
The GRP Treatment of 2-D Complex WaveStru
turesM. Ben-Artzi and J. Fal
ovitzInstitute of Mathemati
s, Hebrew University of Jerusalem, Israelmbartzi�math.huji.a
.il, 

jf�math.huji.a
.il1 Introdu
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onservations laws ofteninvolve dis
ontinuities satisfying appropriate jump 
onditions. In the 
ase of
uid dynami
s, the 1-D equations admit two types of dis
ontinuous waves {a sho
k dis
ontinuity and a 
onta
t dis
ontinuity. When 
uid dynami
s intwo spa
e dimensions is 
onsidered, even for the simpli�ed \Riemann-type"problems (where the data are pie
ewise 
onstant in se
tors of the plane), asurprisingly ri
h variety of wave stru
ture may evolve. Generally speaking,exa
t solutions of su
h 
uid dynami
al wave stru
tures are not availableand one must resort to approximations, su
h as those obtained by the high-resolution GRP s
heme for hyperboli
 
onservation laws.Studies of the family of 2-D s
alar (nonlinear) 
onservation laws withRiemann-type initial data, for example the so-
alled Gu
kenheimer equation(see [3℄, and [1℄), have shown that the resulting wave stru
tures appear similarto those obtained in the 
uid dynami
al 
ase. For some parti
ular initialdata [1℄, the wave intera
tion gives rise to a quite 
omplex wave stru
turethat in
ludes an oblique sho
k, a soni
 sho
k, a triple point, and a 
enteredrarefa
tion wave (CRW). Here an exa
t solution is available, so that the GRP�nite-di�eren
e approximation 
an be validated by verifying that it 
orre
tlyprodu
es all features of the solution.In the present paper we therefore 
on
entrate on two sample problems,one being the (s
alar) Gu
kenheimer equation, the other a 
uid dynami
alintera
tion of a 
entered rarefa
tion wave with a 
onverging nozzle. In both
ases we present the GRP �nite-di�eren
e solution. However, whereas in thes
alar 
ase it is 
ompared to the exa
t solution, in the 
uid dynami
al 
asewe 
ompare it to the 
orresponding quasi-one-dimensional approximation {with interesting 
on
lusions regarding this simpli�ed approximation.The GRP 
onservation law s
heme is based on a solution (at ea
h 
ell in-terfa
e) of a \generalized Riemann problem", whi
h is the initial value prob-lem with pie
ewise linear data. Fluxes obtained this way lead to a se
ond-order a

