this inequality is derived from (1.2) when Ω is a bounded Lipschitz domain and
φ = 0 on ∂Ω (in a trace sense).

The purpose of this paper is to establish (1.3) in domains that are not necessarily
bounded. We label the imposed boundary condition as “weak Dirichlet” (Defini-
tion 2.1). In particular, we shall not require that the functions vanish everywhere
on ∂Ω.

We derive two different estimates for n ≥ 3 (see Theorems 2.2, 2.3). Only the
second is valid in the case n = 2. The one-dimensional case is stated in Theorem 2.4.

2. EXTENDED FORM OF THE NASH INEQUALITY

In the following definition, we let ej be the unit vector in the direction of the xj
axis, 1 ≤ j ≤ n, and denote by lj(y) the line y + tej , t ∈ R.

Definition 2.1. Let φ be an integrable , Lipschitz function defined on Ω. We say
that φ satisfies the weak Dirichlet condition if for every point y ∈ Ω and any
j ∈ {1, 2, ..., n} , there exists a point z ∈ lj(y) ∩ Ω, such that

(i) φ(z) = 0.
(ii) The open segment {ty + (1− t)z, t ∈ (0, 1)} is contained in Ω.

This definition is modified in an obvious way if z is the “point at infinity”,
namely, if the full half line {y + tej , t ∈ (−∞, 0)} ⊆ Ω, then lim

t→−∞
φ(y + tej) = 0.

Here are a few examples, where we take the plane (n = 2) for simplicity.

• Let Ω be the unit disk , then φ satisfies the weak Dirichlet condition if it
vanishes on two orthogonal diameters.
• Let Ω be the upper half of the disk, then φ satisfies the weak Dirichlet

condition if it vanishes on the curved part (|x| = 1) of the boundary.
• Let Ω ⊆ R2 be a bounded domain with a smooth boundary and let ψ ∈
C3(Ω). Assume that∇ψ vanishes on ∂Ω and let φ = ∂2

∂x∂yψ. Then φ satisfies

the weak Dirichlet condition. Indeed, φ(x, y) has zero mean value on every
horizontal or vertical line, so it must vanish at a point on such a line.

Notation. We designate by ‖φ‖p the Lp(Ω) norm, 1 ≤ p ≤ ∞. The set Ω will be
understood from the context.

Theorem 2.2. Let Ω ⊆ Rn, n ≥ 3, be a domain and let φ ∈ C1(Ω) satisfy the weak
Dirichlet condition. Then

(2.1)
(∫

Ω

|φ|2dx
)n+2

n ≤ An
∫

Ω

|∇φ|2dx ·
(∫

Ω

|φ|dx
) 4

n

,

where An =
(

2(n−1)
n−2

)2

, and, in particular, it does not depend on Ω.



NASH INEQUALITY 3

Proof. Since φ can be replaced by |φ|, there is no loss of generality in assuming
φ ≥ 0.

The proof is actually a slight modification of the basic Gagliardo-Nirenberg-
Sobolev inequality [6, Section 5.6, Theorem 1]. We bring it here for the convenience
of the reader, and also because the inequality (2.3) below will be needed in the next
theorem.

it is easily seen that if ψ ∈ C1(Ω) satisfies the weak Dirichlet condition, then

(2.2)

∫
Ω

|ψ(x)|
n

n−1 dx ≤
(∫

Ω

|∇ψ(x)|dx
) n

n−1

.

Indeed, this follows by integrating the derivative ∂xj
ψ on the segment of lj(x)

connecting a point x ∈ Ω to a zero point of ψ.

Let φ be as in the statement and let ψ = φq
n−1
n , with q > 1 to be selected.

Applying (2.2) , we have

(2.3)

∫
Ω

φ(x)qdx ≤
(q(n− 1)

n

) n
n−1
(∫

Ω

φ
q(n−1)−n

n |∇φ|dx
) n

n−1

.

Thus, by the Cauchy-Schwarz inequality,
(2.4)∫

Ω

φ(x)qdx ≤
(q(n− 1)

n

) n
n−1
(∫

Ω

φ(x)2
q(n−1)−n

n dx
) n

2(n−1) ·
(∫

Ω

|∇φ|2dx
) n

2(n−1)

.

