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ABSTRACTThe Generalized Riemann Problem (GRP) sheme for ompressible time-dependent owsis briey presented. A 2-D (Strang-type) operator splitting method that uses 1-D GRP asits basi building blok is outlined. The 1-D Sod test problem and a 2-D ylindrial blastproblem serve to demonstrate the high-resolution apabilities of GRP methods. Additionaltwo-dimensional sample ase are briey onsidered. One with experimental validation ofshok di�ration through double-bend onduit. Another with a omparison between fullytwo-dimensional solutions of wave interation with area ontration segment in a dut, andthe orresponding quasi one-dimensional approximation. The main thrust of the paper isin the validation, both analyti and experimental, of the quasi 1-D approximation and theoperator splitting method, in the ontext of 2-D non-planar ows.
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1. INTRODUCTIONThe Generalized Riemann Problem (GRP) sheme for time-dependent ompressible ow inone spae dimension, is a seond-order aurate \analyti" extension to the lassial (�rst-order aurate) Godunov sheme [7℄. Over the past deade, aiming at pratial simulationof shok wave phenomena, two-dimensional shemes (and most reently a three-dimensionalone) were developed, using the GRP method as a fundamental building blok.This presentation is intended to serve as a onise introdution to the basi GRPmethodology. For a more omprehensive aount of the GRP method and its diverseappliations, we reommend as a �rst referene the extensive review [5℄. Further details ofthe GRP analysis and sheme may be found in earlier GRP publiations [1,2℄.The notion of \sheme extensions" is a entral onept in regards to GRP methods.While we refer to [5℄ for an overview of major existing extensions, we shall mention themhere briey. For the treatment of multi-uid shok wave phenomena a Material InterfaeTraking (MIT) GRP extension was developed in two spae dimensions. Another versatile2-D GRP extension is the Moving Boundary Traking (MBT) sheme, for ows involvingmoving/deforming boundary surfaes in a Cartesian grid. Diverse physial extensions werealso introdued into the basi GRP method. A dusty gasdynamis sheme was developed byWang and Wu [14℄, and more reently by Falovitz and Igra [6℄. Flows involving additionalenergy soures, suh as hemial energy (ombustion) and potential energy (self-gravity)were treated by adequately extended GRP shemes. Also, a \singularity traking" (1-D) extension to the GRP method was employed for produing simulations of shok wavephenomena with near-perfet auray and resolution.This presentation starts in Setion 2 with an outline of the basi (one-dimensional)GRP method, followed by a omputation of Sod's shok-tube problem [11℄ that demon-strates the auray and high-resolution of GRP simulation. In Setion 3 the 2-D operator-split GRP sheme is outlined, followed by a ylindrial blast test problem. The good agree-ment between the 2-D simulation of that blast ow and the orresponding (ylindrially-symmetri) 1-D GRP simulation demonstrates the auray of the operator-split 2-Dsheme. Here we also briey onsider two additional problems. One with experimentalvalidation of shok di�ration through double-bend onduit. Another with a omparisonbetween a fully two-dimensional solution of wave interation with area ontration segmentin a dut, and the orresponding quasi one-dimensional approximation.It is emphasized that the purpose of this paper is not to review the (huge) existing lit-erature onerning high-resolution (seond-order) methods for nonlinear onservation laws.There is de�nitely no attempt at omparing features of di�erent shemes. It is intended togive a rather self-ontained review of the tehniques used in the GRP approah (indeed,the multidimensional extension by operator-splitting is very lassial and ommon to manymethods), followed by a report on reent results related to quasi 1-D ows. Suh ows(like spherially symmetri ows) are quite ommon in various physial and engineeringsettings. However, we feel that they are under-represented in the (high resolution) numer-ial literature. The test-ases mentioned here o�er a \ross-examination" of the validity of1



