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1. INTRODUCTION

In this paper we review some recent results concerning the class of nonlinear equations

of evolution given by,

(1.1) u — Au = plVul’, n €R, p>1,
(1.2) u(z,0) = ugp(x), © € R".
n 2
We denote V = V, = (8%1,...7%> JA = ; (%) . While equations of the type

uy — Au = uP have been extensively studied (see e.g. [14, 15, 29] and references there),
the same is not true for (1.1). We note that most of the results mentioned in this paper
apply to the more general case where the right-hand side of (1.1) is replaced by F(Vu),

“yiscous

with suitable growth conditions on F. Thus, (1.1) can be viewed as a model for a

Hamilton-Jacobi” equation. Indeed, this equation appears naturally in a variety of studies.

Some examples include:

(a) The one-dimensional case n = 1. In this case the equation appears in the study of
growth of surfaces and is labeled as the “generalized KPZ equation” [16, 17, 20, 21].

(b) Still in the one-dimensional case, we take ¢ = —1 and p = 2, thus obtaining the
equation u; + ui = uz,. Differentiating with respect to x and setting v = u, we get
for v(z,t) the equation v; + (v?), = v., which is the well-known Burgers equation.

(¢) Consider the Navier-Stokes equations in the plane (n = 2), which in vorticity form

can be written as

&+ (u-V)E=vAL

1



(€ is the vorticity doul — 91u? of the velocity field u = (u!,u?)). Suppose we know in
advance that |u| is bounded. Then ¢ satisfies the inequality & — v A& < C|VE|. Thus,
the methods used in the study of (1.1) are also applicable in the case of the inequality.
In the following sections we shall discuss the global well-posedness of (1.1) in various

spaces and the decay properties of solutions as t — +o0.

2. EXISTENCE OF GLOBAL SOLUTIONS

Let CZ(R") := C*(R™) N W?2°°(R"), namely, the space of twice continuously differen-
tiable functions with bounded derivatives. It was proved in [3] that CZ(R™) is a “persistence

space” to classical solutions of (1.1). Namely, we have the theorem.

THEOREM 2.1 [3]. Let ug € CZ(R™). Then for any yu € R, p > 1, there exists a unique
classical solution to (1.1) - (1.2), such that u(-,t) € C}(R™) for all t > 0 and the mapping

up € Cy(R") — u € C(Ry, G5 (R"))

1s continuous.

Furthermore, the solution satisfies the following maximum-minimum principles.

(2.1) sup u(x,t) = sup ug(x), inf w(x,t)= inf wg(z),VT > 0,
z€ER™ zERn® rER™ zERn
te(0,T] te(0,7T]

(2.2) [Vu(-, t)||pe@ny < [|Vuoll Lo @ny, ¥t > 0.

In the proof, one shows that the solution exists in a time interval (0,7], where T
depends only on ||[Vug|[ze®n). The inequality (2.2) then allows the continuation of the
solution to [T, 2T1],.... We remark that to prove (2.2) the equation (1.1) is differentiated

with respect to x;. Denoting u; = %m we get
J

0 " 8Uj
where U, (2,t) = up|Vul[P~22% € L>=(R" x (0,T]. However, the solution u; to the linear

parabolic equation (2.3) is not twice continuously differentiable hence some care must be
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taken in deducing (2.2) from the standard (linear) maximum principle. See the Appendix
in [3] for details.

Naturally, our next goal is to investigate the well-posedness of (1.1) in wider spaces of
less regular functions, for instance, LI(R™) for suitable exponents ¢ (possibly depending

on p). To allow such solutions, the equation (1.1) is first cast in the integral form,

t
(2.4) u(x,t) = /G(:v —y, t)ug(y)dy + u//G(m —y,t —s)|Vu(y, s)|Pdyds,
R 0 R»
where G(z,t) = (4nt)~"/? exp(—|x|?/4t) is the heat kernel. Taking V, of Eq. (2.4) and

using norms of the type sup t*[|Vu(-,t)|/;r®n) for suitable 7, a, as in [29] one obtains
te(0,T

the local (in time) existence of solutions to (2.4) in LY(R™), for certain exponents. Then,
by using the regularizing effect of the parabolic equation (2.4) (see also [9] for a direct
argument) one shows that the solution u(-,t) € CZ(R") for ¢ > 0, hence global exis-
tence follows from Theorem 2.1 above. As for uniqueness, we note that the solution was
constructed by using “growth norms” of the type sup t*||[Vu(:,t)|/zr®n). Thus, a con-
traction argument yields uniqueness using such no;fn(s ’zghe “Kato-Fujita condition” [19]).
However, an alternative approach as in [13] gives uniqueness for solutions in classes like

C([0,T); LY(R™))NC((0, T]; Cp(R™)). The exact exponents are summarized in the following

theorem.