urate, \high-resolution" integration of the 
onservation law. Theanalyti
 solution of the GRP at 
ell-boundaries is used not only for the eval-uation of numeri
al 
uxes but also, independently, for the evaluation of the
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ovitznew slopes. Thus, the slopes are updated by using the underlying di�eren-tial equations, rather than resorting to a \re
onstru
tion" pro
edure. Thisproves to be an important feature of the GRP-s
heme, whi
h distinguishesit from pra
ti
ally all other existing \high-resolution" s
hemes. Indeed, theGRP-s
heme used here 
an be viewed as a prede
essor to the emerging \dis-
ontinuous Galerkin" s
heme, whi
h emphasize the use of \higher-order" ap-proximations in 
omputational 
ells, based on an analyti
 treatment of thedi�erential equations.In two spa
e dimensions, we use a Strang-type operator splitting, employ-ing the (1-D) GRP as the one-dimensional integration operator. We refer tothe re
ent monograph [1℄ for a detailed des
ription of the GRP s
heme. Wepoint out the fa
t that while the split s
heme is formally se
ond-order, it isnot at all 
lear that, in 
omplex wave-patterns, it retains the same quality ofresolution as a
hieved in 1-D 
al
ulations. This aspe
t of the approximationis also examined in this paper, using the exa
t (in the s
alar 
ase) solution.The plan of this arti
le is to start with a des
ription of the Gu
kenheimerproblem and its exa
t solution. We then present the GRP solution to thisproblem, and 
ompare it to the exa
t solution. This is followed by a problem of
uid dynami
al wave intera
tion, where two types of (GRP) �nite-di�eren
esolutions are 
onsidered { the quasi-one-dimensional approximation, and thefull 2-D solution.2 The Gu
kenheimer EquationWe 
onsider the initial value problem (IVP) for the equation,ut + f(u)x + g(u)y = 0; (1)u(x; y; 0) = �(x; y); (x; y) 2 R2 ; (2)where u(x; y; t) is a real (s
alar) fun
tion and f(u), g(u) are real smooth 
uxfun
tions. In the \Gu
kenheimer equation" f(u) = 12u2 and g(u) = 13u3.A \Riemann type" problem for (1) is the IVP where �(x; y) is �nitelyvalued and homogeneous of order zero,�(x; y) = u0(�); � = arg(x; y) (= ar
tan yx ); (3)Here we take the initial datau0(�) = 8>><>>:0; 0 < � < 3�4 ;1; 3�4 < � < 3�2 ;�1; 3�2 < � < 2�: (4)The solution is self-similar, i.e., it is a fun
tion of the two variables � =x=t; � = y=t. Referring to the wave stru
ture of the exa
t solution shown in
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tures 3Figure 1, we noti
e that outside of a large disk it 
onsists of the followingthree sho
ks:(a) A sho
k emanating (initially) from the line (y = 0; x > 0), moving atspeed 1=3 in the positive y dire
tion (note that g(u) = u3=3 is 
on
aveon [�1; 0℄).(b) A standing sho
k along the line (x = 0; y < 0).(
) A sho
k emanating (initially) from the line (x+ y = 0; x < 0). The self-similar analysis shows that at t > 0 this line is given by x+ y = (5=6)t.The intera
tion of these three sho
ks in a disk around (0; 0) gives rise to avery 
omplex wave stru
ture. At time t = 1 it 
an be des
ribed as follows(see Figure 1(b)). The sho
k (b) extends to a segment of the positive y-axis0 � y � b; b = 0:2823057. At the point (0; b) it bifur
ates into a CRW whosetail 
hara
teristi
 is a soni
 sho
k, a
ross whi
h the solution u(x; y; 1) jumpsfrom �1 to the value ~v = 0:6087418. Then u in
reases a
ross the rarefa
tionfrom ~v to 1, and it is 
onstant along ea
h (straight) 
hara
teristi
 line. Therarefa
tion wave modi�es sho
k (
) 
ausing its front to 
urve. Note that thehead 
hara
teristi
 of the CRW 
arries the value u = 1. It interse
ts the sho
k(
) at the point (x0; y0) given byx0 = 56 � b2� b ; y0 = 56 + b62� b : (5)The tail 
hara
teristi
 (soni
 sho
k) interse
ts the sho
k (a) at the point(~�; 13 ), where ~� = 0:3519610. The result of the intera
tion between the CRWand the sho
k (
) leads, as noted above, to a \bending" of the latter, forminga sho
k bran
h y = y(x) 
onne
ting (x0; y0) to (~�; 13 ). It 
an be determinedby solving an ordinary di�erential equation (see [2℄). Thus, we obtain a wavepattern that in
ludes a sho
k wave bifur
ating into a CRW and a soni
 sho
kwhi
h serves as a tail 
hara
teristi
 of the CRW. It interse
ts with the othertwo sho
ks at the triple point (~�; 13 ). This wave pattern provides for a goodtest of �nite-di�eren
e s
hemes.Two numeri
al tests were performed, one using the Godunov s
heme andthe other with the GRP s
heme. The 
omputation domain was the square[�1 � x � 1; �1 � y � 1℄ whi
h was divided into 320 � 320 square 
ells.The time step was �t = 0:003125 (i.e., �CFL = 0:5 sin
e maxjuj = 1 andf 0(u) = u; g0(u) = u2), and the 
omputation was performed to �nal time t =1. The boundary 
onditions were spe
i�ed by 
al
ulating the exa
t solutionon the outer segments of boundary 
ells. This is possible as long as thedomain boundary is interse
ted only by the three sho
ks (a), (b), (
), whi
ha