Taking q = 2n
n−2 we get,

(2.5)
(∫

Ω

φ(x)
2n

n−2 dx
)n−2

n ≤
(2(n− 1)

n− 2

)2
∫

Ω

|∇φ|2dx.

Using the interpolation inequality

‖g‖2 ≤ ‖g‖
n

n+2
2n

n−2

‖g‖
2

n+2

1 ,

the last estimate yields

(2.6) ‖φ‖2 ≤
(2(n− 1)

n− 2

) n
n+2 ‖φ‖

2
n+2

1 · ‖∇φ‖
n

n+2

2 ,

which is exactly (2.1). �

The case n = 2 is included in the following theorem.

Theorem 2.3. Let Let Ω ⊆ Rn, n ≥ 2, be a domain and let φ ∈ C1(Ω) satisfy the
weak Dirichlet condition in Ω. Then

(2.7) ‖φ‖22 ≤
2n− 1

n
‖φ‖1‖∇φ‖n.

Proof. As in the previous proof, we may assume φ ≥ 0. Applying Hölder’s inequality
to (2.3) yields

(2.8)

∫
Ω

φ(x)qdx ≤
(q(n− 1)

n

) n
n−1
(∫

Ω

φ(x)
q(n−1)−n

n−1 dx
)
·
(∫

Ω

|∇φ|ndx
) 1

n−1

.

Taking q = 2n−1
n−1 we get

(2.9) ‖φ‖ 2n−1
n−1
≤
(2n− 1

n

) n
2n−1 ‖φ‖

n−1
2n−1

1 ‖∇φ‖
n

2n−1
n .
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Invoking the interpolation inequality

‖g‖2 ≤ ‖g‖
2n−1
2n

2n−1
n−1

‖g‖
1
2n
1 ,

we infer from (2.9) that

(2.10) ‖φ‖2 ≤
(2n− 1

n

) 1
2 ‖φ‖

n−1
2n

1 ‖∇φ‖
1
2
n‖φ‖

1
2n
1 ,

which is precisely (2.7).
�

Finally, the one-dimensional case is given in the following theorem.

Theorem 2.4. [The 1-D Nash Inequality] Let Ω ⊆ R, be an open set and let
φ ∈ C1(Ω).

Suppose that φ(x0) = 0 for some x0 ∈ Ω.
Then,

(2.11) ‖φ‖32 ≤ 2‖φ‖21‖φ′‖2.

Proof. We have

‖φ‖2∞ ≤ ‖(φ2)′‖1 ≤ 2‖φ‖2‖φ′‖2,
hence

‖φ‖4∞ ≤ 4‖φ‖22‖φ′‖22.
Since

‖φ‖22 = ‖φ2‖1 ≤ ‖φ‖1‖φ‖∞,
we have

‖φ‖3∞ ≤ 4‖φ‖1‖φ′‖22,
so that

‖φ‖62 ≤ ‖φ‖31‖φ‖3∞ ≤ 4‖φ‖41‖φ′‖22,
as asserted. �

Remark 2.5. Obviously, the “best constant” in the above estimates cannot be
smaller than that obtained in [5] for the case of the full space. However, for more
general domains Ω ⊆ Rn, it is not clear if the best constant actually depends on Ω.

3. APPLICATION TO THE LINEARIZED STOKES SYSTEM

Consider the equation

(3.1)
−∆φ+ (u · ∇)φ = f

∇ · u = 0,

in a bounded smooth domain Ω ⊆ Rn, n ≥ 2, subject to the boundary condition

(3.2) φ = 0, on ∂Ω.

It is assumed that u is a given smooth vectorfield. This is the well-known linearized
Stokes problem. In addition, it plays a central role in the study of the explosion
problem in a flow [3].

