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1 Introduction

Solutions to initial value problems of hyperbolic conservations laws often
involve discontinuities satisfying appropriate jump conditions. In the case of
fluid dynamics, the 1-D equations admit two types of discontinuous waves
a shock discontinuity and a contact discontinuity. When fluid dynamics in
two space dimensions is considered, even for the simplified “Riemann-type”
problems (where the data are piecewise constant in sectors of the plane), a
surprisingly rich variety of wave structure may evolve. Generally speaking,
exact solutions of such fluid dynamical wave structures are not available
and one must resort to approximations, such as those obtained by the high-
resolution GRP scheme for hyperbolic conservation laws.

Studies of the family of 2-D scalar (nonlinear) conservation laws with
Riemann-type initial data, for example the so-called Guckenheimer equation
(see [3], and [1]), have shown that the resulting wave structures appear similar
to those obtained in the fluid dynamical case. For some particular initial
data [1], the wave interaction gives rise to a quite complex wave structure
that includes an oblique shock, a sonic shock, a triple point, and a centered
rarefaction wave (CRW). Here an exact solution is available, so that the GRP
finite-difference approximation can be validated by verifying that it correctly
produces all features of the solution.

In the present paper we therefore concentrate on two sample problems,
one being the (scalar) Guckenheimer equation, the other a fluid dynamical
interaction of a centered rarefaction wave with a converging nozzle. In both
cases we present the GRP finite-difference solution. However, whereas in the
scalar case it is compared to the exact solution, in the fluid dynamical case
we compare it to the corresponding quasi-one-dimensional approximation —
with interesting conclusions regarding this simplified approximation.

The GRP conservation law scheme is based on a solution (at each cell in-
terface) of a “generalized Riemann problem”, which is the initial value prob-
lem with piecewise linear data. Fluxes obtained this way lead to a second-
order accurate, “high-resolution” integration of the conservation law. The
analytic solution of the GRP at cell-boundaries is used not only for the eval-
uation of numerical fluxes but also, independently, for the evaluation of the
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new slopes. Thus, the slopes are updated by using the underlying differen-
tial equations, rather than resorting to a “reconstruction” procedure. This
proves to be an important feature of the GRP-scheme, which distinguishes
it from practically all other existing “high-resolution” schemes. Indeed, the
GRP-scheme used here can be viewed as a predecessor to the emerging “dis-
continuous Galerkin” scheme, which emphasize the use of “higher-order” ap-
proximations in computational cells, based on an analytic treatment of the
differential equations.

In two space dimensions, we use a Strang-type operator splitting, employ-
ing the (1-D) GRP as the one-dimensional integration operator. We refer to
the recent monograph [1] for a detailed description of the GRP scheme. We
point out the fact that while the split scheme is formally second-order, it is
not at all clear that, in complex wave-patterns, it retains the same quality of
resolution as achieved in 1-D calculations. This aspect of the approximation
is also examined in this paper, using the exact (in the scalar case) solution.

The plan of this article is to start with a description of the Guckenheimer
problem and its exact solution. We then present the GRP solution to this
problem, and compare it to the exact solution. This is followed by a problem of
fluid dynamical wave interaction, where two types of (GRP) finite-difference
solutions are considered — the quasi-one-dimensional approximation, and the
full 2-D solution.

2 The Guckenheimer Equation

We consider the initial value problem (IVP) for the equation,

ug + f(u)e +g(u)y =0, (1)

u(z,y,0) = ¢(z,y), (2,y) € R, (2)

where u(z,y,t) is a real (scalar) function and f(u), g(u) are real smooth flux
functions. In the “Guckenheimer equation” f(u) = $u? and g(u) = $u®.