quasi 1-D high-resolution auray, on one hand, and its ompatibility with full 2-D (split)alulations on the other hand.
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2. OUTLINE OF THE GRP METHODA) Quasi 1-D Dut Flow Equations.The equations governing the quasi-one-dimensional ow of an invisid ompressible uid[4℄ through a dut having a smoothly varying ross-setion area A(r), as funtion of thespae oordinate r and the time t areA ��tU + ��r [AF (U)℄ +A ��rG(U) = 0;(2.1) U(r; t) = 0� ��u�E1A ; F (U) = 0� �u�u2(�E + p)u1A ; G(U) = 0� 0p01A :Here �; p; u; E are, respetively, density, pressure, veloity and total spei� energy, whereE = e+ 12u2, e being the internal spei� energy. In general, the thermodynami variablesp; �; e are related by an \equation of state". We shall frequently refer to the most ommonase, that of an ideal \-law" gas, where,(2.2) p = ( � 1)�e;  > 1:B) Quasi-Conservative GRP Sheme.The following notation is adopted for the �nite-di�erene approximation to Eq. (2.1).The spatial grid is ri = i�r; i = 1; 2; :::; imax, where �r is onstant. The (numerial)solution is sought at equally spaed time-levels tn = n�t. By \ell i" we refer to the intervalextending between the \ell-boundaries" ri� 12 = (i � 12)�r. We label by Qni the averagevalue of a quantity (ow variable) Q over ell i at time-level tn. Similarly,Qn+ 12i+ 12 is the valueof Q at the ell boundary ri+ 12 , averaged over the time interval (tn; tn+1). Flow variablesare approximated as pieewise-linear in ells, where �Qni denotes the \slope", i.e., thevariation in Q over the i�ell interval. The disretization sheme is shown shematiallyin Fig. 1.
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Taking the ell i to be a \�nite-volume", a \quasi-onservative" di�erene sheme for (2.1)is given by Un+1i � Uni = � �t�Vi�hA(ri+ 12 )F (U)n+ 12i+ 12 � A(ri� 12 )F (U)n+ 12i� 12 i(2.3) +A(ri) � hG(U)n+ 12i+ 12 �G(U)n+ 12i� 12 i�;where �Vi = R ri+12ri� 12 A(r)dr is the volume of ell i. The sheme (2.3) is ompletely de�nedonly when the uxes(2.4) F (U)n+ 12i+ 12 = F (Un+ 12i+ 12 ) ; G(U)n+ 12i+ 12 = G(Un+ 12i+ 12 ) ;are spei�ed as funtion of the \state variables" Uni and the respetive slopes �Uni . It isemphasized that one Un+1i are evaluated by (2.3), they are never hanged or modi�ed inany way. The slopes of ow variables in ells are also updated to time-level tn+1. They are,however, subjet to monotoniity onstraints [13℄, following the time-level updating. Herewe will provide a sketh of the sheme, noting, in partiular, the ases of the (�rst-orderaurate) Godunov sheme, the (seond-order aurate) GRP sheme and its simpli�edversion E1.Godunov [7℄ proposed to solve (at every ell-boundary ri+ 12 ) the \planar" RiemannProblem , obtained by solving Eq. (2.1) with A(r) � 1 and pieewise-onstant initialdata onsisting of the states Uni ; Uni+1 , on the left and right of ri+ 12 , respetively (see Fig.3



1). The solution to a Riemann problem [4℄ is self-similar (as shown shematially in Fig.2), so that Un+ 12i+ 12 for the ux in Eq. (2.4) is the solution at ri+ 12 and t � tn = 0+. It iswell known [10℄ that the resulting (�rst-order) sheme is stable and robust, but also thatjump disontinuities are poorly resolved by it.For the GRP sheme, the ow variable values Un+ 12i+ 12 for the ux in Eq. (2.4) areobtained by an analyti proedure based on solving at eah grid point a GeneralizedRiemann Problem (GRP), whih is the initial value problem for Eq. (2.1), havingpieewise-linear initial data (see Fig. 1). The solution to a GRP is not self-similar (asshown shematially in Fig. 3), and the mid-step ow variables are evaluated from thefollowing two-term Taylor expansion (in t).(2.5) Un+ 12i+ 12 = Uni+ 12 + �t2 � � ��tU�ni+ 12 :The key idea of the GRP method is to derive the expressions for the mid-step uxesanalytially, aording to Eqs. (2.4) and (2.5). This leads to a sheme where the uxesare evaluated from plug-in expressions, thus onstituting an \analyti" upgrading of theGodunov sheme to seond-order auray level.