THEOREM 2.2 [11]. For 1 < p < 2, let q. = n% and take any q > max(1,q.), ¢ <
(but ¢ > 1 if . = 1). Then, given any ug € LY(R") (and any u € R), the equation (2.4)

has a unique, global (in time) solution u € C([0, c0), L4(R™)).
In particular we note that if

n -+ 2
n+1

(2.5) P> pei=

then ¢. > 1 and the exponent ¢ = 1 is outside the scope of Theorem 2.2. Indeed, as the
following claim shows, one cannot expect, for p > p., to have solutions u of (2.4) for any
ug € L'(R"), even under the mildest assumptions on u. In presenting the next claim, there

is no attempt at achieving maximal generality.
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Cramm 2.3 [12]. Let p > p. = 22 and pu = 1.

n+1
Denote, for 0 < § < %(2—15 — %),
m={i
vs(z) =
’ 0 @ > 1.

Then, given any T > 0, there is no solution u(x,t) of (2.4) in (z,t) € R" x (0,T], where
ug = vs and such that

u € LP((0,T); WhP(R™)).

PROOF: Assume the existence of a solution wu(z,t) with the above properties. Since

T
[ Jon [VuPdadt < oo, given e > 0 there exists a sequence t; — 0 such that
0

(2.6) / \Vu(a:,tj)|pdx<8tj_1,j:1,2,..../
which implies, by the Sobolev inequality,

. 1 11
2.7 AV de < Clet7H)%, — == — =,
2.1 [ atwtyrdr < e T = 0o

(u >0 in view of (2.4)).
Take 0 < 8 < 5 (to be specified later) and use Holder’s inequality and (2.7) to get,
(2.8) / ulr.t;)de < (C=t71) - (wntF)17,
|| <t?

(wy,= volume of unit ball).

Now p > Z—ﬁ implies n(1 — pi) > 221:'21), so from (2.8),

14 2B(n+1)

(2.9) / u(x,t;)de < CeY/Pt nE i =1,2,...

B
|| <t}

P
J

Since p > Z—ﬁ we can choose [ < % such that n = —% + 262—1; > 0, hence

(2.10) / u(x, tj)de < Cal/pt;7 —0as j— oc.

B
lo| <t}



Let u(x,t) = G(x,t) x ug be the solution to the heat equation with the same initial data.
u

Clearly u(x,t) (x,t). We have, for t > 0,

/ u(x, t)dr = / /G(:v —y, t)ug(y)dydz

|z|>tP |z|>t8 R™

(2.11) :/ / +/ / G(x =y, t)uo(y)dydz

lo|>t8 |y|<itd  |z|>tF |y|>1t8

< [ cend fulpen+ [ uwld

€[> 518 ly|> 518

Since (< % we have

/ G tdeE=0tN)as t—-0,N=1,2,...

€l>517

and, for ug = vs

(2.13) / uo(y)dy = (1 — 272t lug || 11 s t < 1,
ly|>517

so, since ||u(-, t)||r1@») = |luollr1 mn), we conclude that

(z, tyde = 277 |ug| 1 mny + O(tY) as t — 0.

|z|<tB

Setting ¢ = t; and comparing with (2.10) we get, for j =1,2,.. .,
—5,86
(2.14) Ce'Pt? > 27 uo || 11 mny + O(tY)

which is a contradiction by the choice of 9, since § < % can be chosen such that 80 < n. O

REMARK 2.4: In view of the last claim, one may ask, in the case p > p.,u = 1, what is
the set of initial data ug(x) € L'(R") for which a solution to (2.4) does exist. Theorem
2.2 implies that this set contains all ug € L*(R") N L9(R"), ¢ > q., and in particular, all
ug(z) € LY(R™) N L>=(R"). However, Claim 2.3 says this set is not all of L!(R"). The
situation is still not clear for ¢ = —1. On the other hand, if 4 = 1 and p > 2, Claim 2.3

can be strengthened as follows.



PROPOSITION 2.5. [11]. Let u(z,t) be a classical solution of (1.1), with p = 1,p > 2, in
a strip R* x (0,T). Assume that lim u(+,t) = ug in L} (R™). Then exp(ug) € L} (R™).

=0 loc loc

Finally, while (for p > p., it = 1) existence is not guaranteed for all ug € L9(R"),1 <

q < q., uniqueness can also fail, as the following theorem shows.