A “Riemann type” problem for (1) is the IVP where ¢(z,y) is finitely
valued and homogeneous of order zero,

Br,y) =uo(#), 6= arg(r,y) (= arctan?), 3)

Here we take the initial data
up(f) =491, ZL<h<ix (4)

The solution is self-similar, i.e., it is a function of the two variables ¢ =
z/t, n =y/t. Referring to the wave structure of the exact solution shown in
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Figure 1, we notice that outside of a large disk it consists of the following
three shocks:

(a) A shock emanating (initially) from the line (y = 0, z > 0), moving at
speed 1/3 in the positive y direction (note that g(u) = u®/3 is concave
on [—1,0]).

(b) A standing shock along the line (z =0, y < 0).

(c) A shock emanating (initially) from the line (z +y = 0, z < 0). The self-
similar analysis shows that at ¢ > 0 this line is given by z +y = (5/6)t.

The interaction of these three shocks in a disk around (0,0) gives rise to a
very complex wave structure. At time ¢ = 1 it can be described as follows
(see Figure 1(b)). The shock (b) extends to a segment of the positive y-axis
0<y<b, b=0.2823057. At the point (0,b) it bifurcates into a CRW whose
tail characteristic is a sonic shock, across which the solution u(z,y, 1) jumps
from —1 to the value o = 0.6087418. Then u increases across the rarefaction
from ¢ to 1, and it is constant along each (straight) characteristic line. The
rarefaction wave modifies shock (c¢) causing its front to curve. Note that the
head characteristic of the CRW carries the value v = 1. It intersects the shock
(c) at the point (z,,y,) given by

§_b §+ﬁ
_ 6 _ 6 6
T, 2_p’ y0—2_b- (5)

The tail characteristic (sonic shock) intersects the shock (a) at the point
(€, %)7 where € = 0.3519610. The result of the interaction between the CRW
and the shock (c) leads, as noted above, to a “bending” of the latter, forming
a shock branch y = y(x) connecting (,,,) to (€, 1). It can be determined
by solving an ordinary differential equation (see [2]). Thus, we obtain a wave
pattern that includes a shock wave bifurcating into a CRW and a sonic shock
which serves as a tail characteristic of the CRW. It intersects with the other
two shocks at the triple point (5 %) This wave pattern provides for a good
test of finite-difference schemes.

Two numerical tests were performed, one using the Godunov scheme and
the other with the GRP scheme. The computation domain was the square
[-1 <z <1, —1<y < 1] which was divided into 320 x 320 square cells.
The time step was At = 0.003125 (i.e., por, = 0.5 since maz|u| = 1 and
f'(u) = u, ¢g'(u) = u?), and the computation was performed to final time ¢ =
1. The boundary conditions were specified by calculating the exact solution
on the outer segments of boundary cells. This is possible as long as the
domain boundary is intersected only by the three shocks (a), (b), (c), which
according to Figure 1(b) is still true at ¢t = 1.

The results are shown in the sub-domain [-0.05 < z < 0.60, 0 < y <
0.65] [see Figure 2(a) for the Godunov scheme, and Figure 2(b) for the
GRP scheme]. Recall that inside the rarefaction fan u is constant along the
(straight) characteristic lines, so that numerical U-level curves approximate
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the fan structure. The U-level sequence (6) given below is designed to show
the shock fronts and the rarefaction fan. The five levels L =9, ...,13 corre-
spond to the tail, head and three inner characteristic lines of the rarefaction
fan [as shown in Figure 1(b)].

6
0.60874, 0.68295, 0.76366, 0.86089, 1, ... L=09,..,13. (©)

{1+02L ... L=0,1,..,8
=

In order to enable interpolation at the lowest and highest U-levels, they
were slightly shifted to —0.990 and 0.997, respectively. For comparison of the
exact and numerical solutions, we represent the exact solution [Figure 1(b)]
by discrete “marker points” situated on shock fronts, as shown in Figure 2.
Additional marker points are located at points (z,y) inside the rarefaction
fan, where the exact solution takes on the values U,, L = 9, ...,13 given by
(6).

