
The GRP Treatment of 2-D Complex WaveStruturesM. Ben-Artzi and J. FalovitzInstitute of Mathematis, Hebrew University of Jerusalem, Israelmbartzi�math.huji.a.il, jf�math.huji.a.il1 IntrodutionSolutions to initial value problems of hyperboli onservations laws ofteninvolve disontinuities satisfying appropriate jump onditions. In the ase ofuid dynamis, the 1-D equations admit two types of disontinuous waves {a shok disontinuity and a ontat disontinuity. When uid dynamis intwo spae dimensions is onsidered, even for the simpli�ed \Riemann-type"problems (where the data are pieewise onstant in setors of the plane), asurprisingly rih variety of wave struture may evolve. Generally speaking,exat solutions of suh uid dynamial wave strutures are not availableand one must resort to approximations, suh as those obtained by the high-resolution GRP sheme for hyperboli onservation laws.Studies of the family of 2-D salar (nonlinear) onservation laws withRiemann-type initial data, for example the so-alled Gukenheimer equation(see [3℄, and [1℄), have shown that the resulting wave strutures appear similarto those obtained in the uid dynamial ase. For some partiular initialdata [1℄, the wave interation gives rise to a quite omplex wave struturethat inludes an oblique shok, a soni shok, a triple point, and a enteredrarefation wave (CRW). Here an exat solution is available, so that the GRP�nite-di�erene approximation an be validated by verifying that it orretlyprodues all features of the solution.In the present paper we therefore onentrate on two sample problems,one being the (salar) Gukenheimer equation, the other a uid dynamialinteration of a entered rarefation wave with a onverging nozzle. In bothases we present the GRP �nite-di�erene solution. However, whereas in thesalar ase it is ompared to the exat solution, in the uid dynamial asewe ompare it to the orresponding quasi-one-dimensional approximation {with interesting onlusions regarding this simpli�ed approximation.The GRP onservation law sheme is based on a solution (at eah ell in-terfae) of a \generalized Riemann problem", whih is the initial value prob-lem with pieewise linear data. Fluxes obtained this way lead to a seond-order aurate, \high-resolution" integration of the onservation law. Theanalyti solution of the GRP at ell-boundaries is used not only for the eval-uation of numerial uxes but also, independently, for the evaluation of the



2 M. Ben-Artzi and J. Falovitznew slopes. Thus, the slopes are updated by using the underlying di�eren-tial equations, rather than resorting to a \reonstrution" proedure. Thisproves to be an important feature of the GRP-sheme, whih distinguishesit from pratially all other existing \high-resolution" shemes. Indeed, theGRP-sheme used here an be viewed as a predeessor to the emerging \dis-ontinuous Galerkin" sheme, whih emphasize the use of \higher-order" ap-proximations in omputational ells, based on an analyti treatment of thedi�erential equations.In two spae dimensions, we use a Strang-type operator splitting, employ-ing the (1-D) GRP as the one-dimensional integration operator. We refer tothe reent monograph [1℄ for a detailed desription of the GRP sheme. Wepoint out the fat that while the split sheme is formally seond-order, it isnot at all lear that, in omplex wave-patterns, it retains the same quality ofresolution as ahieved in 1-D alulations. This aspet of the approximationis also examined in this paper, using the exat (in the salar ase) solution.The plan of this artile is to start with a desription of the Gukenheimerproblem and its exat solution. We then present the GRP solution to thisproblem, and ompare it to the exat solution. This is followed by a problem ofuid dynamial wave interation, where two types of (GRP) �nite-di�erenesolutions are onsidered { the quasi-one-dimensional approximation, and thefull 2-D solution.2 The Gukenheimer EquationWe onsider the initial value problem (IVP) for the equation,ut + f(u)x + g(u)y = 0; (1)u(x; y; 0) = �(x; y); (x; y) 2 R2 ; (2)where u(x; y; t) is a real (salar) funtion and f(u), g(u) are real smooth uxfuntions. In the \Gukenheimer equation" f(u) = 12u2 and g(u) = 13u3.A \Riemann type" problem for (1) is the IVP where �(x; y) is �nitelyvalued and homogeneous of order zero,�(x; y) = u0(�); � = arg(x; y) (= artan yx ); (3)Here we take the initial datau0(�) = 8>><>>:0; 0 < � < 3�4 ;1; 3�4 < � < 3�2 ;�1; 3�2 < � < 2�: (4)The solution is self-similar, i.e., it is a funtion of the two variables � =x=t; � = y=t. Referring to the wave struture of the exat solution shown in