4



     t

RAREFACTIO
N

SHOCK

CONTACT

r
Figure  2.   Self-Similar  Solution  to  Riemann  Problem

     t

r

SHOCK

CONTACT

RAREFACTIO
N

Figure  3.   Solution  to  Generalized  Riemann  Problem

5



C) The E1 Sheme.By inspeting Eq. (2.5), it is lear that in order to get a seond-order upgrading ofGodunov's sheme, it suÆes to determine the time-derivative with an O(�t) error, sinethen the error made in the evaluation of Un+ 12i+ 12 and the orresponding ux terms is of orderO(�t2). The resulting simpli�ation denoted as the E1 sheme, leads to an extremelysimple modi�ation of Godunov's sheme. Indeed, it is the simplest possible modi�ationthat upgrades the Godunov sheme to a seond-order auray level. Our experiene withnumerous GRP omputations indiates that in the vast majority of ases (i.e., in all regionsof smooth ow), it suÆes to use the simpli�ed version. We atually wrote our GRP odeswith both the simpli�ed (E1) and the \fully analyti" (E1) shemes, where the use of thelatter is restrited to \diÆult" grid-points (e.g., large jumps).D) The Sod Shok-Tube Problem.We now turn to the well-known shok-tube problem proposed by Sod [11℄ whih has servedas a standard test ase for the evaluation of numerial shemes. The tube extends fromr = 0 to r = 100 (with planar symmetry, A(r) � 1) and is divided into 100 equal ells.The uid is a -law perfet gas with  = 1:4. The initial onditions are u = 0, p = � = 1for 0 < r < 50; u = 0, p = 0:1, � = 0:125 for 50 < r < 100.Two omputations of that problem were performed, one using the Godunov sheme,the other with the GRP sheme. In Fig. 4 we show the ow pro�les at t = 20 (the exatself-similar solution is given by the solid urve), obtained from the Godunov sheme. InFig. 5 we show the same pro�les obtained from the E1/E1 GRP sheme. It is evident thatboth the ontat and the shok disontinuities are far better resolved by the GRP shemethan by the Godunov sheme. The overall improvement due to the enhaned auray andhigh-resolution of the GRP sheme is quite dramati.

6



 VELOCITY  AT T=  20.000  DENSITY   AT T=  20.000

Figure 4. Sod's Shok-Tube problem. Godunov's method.
 VELOCITY  AT T=  20.000  DENSITY   AT T=  20.000

Figure 5. Sod's Shok-Tube problem. GRP method.
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3. THE GRP METHOD FOR TWO-DIMENSIONAL FLOWA) The Governing Equations.Assuming an invisid ompressible uid and an ideal gas equation of state, the time-dependent two-dimensional ow is governed by the laws for onservation of mass, momen-tum and energy, expressed in Cartesian oordinates (x; y) as�tU + �xF (U) + �yG(U) = 0;
(3.1) U(x; y; t) = 264 ��u�v�E 375 ; F (U) = 264 �u�u2 + p�uvu(�E + p)375 G(U) = 264 �v�uv�v2 + pv(�E + p)375 ;(3.2) p = ( � 1)�e;  = onstant > 1;(3.3) e = E � 12(u2 + v2):In (3.1) we denote by �; p; e; E; u; v the density, pressure, spei�-energy, spei� totalenergy and (x; y)-veloity omponents, respetively.B) Operator Splitting.The two-dimensional �nite-di�erene approximation to (3.1) is formulated as a \Strang-type" operator-splitting [12℄, using the GRP sheme as the one-dimensional �nite-di�ereneoperator. This splitting proedure an be outlined as follows. The system (3.1) is �rstsplit into the two simpler systems,(3.4)(i) �tU + �xF (U) = 0;(3.4)(ii) �tU + �yG(U) = 0:Loosely speaking, the system (3.4) is taken to mean that the evolution of an initial state Uoby (3.1) over a short time interval �t, an be approximated by evolving Uo �rst subjet to(3.4)(i) (over time �t) obtaining a state U1, then evolving U1 in aordane with (3.4)(ii)again over time �t.Let Lx(�t); Ly(�t); L(�t) denote �nite-di�erene approximation operators for theintegration by a time-step �t of (3.4)(i), (3.4)(ii), (3.1), respetively. Then, as shown byStrang [12℄, the operator sequene(3.5) L(�t) = Lx(12�t)Ly(�t)Lx(12�t)8



