
Global properties of some nonlinear parabolic equationsM. Ben-ArtziInstitute of MathematicsHebrew UniversityJerusalem 91904, Israel1. IntroductionIn this paper we review some recent results concerning the class of nonlinear equationsof evolution given by,(1.1) ut ��u = �jrujp; � 2 R; p � 1;(1.2) u(x; 0) = u0(x); x 2 Rn :We denote r = rx = � @@x1 ; : : : ; @@xn� ;� = nPi=1� @@xi�2. While equations of the typeut � �u = up have been extensively studied (see e.g. [14, 15, 29] and references there),the same is not true for (1.1). We note that most of the results mentioned in this paperapply to the more general case where the right-hand side of (1.1) is replaced by F (ru),with suitable growth conditions on F . Thus, (1.1) can be viewed as a model for a \viscousHamilton-Jacobi" equation. Indeed, this equation appears naturally in a variety of studies.Some examples include:(a) The one-dimensional case n = 1. In this case the equation appears in the study ofgrowth of surfaces and is labeled as the \generalized KPZ equation" [16, 17, 20, 21].(b) Still in the one-dimensional case, we take � = �1 and p = 2, thus obtaining theequation ut + u2x = uxx. Di�erentiating with respect to x and setting v = ux we getfor v(x; t) the equation vt + (v2)x = vxx, which is the well-known Burgers equation.(c) Consider the Navier-Stokes equations in the plane (n = 2), which in vorticity formcan be written as �t + (u � r)� = ���1



(� is the vorticity @2u1 � @1u2 of the velocity �eld u = (u1; u2)). Suppose we know inadvance that juj is bounded. Then � satis�es the inequality �t� ��� � Cjr�j. Thus,the methods used in the study of (1.1) are also applicable in the case of the inequality.In the following sections we shall discuss the global well-posedness of (1.1) in variousspaces and the decay properties of solutions as t! +1.2. Existence of global solutionsLet C2b (Rn) := C2(Rn)\W 2;1(Rn), namely, the space of twice continuously di�eren-tiable functions with bounded derivatives. It was proved in [3] that C2b (Rn) is a \persistencespace" to classical solutions of (1.1). Namely, we have the theorem.Theorem 2.1 [3]. Let u0 2 C2b (Rn). Then for any � 2 R; p � 1, there exists a uniqueclassical solution to (1.1) - (1.2), such that u(�; t) 2 C2b (Rn) for all t � 0 and the mappingu0 2 C2b (Rn)! u 2 C(R+ ; C2b (Rn))is continuous.Furthermore, the solution satis�es the following maximum-minimum principles.(2.1) supx2Rnt2(0;T ]u(x; t) = supx2Rn u0(x); infx2Rnt2(0;T ]u(x; t) = infx2Rn u0(x); 8T > 0;(2.2) kru(�; t)kL1(Rn) � kru0kL1(Rn); 8t � 0:In the proof, one shows that the solution exists in a time interval (0; T ], where Tdepends only on kru0kL1(Rn). The inequality (2.2) then allows the continuation of thesolution to [T; 2T ]; : : :. We remark that to prove (2.2) the equation (1.1) is di�erentiatedwith respect to xj . Denoting uj = @@xj u, we get(2.3) @@tuj ��uj = nXi=1 	i(x; t)@uj@xi ;where 	i(x; t) = �pjrujp�2 @u@xi 2 L1(Rn � (0; T ]. However, the solution uj to the linearparabolic equation (2.3) is not twice continuously di�erentiable hence some care must be2



taken in deducing (2.2) from the standard (linear) maximum principle. See the Appendixin [3] for details.Naturally, our next goal is to investigate the well-posedness of (1.1) in wider spaces ofless regular functions, for instance, Lq(Rn) for suitable exponents q (possibly dependingon p). To allow such solutions, the equation (1.1) is �rst cast in the integral form,(2.4) u(x; t) = ZRn G(x� y; t)u0(y)dy + � tZ0 ZRn G(x� y; t� s)jru(y; s)jpdyds;where G(x; t) = (4�t)�n=2 exp(�jxj2=4t) is the heat kernel. Taking rx of Eq. (2.4) andusing norms of the type supt2(0;T ] t�kru(�; t)kLr(Rn) for suitable r; �, as in [29] one obtainsthe local (in time) existence of solutions to (2.4) in Lq(Rn), for certain exponents. Then,by using the regularizing e�ect of the parabolic equation (2.4) (see also [9] for a directargument) one shows that the solution u(�; t) 2 C2b (Rn) for t > 0, hence global exis-tence follows from Theorem 2.1 above. As for uniqueness, we note that the solution wasconstructed by using \growth norms" of the type supt2(0;T ] t�kru(�; t)kLr(Rn). Thus, a con-traction argument yields uniqueness using such norms (the \Kato-Fujita condition" [19]).However, an alternative approach as in [13] gives uniqueness for solutions in classes likeC([0; T ];Lq(Rn ))\C((0; T ];Cb(Rn)). The exact exponents are summarized in the followingtheorem.Theorem 2.2 [11]. For 1 � p < 2, let qc = np�12�p and take any q � max(1; qc); q < 1(but q > 1 if qc = 1). Then, given any u0 2 Lq(Rn) (and any � 2 R), the equation (2.4)has a unique, global (in time) solution u 2 C([0;1); Lq(Rn)).In particular we note that if(2.5) p > pc := n+ 2n+ 1then qc > 1 and the exponent q = 1 is outside the scope of Theorem 2.2. Indeed, as thefollowing claim shows, one cannot expect, for p > pc, to have solutions u of (2.4) for anyu0 2 L1(Rn), even under the mildest assumptions on u. In presenting the next claim, thereis no attempt at achieving maximal generality.3