The GRP Treatment of 2-D Complex Wave Strutures 3Figure 1, we notie that outside of a large disk it onsists of the followingthree shoks:(a) A shok emanating (initially) from the line (y = 0; x > 0), moving atspeed 1=3 in the positive y diretion (note that g(u) = u3=3 is onaveon [�1; 0℄).(b) A standing shok along the line (x = 0; y < 0).() A shok emanating (initially) from the line (x+ y = 0; x < 0). The self-similar analysis shows that at t > 0 this line is given by x+ y = (5=6)t.The interation of these three shoks in a disk around (0; 0) gives rise to avery omplex wave struture. At time t = 1 it an be desribed as follows(see Figure 1(b)). The shok (b) extends to a segment of the positive y-axis0 � y � b; b = 0:2823057. At the point (0; b) it bifurates into a CRW whosetail harateristi is a soni shok, aross whih the solution u(x; y; 1) jumpsfrom �1 to the value ~v = 0:6087418. Then u inreases aross the rarefationfrom ~v to 1, and it is onstant along eah (straight) harateristi line. Therarefation wave modi�es shok () ausing its front to urve. Note that thehead harateristi of the CRW arries the value u = 1. It intersets the shok() at the point (x0; y0) given byx0 = 56 � b2� b ; y0 = 56 + b62� b : (5)The tail harateristi (soni shok) intersets the shok (a) at the point(~�; 13 ), where ~� = 0:3519610. The result of the interation between the CRWand the shok () leads, as noted above, to a \bending" of the latter, forminga shok branh y = y(x) onneting (x0; y0) to (~�; 13 ). It an be determinedby solving an ordinary di�erential equation (see [2℄). Thus, we obtain a wavepattern that inludes a shok wave bifurating into a CRW and a soni shokwhih serves as a tail harateristi of the CRW. It intersets with the othertwo shoks at the triple point (~�; 13 ). This wave pattern provides for a goodtest of �nite-di�erene shemes.Two numerial tests were performed, one using the Godunov sheme andthe other with the GRP sheme. The omputation domain was the square[�1 � x � 1; �1 � y � 1℄ whih was divided into 320 � 320 square ells.The time step was �t = 0:003125 (i.e., �CFL = 0:5 sine maxjuj = 1 andf 0(u) = u; g0(u) = u2), and the omputation was performed to �nal time t =1. The boundary onditions were spei�ed by alulating the exat solutionon the outer segments of boundary ells. This is possible as long as thedomain boundary is interseted only by the three shoks (a), (b), (), whihaording to Figure 1(b) is still true at t = 1.The results are shown in the sub-domain [�0:05 � x � 0:60; 0 � y �0:65℄ [see Figure 2(a) for the Godunov sheme, and Figure 2(b) for theGRP sheme℄. Reall that inside the rarefation fan u is onstant along the(straight) harateristi lines, so that numerial U -level urves approximate



4 M. Ben-Artzi and J. Falovitzthe fan struture. The U -level sequene (6) given below is designed to showthe shok fronts and the rarefation fan. The �ve levels L = 9; :::; 13 orre-spond to the tail, head and three inner harateristi lines of the rarefationfan [as shown in Figure 1(b)℄.UL = ( �1 + 0:2L : : : L = 0; 1; :::; 80:60874; 0:68295; 0:76366; 0:86089; 1; : : : L = 9; :::; 13: (6)In order to enable interpolation at the lowest and highest U -levels, theywere slightly shifted to �0:990 and 0:997, respetively. For omparison of theexat and numerial solutions, we represent the exat solution [Figure 1(b)℄by disrete \marker points" situated on shok fronts, as shown in Figure 2.Additional