THE NASH INEQUALITY IN GENERAL DOMAINS WITH
APPLICATION TO THE LINEAR STOKES SYSTEM

MATANIA BEN-ARTZI

ABSTRACT. The well-known Nash inequality is extended to functions satisfying
a weak Dirichlet condition in a subset of R™. Two versions of the inequality
are established, with constants independent of the domain. The inequality is
applied to obtain an estimate for the sup-norm of a solution to the linearized
Stokes system, independent of the velocity field.

1. INTRODUCTION

Let ¢ be an integrable Lipschitz function on R™, n > 1. The classical Nash’s
inequality [10] is

(1) ([ 0P < e [ wopds- ([l

where C,, > 0 depends only on n.

Immediately after the publication of the paper by Nash, the whole array of the
Gagliardo-Nirenberg-Sobolev (GNS) inequalities was established by Gagliardo [9]
and Nirenberg [11]. We refer to [8, Part I, Theorem 9.3] for a full proof.

In fact, in the case of the full space R™, the Nash inequality is included (except
for dimension n = 2) in the GNS inequalities [8, Part I, Theorem 9.3].

The significance of the Nash inequality is demonstrated by the variety of subse-
quent proofs; a proof based on the Fourier transform can be found in [7] and the best
constant C,, was determined in [5]. A geometric proof, based on the logarithmic
Sobolev inequality, was given in [1].

We recall the basic role played by this inequality in the study of the 2 — D
Navier-Stokes equations with singular initial vorticity [2] or the study of stability
of travelling waves in conservation laws [12]. In Section 3 the inequality is used in
the derivation of an estimate for the sup-norm of a solution to the linearized Stokes
system. This estimate is independent of the velocity field.

Let Q CR™, n > 1, be any domain and let ¢ € C3(Q), the space of continuously
differentiable, with compact support in 2. Clearly, extending ¢ as zero outside (2,
the inequality (1.1) remains valid. However, consideration of more general situa-
tions needs a more detailed investigation. In a recent paper [4] Brezis and Mironescu
study the GNS inequalities in a “standard domain” €2, which is either the full or
half-space R™, or a Lipschitz bounded domain. More specifically, they establish in
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these domains inequalities of the type

(1.2) 1 lwrac@y S U Ieron oy 11202 ()

for suitable values of the various parameters.
Suppose that we want a “Nash inequality” of the type

(1.3) ( / 6P dr)"2 < 4, / Vol - ( / 6ldz)*,

where (2 ; R™ and A,, may depend on €. Of course it fails if no additional condi-
tions are imposed (for example, a constant function in a bounded domain). In [4]
this inequality is derived from (1.2) when Q is a bounded Lipschitz domain and
¢ =0 on 09 (in a trace sense).

The purpose of this paper is to establish (1.3) in domains that are not necessarily
bounded. We label the imposed boundary condition as “weak Dirichlet” (Defini-
tion 2.1). In particular, we shall not require that the functions vanish everywhere
on 0f).

We derive two different estimates for n > 3 (see Theorems 2.2, 2.3). Only the
second is valid in the case n = 2. The one-dimensional case is stated in Theorem 2.4.

2. EXTENDED FORM OF THE NASH INEQUALITY

In the following definition, we let e; be the unit vector in the direction of the z;
axis, 1 < j < n, and denote by /;(y) the line y + te;, t € R.

Definition 2.1. Let ¢ be an integrable , Lipschitz function defined on Q. We say
that ¢ satisfies the weak Dirichlet condition if for every point y € Q and any
j€{1,2,...,n}, there exists a point z € l;(y) N Q, such that

(i) ¢(z) =0. _
(i) The open segment {ty + (1 — )z, t € (0,1)} is contained in €.
This definition is modified in an obvious way if z is the “point at infinity”,
namely, if the full half line {y + te;, t € (—00,0)} C Q, then . lim ¢(y+te;) = 0.
——00
Here are a few examples, where we take the plane (n = 2) for simplicity.

e Let © be the unit disk , then ¢ satisfies the weak Dirichlet condition if it
vanishes on two orthogonal diameters.

e Let ) be the upper half of the disk, then ¢ satisfies the weak Dirichlet
condition if it vanishes on the curved part (Jz| = 1) of the boundary.

e Let Q C R? be a bounded domain with a smooth boundary and let 1) €
C3(Q). Assume that V¢ vanishes on 9Q and let ¢ = %;Iw. Then ¢ satisfies
the weak Dirichlet condition. Indeed, ¢(x,y) has zero mean value on every
horizontal or vertical line, so it must vanish at a point on such a line.

Notation. We designate by ||¢||, the LP(Q) norm, 1 < p < co. The set  will be
understood from the context.