Our primary observation with respect to the numerical solution is that
both finite-difference schemes (applied by Strang-type operator splitting) pro-
duce a correct approximation to this complex 2-D wave-interaction pattern
[Figure 2]. The GRP solution agrees quite well with the exact one, whereas
the Godunov solution shows a nearly equal agreement for the shock fronts,
but a lesser agreement in the rarefaction fan. In this centered fan, the char-
acteristic line that coincides with the sonic shock front corresponds to a
constant value of u = 0, and it is one of the U-level lines plotted (L = 9).
In the GRP solution this line is seen very near the sonic shock front (Fig-
ure 2(b)), whereas in the Godunov case its stand-off distance is perceptibly
higher [Figure 2(a)]. The captured sonic shock is represented by the cluster
of level lines L = 0,...,9 (since the jump across this shock is from u = Uy
to u = Uy). At the other end of the rarefaction fan, the head characteristic
line is plotted with U;3 = 0.997 (close to the exact value of U3 = 1, for a
clear U-level interpolation). In the Godunov solution this line extends well
beyond the exact solution, whereas in the GRP solution it agrees well with
the exact marker points. The rarefaction fan is the only region of the solu-
tion where u(z,y, 1) varies smoothly with a non-zero gradient. Hence, these
observations indicate that in such regions the (second-order accurate) GRP
scheme produces considerably smaller errors than the (first-order accurate)
Godunov scheme. In what concerns the bifurcation point (0, ) and the triple
point (f~ %) resulting from the two-dimensional setting, we observe that they
are well replicated by both schemes.
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Fig. 1. The Guckenheimer Structure for s + (u”/2), + (u”/3), = 0.
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(b) Second-order (GRP Az = Ay = 0.00625)
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Fig. 2. U-level curves for Guckenheimer equation at ¢t = 1
ur + (u?/2)z + (u*/3), = 0. Initial data in Figure 1(a).
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3 Interaction of a Centered Rarefaction Wave with a
Converging Nozzle

Consider a centered rarefaction wave that propagates in a planar duct com-
prising two long segments of uniform cross-section area joined by a smooth
converging nozzle. Such processes take place in numerous systems of indus-
trial and scientific interest. The significance of this sample flow lies in the
comparison we make between a full multidimensional solution and the cor-
responding quasi-1-D approximation. The reason is that the latter (often
referred to as the “duct flow” approximation) is commonly employed as an
engineering design tool. Hence, studying the bounds of its validity as a simpli-
fied approximation to the full multidimensional solution is highly significant
to engineering design and analysis.

For the multidimensional computation of the wave interaction with a con-
verging nozzle we employ the operator-split 2-D GRP scheme where the sym-
metric duct contour intersects an underlying two-dimensional Cartesian grid,
using the “moving boundary” scheme (where the boundary is stationary).
We refer to [1] for details of the MBT scheme and the nozzle contour, as well
as to a more comprehensive analysis of the present wave interaction problem.

We consider the case of a 1:10 pressure ratio centered rarefaction wave
(CRW) in a fluid assumed to be a perfect gas with v = 1.4. The CRW is
initially located in the wider part of the duct, and it propagates towards a
(short) converging nozzle of 2 : 1 cross-section area ratio. The initial data is
that of a Riemann problem designed to produce a right-facing CRW. It con-
sists of two uniform states Up=[p,, pr., u,]=[0.27030,0.1, —1.4016], = < 1.3,
and Ug=[pgr, pr, ur]=[1.4,1,0], > 1.3. The location of the initial disconti-
nuity (z = 1.3) is just ahead of the converging segment that occupies the
interval 1.6 < z < 2.6 (see Figure 3 at T'=0).