marker points are loated at points (x; y) inside the rarefationfan, where the exat solution takes on the values UL; L = 9; :::; 13 given by(6).Our primary observation with respet to the numerial solution is thatboth �nite-di�erene shemes (applied by Strang-type operator splitting) pro-due a orret approximation to this omplex 2-D wave-interation pattern[Figure 2℄. The GRP solution agrees quite well with the exat one, whereasthe Godunov solution shows a nearly equal agreement for the shok fronts,but a lesser agreement in the rarefation fan. In this entered fan, the har-ateristi line that oinides with the soni shok front orresponds to aonstant value of u = ~v, and it is one of the U -level lines plotted (L = 9).In the GRP solution this line is seen very near the soni shok front (Fig-ure 2(b)), whereas in the Godunov ase its stand-o� distane is pereptiblyhigher [Figure 2(a)℄. The aptured soni shok is represented by the lusterof level lines L = 0; :::; 9 (sine the jump aross this shok is from u = U0to u = U9). At the other end of the rarefation fan, the head harateristiline is plotted with U13 = 0:997 (lose to the exat value of U13 = 1, for alear U -level interpolation). In the Godunov solution this line extends wellbeyond the exat solution, whereas in the GRP solution it agrees well withthe exat marker points. The rarefation fan is the only region of the solu-tion where u(x; y; 1) varies smoothly with a non-zero gradient. Hene, theseobservations indiate that in suh regions the (seond-order aurate) GRPsheme produes onsiderably smaller errors than the (�rst-order aurate)Godunov sheme. In what onerns the bifuration point (0; b) and the triplepoint (~�; 13 ), resulting from the two-dimensional setting, we observe that theyare well repliated by both shemes.
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(b) Exat Gukenheimer Struture at t = 1Fig. 1. The Gukenheimer Struture for ut + (u2=2)x + (u3=3)y = 0.
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(a) First-order (Godunov �x = �y = 0:00625)
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(b) Seond-order (GRP �x = �y = 0:00625)Legend curved or oblique shock                                    
planar shock (x-facing or y-facing)                        
characteristic lines (or sonic shock)                      
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The GRP Treatment of 2-D Complex Wave Strutures 73 Interation of a Centered Rarefation Wave with aConverging NozzleConsider a entered rarefation wave that propagates in a planar dut om-prising two long segments of uniform ross-setion area joined by a smoothonverging nozzle. Suh proesses take plae in numerous systems of indus-trial and sienti� interest. The signi�ane of this sample ow lies in theomparison we make between a full multidimensional solution and the or-responding quasi-1-D approximation. The reason is that the latter (oftenreferred to as the \dut ow" approximation) is ommonly employed as anengineering design tool. Hene, studying the bounds of its validity as a simpli-�ed approximation to the full multidimensional solution is highly signi�antto engineering design and analysis.For the multidimensional omputation of the wave interation with a on-verging nozzle we employ the operator-split 2-D GRP sheme where the sym-metri dut ontour intersets an underlying two-dimensional Cartesian grid,using the \moving boundary" sheme (where the boundary is stationary).We refer to [1℄ for details of the MBT sheme and the nozzle ontour, as wellas to a more omprehensive analysis of the present wave interation problem.We onsider the ase of a 1:10 pressure ratio entered rarefation wave(CRW) in a uid assumed to be a perfet gas with  = 1:4. The CRW isinitially loated in the wider part of the dut, and it propagates towards a(short) onverging nozzle of 2 : 1 ross-setion area ratio. The initial data isthat of a Riemann problem designed to produe a right-faing CRW. It on-sists of two uniform states UL=[�L; pL; uL℄=[0:27030; 