Theorem 2.2. Let Q CR", n > 3, be a domain and let ¢ € C*(Q) satisfy the weak
Dirichlet condition. Then
nt2

1) ([1o7a) ™ < [ 1vopar. ([ folas)",

2
where A,, = (%) , and, in particular, it does not depend on €.
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Proof. Since ¢ can be replaced by |¢|, there is no loss of generality in assuming
¢ >0.

The proof is actually a slight modification of the basic Gagliardo-Nirenberg-
Sobolev inequality [6, Section 5.6, Theorem 1]. We bring it here for the convenience
of the reader, and also because the inequality (2.3) below will be needed in the next
theorem.

it is easily seen that if ¢ € C1(Q) satisfies the weak Dirichlet condition, then

(2.2 [o@iras < ([ [9olas) ™

Indeed, this follows by integrating the derivative d,;¢ on the segment of [;(x)
connecting a point x € ) to a zero point of 1.

Let ¢ be as in the statement and let ¢ = ¢an_l, with ¢ > 1 to be selected.
Applying (2.2) , we have

(2.3) /¢ de< /¢>“" = |V¢|dm)%.

Thus by the Cauchy-Schwarz mequahty,

/(b qd.’I}< /(z) 2‘1(" 1> n 2(n 1) /|v¢| d 2(71 1)

2n

Taking ¢ = =5 we get,

(2.5) /¢ f"zd " (2(:__21))2/Q|V¢|2dm.

Using the interpolation mequahty

lgll2 < IIQII““ lallF™,

the last estimate yields

2(Tl ) n+2
. < n+2 n+2
(2.6) lollz < (S=52) " Il - IVells™,
which is exactly (2.1). O

The case n = 2 is included in the following theorem.

Theorem 2.3. Let Let Q CR", n > 2, be a domain and let ¢ € C*(Q) satisfy the
weak Dirichlet condition in Q). Then

(2.7) 162 < 2"

Proof. Asin the previous proof, we may assume ¢ > 0. Applying Holder’s inequality
to (2.3) yields

o[t (520) [t =) [ e

Taking ¢ = 11 we get

2
(2.9) I9llznms < (Z0) T o) I v
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Invoking the interpolation inequality

2no1 1
lgllz < llgll 221 llgllz™
we infer from (2.9) that

2n —1
n

(2.10) ol < (F—=) Il IV aldIol,

which is precisely (2.7).

Finally, the one-dimensional case is given in the following theorem.

Theorem 2.4. [The 1-D Nash Inequality] Let Q@ C R, be an open set and let
¢ € CHQ). B

Suppose that ¢(xo) =0 for some x¢ € Q.

Then,
(2.11) loll3 < 2[19113ll¢" -

Proof. We have
1913 < 11(6*) [l < 22l ]2,

hence

ol < 4llol3lle"l3-
Since

I6ll5 = ll¢*1l < @l ll¢lloo

we have

loll2 < 4llolllle'l3,
so that

ol < llelTgl% < 4llllille’l3,

as asserted. O

Remark 2.5. Obviously, the “best constant” in the above estimates cannot be
smaller than that obtained in [5] for the case of the full space. However, for more
general domains @ C R™, it is not clear if the best constant actually depends on €.

3. APPLICATION TO THE LINEARIZED STOKES SYSTEM

Consider the equation

(3.1) ¢+ ( )o=f

V-u=0,
in a bounded smooth domain 2 C R™, n > 2, subject to the boundary condition
(3.2) ¢ =0, ondN.

It is assumed that u is a given smooth vectorfield. This is the well-known linearized
Stokes problem. In addition, it plays a central role in the study of the explosion
problem in a flow [3].

Assume first that

(3.3) FeLr(Q), p> %
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By standard elliptic estimates ¢ € W2P(Q) C L>°(Q), so ||¢||o can be estimated in
terms of || f||,. From the general theory such an estimate depends on the velocity
field u. However, it was shown in [3, Lemma 1.3] that in the case at hand (namely,
Equation (3.1)) one has , if p > %

(3-4) [6lloc < Clf Iy,

where C' > 0 is independent of u.

Next consider the case 1 < p < % In what follows we focus on estimates that
are independent of u.