is a seond-order �nite-di�erene approximation to (3.1).The one-dimensional operators Lx(�t); Ly(�t) are given by the planar \GRP solver".We reiterate the basi idea (in terms of Lx) as follows. The grid onsists of the sequeneof points xi+1=2 = (i + 1=2)�x; i = 0; 1; 2; : : : ; imax, where �x is the grid spaing andell i is the interval xi�1=2 < x < xi+1=2. U(x; y; t) (for a �xed y) is approximated attime t = tn = n�t by Un(x; y), a pieewise linear distribution in ells, having the averagevalue Uni in ell i. The �nite-di�erene GRP solver Lx, yielding �Un+1i 	imaxi=1 in terms offUni gimaxi=1 is expliitly given by,
(3.6) Un+1i = Uni � �t�x hF (U)n+1=2i+1=2 � F (U)n+1=2i�1=2 i ;
where the time-entered uxes F (U)n+1=2i+1=2 are determined analytially from solutions toGeneralized Riemann Problems that arise at the ell-interfaes xi+1=2, as explained inSetion 2(B) above.
C) Cylindrial Blast Example.This sample problem was hosen to illustrate the apability of the two-dimensional GRPsheme, in a ase where ylindrial symmetry permits also the appliation of the one-dimensional GRP sheme (2.3) with A(r) = r. A more detailed aount of this problemis given in the reent publiation [3℄. The initial data is as follows. The uid is an idealgas having  = 1:4 and it is initially at rest everywhere. Inside the irle entered at(x; y) = (0; 0), of radius R = 50, there is a high-pressure state (�L; pL) = (10; 20), whilethe low-pressure state outside the irle is (�R; pR) = (1; 1). The omputational domain isthe square (0 < x < 100; 0 < y < 100), whih is divided into a grid of 100 � 100 squareells. The integration was arried out with a onstant time-step �t = 0:16, up to the �naltime of T = 12:5. Compliane with the Courant-Friedrihs-Levy (CFL) stability ondition[10℄ throughout the omputation was veri�ed.As a referene alulation, we used the quasi 1-D GRP sheme (2.3) to ompute theow pro�les, as funtions of the radial oordinate r. The pressure and density pro�les thusobtained are shown in Fig. 6. They represent a sharp outgoing shok wave and an ingoingrarefation, separated by a ontat disontinuity.9
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   0. 100.0Figure 6. One-dimensional pro�les as funtion of rIn the two-dimensional omputation, the initial data in ells interseted by the irle wassmoothed out, by taking an area-weighted density and pressure averages. The resultingdensity distributions are shown in Fig. 7(a) as a grey-sale plot (the amount of greyshading is proportional to the density), and in Fig. 7(b) as a diagonal ross-setion (alongthe line x = y).
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Figure 7(a). Density grey-sale plot on (x; y) plane, T=12.50.

Figure 7(b). Density diagonal ross-setion, T=12.50.The agreement between the one-dimensional ylindrially-symmetri omputations andthe orresponding two-dimensional results is very good (ompare the density pro�le inFig. 7(b) with that of Fig. 6 ). This agreement underlines the fat that even though theshemes (2.3) and (3.5)-(3.6) are quite di�erent in formulation, with the latter being basedon operator-splitting, the results agree quite well.D) Further Analysis of 2-D Flows.Presently, two-dimensional uid dynamial phenomena are aurately simulated by theGRP method, and additionally, experimental tehniques for ow visualization are welldeveloped. Thus, experimental validation of numerial omputations is readily performedin two-dimensional setups. A number of two-dimensional sample ases were studied duringthe past deade, some with experimental validation and some without. Here we presentsummarily two suh studies, referring to the original publiations [8,9℄ for detailed aounts.In a reent experimental and omputational study of this kind [8℄, the di�ration of ashok wave propagating through a double-bend passage was visualized by shadowgraph and11



double-exposure holographi methods. A notably good agreement was obtained betweenthe experimental visualization and GRP omputed results at a sequene of time pointsthat overs the entire shok passing proess [8℄.In another study we onsidered the interation of shok or rarefation waves with a(smooth) ontration of the dut ross-setional area [9℄. Here the idea was to omparethe fully two-dimensional solution with the orresponding one-dimensional approximation,obtained by solving numerially the quasi one-dimensional equations for ompressible owin a dut of varying ross-setion area. The ase of rarefation wave propagating throughan area ontration segment is shown in Fig. 8 as a time sequene of isobar maps. Wenote that at large time a stationary two-dimensional shok wave system, whih appears tobe a Mah reetion from the symmetry plane, has formed in order to math the pressureof the supersoni ow issuing from the narrow dut with the (higher) pressure prevailingdownstream in the wider dut. Clearly this ow pattern is inherently two-dimensional,and annot be approximated by a quasi one-dimensional dut ow. We refer to [9℄ for amore omprehensive analysis of this ase.
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