The 2-D computation is conducted in the (symmetric) upper half of the
duct, embedding it in the rectangular domain (z,y) €[—1.6,9.4] x [0, 1], which
is divided into a grid of 550 x 50 square cells (Az = Ay = 0.02). A rigid-wall
boundary condition (due to symmetry) is imposed at the nozzle contour and
at the centerline (y = 0). On the left and right sides of the computational
rectangle we impose “non-reflecting” boundary conditions, designed to allow
waves to pass through these endplanes (almost) undisturbed. The computa-
tion was performed in the time interval [0,9], with time steps adjusted (at
each integration cycle) to have a nearly constant CFL coefficient pc ., = 0.7.

The quasi-1-D computation was conducted in the same z interval, with
the same spatial grid, the same contour area function A(z), and the same
inflow /outflow boundary conditions as in the 2-D case. The computation was
performed with time steps adjusted to have the same p.r;, = 0.7 and in the
same time interval [0, 9].

The results of the 2-D computation are shown as a time-sequence maps of
isobars (p = const.) in Figure 3. Notice that in the initial state Uy, the flow is



8 M. Ben-Artzi and J. Falcovitz

already supersonic since u, = —1.947¢;, so that |u,| > ¢ . Thus, a supersonic
expansion flow gradually evolves in the diverging direction of the nozzle.

From the time-sequence of isobars plots (Figure 3), we observe that the
flow over-expands in the nozzle, so that an upstream-facing oblique shock
wave is formed (marked by * in Figure 3). It serves to align the flow velocity
vector with the (straight) duct contour, and to match the pressure to that
prevailing further left in the wider duct segment. Another complex shock
interaction forms at the centerline (y = 0), and evolves into a full Mach
reflection.

In Figure 4 we compare the results of the 2-D and quasi-1-D computations
at the final time ¢ = 9, showing an isobars map (as in the last frame of
Figure 3), followed by profiles of density, pressure, and flow Mach number,
as functions of the centerline coordinate (Figures 3(b) (d)).

The two solutions are in close agreement throughout the narrower duct
segment (z > 2.6), but disagree elsewhere. At the entrance to the nozzle
(z = 2.6), the flow speed is sonic (M = 1 in 4(d)), enabling the nozzle flow to
approach a steady supersonic expansion flow, commencing at a virtual sonic
plane (“nozzle entrance”), which serves to “match” the unsteady rarefaction
wave on its right to the steady flow on its left. In other words, upon passing
through the nozzle, the CRW is “split” into a “transmitted” part and a
“reflected” part, the two being separated by a (nearly) steady flow through
the diverging nozzle.

Now the source of disagreement between the quasi-1-D and the 2-D solu-
tions is evident. The fluid expands as it (reversely) flows through the nozzle
at supersonic speed, and a full 2-D description of this flow involves an oblique
shock system at the nozzle exit (Figure 4(a)), which is poorly approximated
by the cross-section-averaged quasi-1-D solution that relies on a normal shock
for matching the over-expanded supersonic nozzle flow to the pressure ahead.
Moreover, the flow passing through the Mach reflection shock structure is
separated by the slip-line into two streams having distinctly different ther-
modynamic properties. Naturally, the 1-D “averaging” of these two streams
involves significant deviations from the 2-D flow field.

It is concluded that although quasi-1-D calculations may generally be
adequate as an engineering approximation, a verification by comparison to
the appropriate multidimensional solution is required in order to make sure
that the disagreement between the two remains within acceptable bounds.
Our test case analysis thus brings out the significance of full multidimensional
numerical solutions; the (simpler) quasi-1-D solutions may not always serve
as adequate approximations.
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Fig. 3. Time sequence of CRW interaction with a converging segment.
Isobars map. The * marks shock formation at duct wall.
(Duct width here is twice the true size, for better visibility).
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Fig. 4. CRW interaction with a converging segment; comparison
of 2-D and quasi-1-D results at time ¢ = 9.
(a) Isobars of 2-D calculation.
(b)—(d) Quasi 1-D solution. Distribution of density, pressure
and flow Mach number (taken as positive).
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