0:1;�1:4016℄; x < 1:3,and UR=[�R; pR; uR℄=[1:4; 1; 0℄; x > 1:3. The loation of the initial disonti-nuity (x = 1:3) is just ahead of the onverging segment that oupies theinterval 1:6 � x � 2:6 (see Figure 3 at T = 0).The 2-D omputation is onduted in the (symmetri) upper half of thedut, embedding it in the retangular domain (x; y)2 [�1:6; 9:4℄�[0; 1℄, whihis divided into a grid of 550� 50 square ells (�x = �y = 0:02). A rigid-wallboundary ondition (due to symmetry) is imposed at the nozzle ontour andat the enterline (y = 0). On the left and right sides of the omputationalretangle we impose \non-reeting" boundary onditions, designed to allowwaves to pass through these endplanes (almost) undisturbed. The omputa-tion was performed in the time interval [0; 9℄, with time steps adjusted (ateah integration yle) to have a nearly onstant CFL oeÆient �CFL = 0:7.The quasi-1-D omputation was onduted in the same x interval, withthe same spatial grid, the same ontour area funtion A(x), and the sameinow/outow boundary onditions as in the 2-D ase. The omputation wasperformed with time steps adjusted to have the same �CFL = 0:7 and in thesame time interval [0; 9℄.The results of the 2-D omputation are shown as a time-sequene maps ofisobars (p = onst:) in Figure 3. Notie that in the initial state UL the ow is



8 M. Ben-Artzi and J. Falovitzalready supersoni sine uL = �1:947L, so that juLj > L. Thus, a supersoniexpansion ow gradually evolves in the diverging diretion of the nozzle.From the time-sequene of isobars plots (Figure 3), we observe that theow over-expands in the nozzle, so that an upstream-faing oblique shokwave is formed (marked by � in Figure 3). It serves to align the ow veloityvetor with the (straight) dut ontour, and to math the pressure to thatprevailing further left in the wider dut segment. Another omplex shokinteration forms at the enterline (y = 0), and evolves into a full Mahreetion.In Figure 4 we ompare the results of the 2-D and quasi-1-D omputationsat the �nal time t = 9, showing an isobars map (as in the last frame ofFigure 3), followed by pro�les of density, pressure, and ow Mah number,as funtions of the enterline oordinate (Figures 3(b){(d)).The two solutions are in lose agreement throughout the narrower dutsegment (x > 2:6), but disagree elsewhere. At the entrane to the nozzle(x = 2:6), the ow speed is soni (M = 1 in 4(d)), enabling the nozzle ow toapproah a steady supersoni expansion ow, ommening at a virtual soniplane (\nozzle entrane"), whih serves to \math" the unsteady rarefationwave on its right to the steady ow on its left. In other words, upon passingthrough the nozzle, the CRW is \split" into a \transmitted" part and a\reeted" part, the two being separated by a (nearly) steady ow throughthe diverging nozzle.Now the soure of disagreement between the quasi-1-D and the 2-D solu-tions is evident. The uid expands as it (reversely) ows through the nozzleat supersoni speed, and a full 2-D desription of this ow involves an obliqueshok system at the nozzle exit (Figure 4(a)), whih is poorly approximatedby the ross-setion-averaged quasi-1-D solution that relies on a normal shokfor mathing the over-expanded supersoni nozzle ow to the pressure ahead.Moreover, the ow passing through the Mah reetion shok struture isseparated by the slip-line into two streams having distintly di�erent ther-modynami properties. Naturally, the 1-D \averaging" of these two streamsinvolves signi�ant deviations from the 2-D ow �eld.It is onluded that although quasi-1-D alulations may generally beadequate as an engineering approximation, a veri�ation by omparison tothe appropriate multidimensional solution is required in order to make surethat the disagreement between the two remains within aeptable bounds.Our test ase analysis thus brings out the signi�ane of full multidimensionalnumerial solutions; the (simpler) quasi-1-D solutions may not always serveas adequate approximations.
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