Assume first that

(3.3) f ∈ Lp(Ω), p >
n

2
.
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By standard elliptic estimates φ ∈W 2,p(Ω) ⊆ L∞(Ω), so ‖φ‖∞ can be estimated in
terms of ‖f‖p. From the general theory such an estimate depends on the velocity
field u. However, it was shown in [3, Lemma 1.3] that in the case at hand (namely,
Equation (3.1)) one has , if p > n

2

(3.4) ‖φ‖∞ ≤ C‖f‖p,

where C > 0 is independent of u.
Next consider the case 1 < p ≤ n

2 . In what follows we focus on estimates that
are independent of u.

Multiplying Equation (3.1) by φ and integrating by parts we have

(3.5)

∫
Ω

|∇φ|2dx ≤ ‖f‖p‖φ‖p′ , p′ =
p

p− 1
.

On the other hand, the Sobolev embedding theorem implies that

(3.6) ‖φ‖q ≤ C‖∇φ‖2,
1

q
=

1

2
− 1

n

(take any q <∞ if n = 2).
Here and below C > 0 denotes various constants depending on Ω, but not on u.
Thus, in conjunction with (3.5) we get

(3.7) ‖φ‖q ≤ C‖f‖
1
2
p ‖φ‖

1
2

p′ , p′ =
p

p− 1
,

1

q
=

1

2
− 1

n
.

If 2n
n+2 ≤ p ≤

n
2 then 1 < p′ ≤ q hence

‖φ‖p′ ≤ C‖φ‖q.

The estimate (3.7) now entails

(3.8) ‖φ‖q ≤ C‖f‖p,
2n

n+ 2
≤ p ≤ n

2
.

In contrast to (3.4), the estimate (3.8) contains little information about the “size”

of |φ|. As an attempt to get a better idea of this size, note that
‖φ‖22
‖φ‖1 ≤ ‖φ‖∞. Thus

‖φ‖22
‖φ‖1 can serve as such a measure.

In the following theorem we establish a result in this direction. It implies that

the ratio
‖φ‖22
‖φ‖1 can be large (for some vectorfield u) only if ‖φ‖2 gets small. In other

words, the ratio can be large only if |φ| is everywhere small except for “narrow
sharp spikes”.

Theorem 3.1. Let n ≥ 3, 2n
n+2 ≤ p ≤

n
2 , and assume that φ is a bounded Lipschitz

continuous solution to (3.1)-(3.2) with f ∈ Lp(Ω).
Then there exists a constant C = C(Ω, p) (in particular, independent of u), such

that

(3.9) ‖φ‖
n−2
2

2

‖φ‖22
‖φ‖1

≤ C‖f‖
n
2
p .

Proof. We use the form of the Nash inequality as given in Theorem 2.2.

(3.10)
(∫

Ω

|φ|2dx
)n+2

n ≤ An
∫

Ω

|∇φ|2dx ·
(∫

Ω

|φ|dx
) 4

n

,
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where An =
(

2(n−1)
n−2

)2

.

Incorporating (3.5) we get

(3.11)
(∫

Ω

|φ|2dx
)n+2

n ≤ An‖f‖p‖φ‖p′ ·
(∫

Ω

|φ|dx
) 4

n

.

Noting that p′ ≤ q we use repeatedly the estimates (see (3.6))

‖φ‖p′ ≤ C1‖φ‖q, ‖φ‖q ≤ C2‖∇φ‖2,

and then again (3.5). Thus

(3.12)

(∫
Ω

|φ|2dx
)n+2

n ≤ AnC1‖f‖p‖φ‖q ·
(∫

Ω

|φ|dx
) 4

n

≤ AnC1C2‖f‖p‖∇φ‖2 ·
(∫

Ω

|φ|dx
) 4

n

≤ AnC1C2‖f‖p
(
‖f‖p‖φ‖p′

) 1
2 ·
(∫

Ω

|φ|dx
) 4

n

≤ AnC
3
2
1 C2‖f‖p

(
‖f‖p‖φ‖q

) 1
2 ·
(∫

Ω

|φ|dx
) 4

n

≤ An(C1C2)
3
2 ‖f‖p

(
‖f‖p‖∇φ‖2

) 1
2 ·
(∫

Ω

|φ|dx
) 4

n

.