ording to Figure 1(b) is still true at t = 1.The results are shown in the sub-domain [�0:05 � x � 0:60; 0 � y �0:65℄ [see Figure 2(a) for the Godunov s
heme, and Figure 2(b) for theGRP s
heme℄. Re
all that inside the rarefa
tion fan u is 
onstant along the(straight) 
hara
teristi
 lines, so that numeri
al U -level 
urves approximate
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ovitzthe fan stru
ture. The U -level sequen
e (6) given below is designed to showthe sho
k fronts and the rarefa
tion fan. The �ve levels L = 9; :::; 13 
orre-spond to the tail, head and three inner 
hara
teristi
 lines of the rarefa
tionfan [as shown in Figure 1(b)℄.UL = ( �1 + 0:2L : : : L = 0; 1; :::; 80:60874; 0:68295; 0:76366; 0:86089; 1; : : : L = 9; :::; 13: (6)In order to enable interpolation at the lowest and highest U -levels, theywere slightly shifted to �0:990 and 0:997, respe
tively. For 
omparison of theexa
t and numeri
al solutions, we represent the exa
t solution [Figure 1(b)℄by dis
rete \marker points" situated on sho
k fronts, as shown in Figure 2.Additional marker points are lo
ated at points (x; y) inside the rarefa
tionfan, where the exa
t solution takes on the values UL; L = 9; :::; 13 given by(6).Our primary observation with respe
t to the numeri
al solution is thatboth �nite-di�eren
e s
hemes (applied by Strang-type operator splitting) pro-du
e a 
orre
t approximation to this 
omplex 2-D wave-intera
tion pattern[Figure 2℄. The GRP solution agrees quite well with the exa
t one, whereasthe Godunov solution shows a nearly equal agreement for the sho
k fronts,but a lesser agreement in the rarefa
tion fan. In this 
entered fan, the 
har-a
teristi
 line that 
oin
ides with the soni
 sho
k front 
orresponds to a
onstant value of u = ~v, and it is one of the U -level lines plotted (L = 9).In the GRP solution this line is seen very near the soni
 sho
k front (Fig-ure 2(b)), whereas in the Godunov 
ase its stand-o� distan
e is per
eptiblyhigher [Figure 2(a)℄. The 
aptured soni
 sho
k is represented by the 
lusterof level lines L = 0; :::; 9 (sin
e the jump a
ross this sho
k is from u = U0to u = U9). At the other end of the rarefa
tion fan, the head 
hara
teristi
line is plotted with U13 = 0:997 (
lose to the exa
t value of U13 = 1, for a
lear U -level interpolation). In the Godunov solution this line extends wellbeyond the exa
t solution, whereas in the GRP solution it agrees well withthe exa
t marker points. The rarefa
tion fan is the only region of the solu-tion where u(x; y; 1) varies smoothly with a non-zero gradient. Hen
e, theseobservations indi
ate that in su
h regions the (se
ond-order a

urate) GRPs
heme produ
es 
onsiderably smaller errors than the (�rst-order a

urate)Godunov s
heme. In what 
on
erns the bifur
ation point (0; b) and the triplepoint (~�; 13 ), resulting from the two-dimensional setting, we observe that theyare well repli
ated by both s
hemes.
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tures 73 Intera
tion of a Centered Rarefa
tion Wave with aConverging NozzleConsider a 
entered rarefa
tion wave that propagates in a planar du
t 
om-prising two long segments of uniform 
ross-se
tion area joined by a smooth
onverging nozzle. Su
h pro
esses take pla
e in numerous systems of indus-trial and s
ienti�
 interest. The signi�
an
e of this sample 
ow lies in the
omparison we make between a full multidimensional solution and the 
or-responding quasi-1-D approximation. The reason is that the latter (oftenreferred to as the \du
t 
ow" approximation) is 
ommonly employed as anengineering design tool. Hen
e, studying the bounds of its validity as a simpli-�ed approximation to the full multidimensional solution is highly signi�
antto engineering design and analysis.For the multidimensional 
omputation of the wave intera
tion with a 
on-verging nozzle we employ the operator-split 2-D GRP s
heme where the sym-metri
 du
t 
ontour interse
ts an underlying two-dimensional Cartesian grid,using the \moving boundary" s
heme (where the boundary is stationary).We refer to [1℄ for details of the MBT s
heme and the nozzle 
ontour, as wellas to a more 
omprehensive analysis of the present wave intera
tion problem.We 
onsider the 
ase of a 1:10 pressure ratio 
entered rarefa
tion wave(CRW) in a 
uid assumed to be a perfe
t gas with 
 = 1:4. The CRW isinitially lo
ated in the wider part of the du
t, and it propagates towards a(short) 
onverging nozzle of 2 : 1 
ross-se
tion area ratio. The initial data isthat of a Riemann problem designed to produ
e a right-fa
ing CRW. It 
on-sists of two uniform states UL=[�L; pL; uL℄=[0:27030; 0:1;�1:4016℄; x < 1:3,and UR=[�R; pR; uR℄=[1:4; 1; 0℄; x > 1:3. The lo
ation of the initial dis
onti-nuity (x = 1:3) is just ahead of the 
onverging segment that o