Multiplying Equation (3.1) by ¢ and integrating by parts we have

p
(3.5) [1vopds <l o =
Q
On the other hand, the Sobolev embedding theorem implies that
1 1 1
. < S=Z_=
(3.6) 6llg < CIV 2, i 2

(take any ¢ < oo if n = 2).
Here and below C > 0 denotes various constants depending on €2, but not on u.
Thus, in conjunction with (3.5) we get

1 1 1 1 1

) < SB35, =P T=Z_2
(3.7) Iellg < ClAIZ ISl P ST 773 n
If%gpggthenl<p’§qhence

[l < Cllollg-

The estimate (3.7) now entails
(38) 6l < CUflp —o <p<

' a="We T =P=y

In contrast to (3.4), the estimate (3.8) contains little information about the “size”

2
of |¢|. As an attempt to get a better idea of this size, note that Mif < ||¢]lco- Thus

¢l

i
ol
In the following theorem we establish a result in this direction. It implies that

the ratio Hi”% can be large (for some vectorfield u) only if ||¢]|2 gets small. In other

can serve as such a measure.

words, the ratio can be large only if |@| is everywhere small except for “narrow
sharp spikes”.
Theorem 3.1. Letn > 3, n2—_:_’2 <p < 5, and assume that ¢ is a bounded Lipschitz
continuous solution to (3.1)-(3.2) with f € LP(Q).

Then there exists a constant C = C'(2,p) (in particular, independent of u), such
that

n22 ||o]3
3.9 2

Proof. We use the form of the Nash inequality as given in Theorem 2.2.

< ISl -

n+2

(3.10) (/[ 1o7ax) Y <A, [ vopae( [ olde)”,
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n—2

where A,, = (MY

Incorporating (3.5) we get

n+2

4
(3.11) ([ 16kde) ™ < anlstplioly - ( [ lolaa)”
Noting that p’ < ¢ we use repeatedly the estimates (see (3.6))

6l < Cillellg:  llollg < CalVEll2,
and then again (3.5). Thus

([1o2a)™ < auculifipliol - ([ 1olar)’

(/,lold)
< 4,0Vl - ([ o)
(/, 19la)
(/,19la)

1
2

(3.12) < 4,CrCall 1 (£ 1911 )

2

< 4,CECal A1l (1 sl 0

< 4G L (1A1,1991) - ( / 9lda)

By induction, it follows that for k = 3,4, ...

n42

1) ([ 1oPdr) T < au@oar I vl ( [ i)

Taking the limit as k — oo we get

4
n

n+2 4
(314) ([1orar) ™ < e ( [ o)
Q Q
This estimate can be rewritten as
22 |3\ = 29 £112
(3.15) 91 (gp2) " < An(CC? IS,
which is (3.9). 0

In the following theorem we obtain an estimate for ||¢||o, valid for all p > 1. It
is independent of u , but depends on the size of the subset where ¢ is “sufficiently
large”.

Theorem 3.2. Letn > 2, p > 1, and assume that ¢ is a bounded Lipschitz con-
tinuous solution to (3.1)-(3.2) with f € LP ().
Let

0, = {x cQ, |o(a)| > 1||<z>||oo},

and assume that || > 0| (|B] is the Lebesgue measure of B) for some 6 € (0,1).
Then there exists a constant C = C(Q,p,0) (in particular, independent of u),
such that the solution ¢ satisfies

(3.16) [#lloe < ClIfllp-
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Proof. We use the form of the Nash inequality as given in Theorems 2.2, 2.3 , valid
for any Lipschitz continuous ¢ that vanishes on 0f).

n42

(3.17) ([ 1okar) ™ <a, [ wopas-( [ ol

2
where An: (M) 5 n23and AQ:%

n—2
Incorporating the estimate (3.5) in (3.17) we get as in (3.11)

n+2

([ 1opas) ™ < anlo

By assumption [21] > §|Q2| so using the trivial estimate |||, < ||¢HOO|Q|%, the
last estimate yields

4
n
1

Fliplidllp-

n+2

) o 4 p-1 144
(Shol%ier) ™ < Aol 7l o,

hence

n+2

1 2_1
(3.18) 19lloc < 547 AnlQU= "7 [f1l,-

O

As a corollary, we show that the “blow-up” set of a sequence of solutions is
necessarily small.

Corollary 3.3. Fizp > 1 and let {uk}zozl be a sequence of divergence-free vector-
fields. Let {fi}rey € LP(Q) be a uniformly bounded sequence: sup || fxll, < oc.
1,2

yeoee

Let {¢1}rey be the corresponding sequence of bounded Lipschitz continuous solu-
tions to (3.1)-(3.2). Suppose that

[Pxlloo T 00
Let
Oy = {x € Q, |én(x)| > élmm}, k=1,2,...
Then
(3.19) lim [$214] = 0.

Proof. Suppose to the contrary that (3.19) does not hold. Then there exists a § > 0
and a subsequence (without changing notation) such that

| k| > 0]Q.

This is a contradiction in view of (3.18) and the assumption that ||¢g|co T 00. O

Remark 3.4. Observe that we could modify the definition Q1 = {x € Q, |¢r(2)] > €||dklloo}
for any € > 0 without changing the conclusion (3.19).
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