By induction, it follows that for k = 3, 4, . . .

(3.13)
(∫

Ω

|φ|2dx
)n+2

n ≤ An(C1C2)2−2−k

‖f‖2−2−k

p ‖∇φ‖2
−k

2

(∫
Ω

|φ|dx
) 4

n

.

Taking the limit as k →∞ we get

(3.14)
(∫

Ω

|φ|2dx
)n+2

n ≤ An(C1C2)2‖f‖2p
(∫

Ω

|φ|dx
) 4

n

.

This estimate can be rewritten as

(3.15) ‖φ‖
2(n−2)

n
2

(‖φ‖22
‖φ‖1

) 4
n ≤ An(C1C2)2‖f‖2p,

which is (3.9). �

In the following theorem we obtain an estimate for ‖φ‖∞, valid for all p > 1. It
is independent of u , but depends on the size of the subset where φ is “sufficiently
large”.

Theorem 3.2. Let n ≥ 2, p > 1, and assume that φ is a bounded Lipschitz con-
tinuous solution to (3.1)-(3.2) with f ∈ Lp(Ω).

Let

Ω1 =

{
x ∈ Ω, |φ(x)| ≥ 1

2
‖φ‖∞

}
,

and assume that |Ω1| ≥ δ|Ω| (|B| is the Lebesgue measure of B) for some δ ∈ (0, 1).
Then there exists a constant C = C(Ω, p, δ) (in particular, independent of u),

such that the solution φ satisfies

(3.16) ‖φ‖∞ ≤ C‖f‖p.
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Proof. We use the form of the Nash inequality as given in Theorems 2.2, 2.3 , valid
for any Lipschitz continuous φ that vanishes on ∂Ω.

(3.17)
(∫

Ω

|φ|2dx
)n+2

n ≤ An
∫

Ω

|∇φ|2dx ·
(∫

Ω

|φ|dx
) 4

n

,

where An =
(

2(n−1)
n−2

)2

, n ≥ 3 and A2 = 3
2 .

Incorporating the estimate (3.5) in (3.17) we get as in (3.11)(∫
Ω

|φ|2dx
)n+2

n ≤ An‖φ‖
4
n
1 ‖f‖p‖φ‖p′ .

By assumption |Ω1| ≥ δ|Ω| so using the trivial estimate ‖φ‖r ≤ ‖φ‖∞|Ω|
1
r , the

last estimate yields(δ
4
‖φ‖2∞|Ω|

)n+2
n ≤ An|Ω|

4
n + p−1

p ‖f‖p‖φ‖
1+ 4

n∞ ,

hence

(3.18) ‖φ‖∞ ≤
1

δ
4

n+2
n An|Ω|

2
n−

1
p ‖f‖p.

�

As a corollary, we show that the “blow-up” set of a sequence of solutions is
necessarily small.

Corollary 3.3. Fix p > 1 and let {uk}∞k=1 be a sequence of divergence-free vector-
fields. Let {fk}∞k=1 ⊆ Lp(Ω) be a uniformly bounded sequence: sup

k=1,2,...
‖fk‖p < ∞.

Let {φk}∞k=1 be the corresponding sequence of bounded Lipschitz continuous solu-
tions to (3.1)-(3.2). Suppose that

‖φk‖∞ ↑ ∞.

Let

Ω1,k =

{
x ∈ Ω, |φk(x)| ≥ 1

2
‖φk‖∞

}
, k = 1, 2, . . .

Then

(3.19) lim
k→∞

|Ω1,k| = 0.

Proof. Suppose to the contrary that (3.19) does not hold. Then there exists a δ > 0
and a subsequence (without changing notation) such that

|Ω1,k| ≥ δ|Ω|.

This is a contradiction in view of (3.18) and the assumption that ‖φk‖∞ ↑ ∞. �

Remark 3.4. Observe that we could modify the definition Ω1,k = {x ∈ Ω, |φk(x)| ≥ ε‖φk‖∞}
for any ε > 0 without changing the conclusion (3.19).
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