upies theinterval 1:6 � x � 2:6 (see Figure 3 at T = 0).The 2-D 
omputation is 
ondu
ted in the (symmetri
) upper half of thedu
t, embedding it in the re
tangular domain (x; y)2 [�1:6; 9:4℄�[0; 1℄, whi
his divided into a grid of 550� 50 square 
ells (�x = �y = 0:02). A rigid-wallboundary 
ondition (due to symmetry) is imposed at the nozzle 
ontour andat the 
enterline (y = 0). On the left and right sides of the 
omputationalre
tangle we impose \non-re
e
ting" boundary 
onditions, designed to allowwaves to pass through these endplanes (almost) undisturbed. The 
omputa-tion was performed in the time interval [0; 9℄, with time steps adjusted (atea
h integration 
y
le) to have a nearly 
onstant CFL 
oeÆ
ient �CFL = 0:7.The quasi-1-D 
omputation was 
ondu
ted in the same x interval, withthe same spatial grid, the same 
ontour area fun
tion A(x), and the samein
ow/out
ow boundary 
onditions as in the 2-D 
ase. The 
omputation wasperformed with time steps adjusted to have the same �CFL = 0:7 and in thesame time interval [0; 9℄.The results of the 2-D 
omputation are shown as a time-sequen
e maps ofisobars (p = 
onst:) in Figure 3. Noti
e that in the initial state UL the 
ow is
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ovitzalready supersoni
 sin
e uL = �1:947
L, so that juLj > 
L. Thus, a supersoni
expansion 
ow gradually evolves in the diverging dire
tion of the nozzle.From the time-sequen
e of isobars plots (Figure 3), we observe that the
ow over-expands in the nozzle, so that an upstream-fa
ing oblique sho
kwave is formed (marked by � in Figure 3). It serves to align the 
ow velo
ityve
tor with the (straight) du
t 
ontour, and to mat
h the pressure to thatprevailing further left in the wider du
t segment. Another 
omplex sho
kintera
tion forms at the 
enterline (y = 0), and evolves into a full Ma
hre
e
tion.In Figure 4 we 
ompare the results of the 2-D and quasi-1-D 
omputationsat the �nal time t = 9, showing an isobars map (as in the last frame ofFigure 3), followed by pro�les of density, pressure, and 
ow Ma
h number,as fun
tions of the 
enterline 
oordinate (Figures 3(b){(d)).The two solutions are in 
lose agreement throughout the narrower du
tsegment (x > 2:6), but disagree elsewhere. At the entran
e to the nozzle(x = 2:6), the 
ow speed is soni
 (M = 1 in 4(d)), enabling the nozzle 
ow toapproa
h a steady supersoni
 expansion 
ow, 
ommen
ing at a virtual soni
plane (\nozzle entran
e"), whi
h serves to \mat
h" the unsteady rarefa
tionwave on its right to the steady 
ow on its left. In other words, upon passingthrough the nozzle, the CRW is \split" into a \transmitted" part and a\re
e
ted" part, the two being separated by a (nearly) steady 
ow throughthe diverging nozzle.Now the sour
e of disagreement between the quasi-1-D and the 2-D solu-tions is evident. The 
uid expands as it (reversely) 
ows through the nozzleat supersoni
 speed, and a full 2-D des
ription of this 
ow involves an obliquesho
k system at the nozzle exit (Figure 4(a)), whi
h is poorly approximatedby the 
ross-se
tion-averaged quasi-1-D solution that relies on a normal sho
kfor mat
hing the over-expanded supersoni
 nozzle 
ow to the pressure ahead.Moreover, the 
ow passing through the Ma
h re
e
tion sho
k stru
ture isseparated by the slip-line into two streams having distin
tly di�erent ther-modynami
 properties. Naturally, the 1-D \averaging" of these two streamsinvolves signi�
ant deviations from the 2-D 
ow �eld.It is 
on
luded that although quasi-1-D 
al
ulations may generally beadequate as an engineering approximation, a veri�
ation by 
omparison tothe appropriate multidimensional solution is required in order to make surethat the disagreement between the two remains within a

eptable bounds.Our test 
ase analysis thus brings out the signi�
an
e of full multidimensionalnumeri
al solutions; the (simpler) quasi-1-D solutions may not always serveas adequate approximations.
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