THEOREM 2.6. [11]. Assume 2 >p > p. and let 1 < q < q. and = 1. Then, for ug = 0,
there exists a positive solution u to (2.4). In fact, u is self-similar,

2—p

u(z,t) =t *U(z[t72), k = =1)

where U = U(r) € C*([0,)).

REMARK 2.7: The case of a coupled system of equations of the type (1.1) was treated in

[4].
3. FURTHER EXTENSIONS. THE CASE = —1.

We consider here some further results for solutions of Eq. (1.1) (or (2.4)) under the
assumptions that g = —1 and ug > 0. The maximum-minimum principle guarantees that
the solution u is nonnegative and is majorized by the corresponding solution of the heat
equation.

In this case, the subcritical part of Theorem 2.2 has been extended by Benachour and

Laurencot [5] to include positive bounded measures, as follows.

THEOREM 3.1 [ 5]. Let 1 < p < p. = Z—ﬁ,u = —1 and ug € M, (R") (= the space of

positive bounded Borel measures). Then there exists a unique weak solution (in the sense

of (2.4)) u such that, u € C((0,00); LY(R")) N LY ((0,00); WLP(R")).

loc

REMARK 3.2: (a) We refer to [5] for a precise definition of a “weak solution”. Also, for

the uniqueness a “growth condition” (as t — 0) of the “Kato-Fujita” type is required, as

in the discussion preceding Theorem 2.2 above.

(b) The case p = 1 (and p = —1) was treated in [7], by probabilistic methods, produc-
ing a spherically symmetric solution for any initial data ug(x) which is a “profiled”

spherically symmetric bounded positive measure.
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(¢) The more general equation u; — Au = —a(x)u?(Vu)P,uy > 0, was treated in [23].
The supercritical case (p > p.) is more difficult. Clearly, the method of proof of
Claim 2.3 does not work here and the question whether or not the equation is well-posed
in L*(R™) remains an open problem. However, Benachour and Laurencot [5] have managed
to prove the non-existence of “source-type” solutions, namely, solutions that converge (in
the sense of distributions) to a multiple of the Delta-function. The exact formulation of

the theorem is as follows.

THEOREM 3.3. [5]. Let M,T > 0,p > p.. There is no u € L>((0,T); L'(R™)) N

LP((0,T); WHP(R™)) such that uy—Au = —|Vu|P in D'(R" x(0,T)) and tlirr(l) [ u(z, t)¥dx =
b d ]Rn

MT(0), YT € C2(R").

4. DECAY AS t — +00.

Let us go back to classical (say, as in Theorem 2.1) solutions to (1.1), where we
assume now that ug > 0 and u = —1. Then the solution wu(x,t) is nonnegative and
an integration of (1.1) shows that if, in addition, ug € L'(R") then u(-,t) € L' for all

t > 0 and the nonnegative function I(t) = [ wu(x,t)dx is nonincreasing. Thus, the limit

Rn
I = tlim I(t) > 0 always exists. It is interesting that the question whether or not I, = 0
—00
is determined uniquely by p. = Z—ﬁ, the same critical value as in the previous sections.

We have the following theorem.

THEOREM 4.1 [10]. Let 0 < ug € CZ(R")NL'(R™),ug # 0. Let u(x,t) be the solution to

(1.1), with = —1. Then
n-+2

I.>0&p>p.— ——.
p=p n+1

REMARK 4.2: As was seen in Theorem 2.2, the well-posedness of (1.1) in L}(R™) was also
linked to the same critical index p.. However, there is yet no direct argument connecting
this well-posedness (essentially a short-time feature) with the long-time decay as expressed

in Theorem 4.1.

REMARK 4.3: In the case p < p. the equation is well-posed in L'(R"). Then, as in
the discussion preceding Theorem 2.2, if 0 < ug € L'(R") (and u = —1), it follows that
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u(-,t) € CHR")NLY(R™) for t > 0. Hence, Theorem 4.1 is applicable also, in the subcritical
case, to all 0 < ug € L*(R™).

REMARK 4.4: In the case p < p., the rate of decay of I(¢) to zero becomes slower as p
approaches p.. More precisely, let 1 < p < p. and o > % — 4. Then [10] I(t) < Ct=¢
(for all sufficiently large t) implies ug = 0. In particular, if p = p. then I(t) cannot decay
like t=* for any o > 0. On the other hand, if p = 1 and wg is compactly supported then,

for some A, 0 > 0 we have

sup exp(At?)I(t) < oo.
0<t< oo

(see [3]).
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