Claim 2.3 [12]. Let p > pc = n+2n+1 and � = 1.Denote, for 0 < � < 12(n+1n+2 � 1p ),v�(x) = � jxj�n+�; jxj < 1;0 jxj � 1:Then, given any T > 0, there is no solution u(x; t) of (2.4) in (x; t) 2 Rn � (0; T ], whereu0 = v� and such that u 2 Lp((0; T );W 1;p(Rn)):Proof: Assume the existence of a solution u(x; t) with the above properties. SinceTR0 RRn jrujpdxdt <1, given " > 0 there exists a sequence tj ! 0 such that(2.6) ZRn jru(x; tj)jpdx < "t�1j ; j = 1; 2; : : : ;which implies, by the Sobolev inequality,(2.7) ZRn u(x; tj)p�dx � C("t�1j ) p�p ; 1p� = 1p � 1n:(u � 0 in view of (2.4)).Take 0 < � < 12 (to be speci�ed later) and use H�older's inequality and (2.7) to get,(2.8) Zjxj<t�j u(x; tj)dx � (C"t�1j ) 1p � (!nt�nj )1� 1p� ;(!n= volume of unit ball).Now p > n+2n+1 implies n(1� 1p� ) > 2(n+1)n+2 , so from (2.8),(2.9) Zjxj<t�j u(x; tj)dx � C"1=pt� 1p+ 2�(n+1)n+2j ; j = 1; 2; : : :Since p > n+2n+1 we can choose � < 12 such that � = � 1p + 2� n+1n+2 > 0, hence(2.10) Zjxj<t�j u(x; tj)dx � C"1=pt�j ! 0 as j !1:4



Let ~u(x; t) = G(x; t) � u0 be the solution to the heat equation with the same initial data.Clearly u(x; t) � ~u(x; t). We have, for t > 0,
(2.11)

Zjxj>t� ~u(x; t)dx = Zjxj>t� ZRn G(x� y; t)u0(y)dydx= Zjxj>t� Zjyj< 12 t� + Zjxj>t� Zjyj> 12 t� G(x� y; t)u0(y)dydx� Zj�j> 12 t� G(�; t)d� � ku0kL1(Rn) + Zjyj> 12 t� u0(y)dy:Since � < 12 we have Zj�j> 12 t� G(�; t)d� = O(tN ) as t! 0; N = 1; 2; : : :and, for u0 = v�(2.13) Zjyj> 12 t� u0(y)dy = (1� 2��t��)ku0kL1(Rn); t < 1;so, since k~u(�; t)kL1(Rn) = ku0kL1(Rn), we conclude thatZjxj<t� ~u(x; t)dx = 2��t��ku0kL1(Rn) + O(tN ) as t! 0:Setting t = tj and comparing with (2.10) we get, for j = 1; 2; : : :,(2.14) C"1=pt�j � 2��t��j ku0kjL1(Rn) + O(tNj )which is a contradiction by the choice of �, since � < 12 can be chosen such that �� < �. �Remark 2.4: In view of the last claim, one may ask, in the case p > pc; � = 1, what isthe set of initial data u0(x) 2 L1(Rn) for which a solution to (2.4) does exist. Theorem2.2 implies that this set contains all u0 2 L1(Rn ) \ Lq(Rn); q � qc, and in particular, allu0(x) 2 L1(Rn) \ L1(Rn). However, Claim 2.3 says this set is not all of L1(Rn ). Thesituation is still not clear for � = �1. On the other hand, if � = 1 and p � 2, Claim 2.3can be strengthened as follows. 5



Proposition 2.5. [11]. Let u(x; t) be a classical solution of (1.1), with � = 1; p � 2, ina strip Rn � (0; T ). Assume that limt!0u(�; t) = u0 in L1loc(Rn). Then exp(u0) 2 L1loc(Rn ).Finally, while (for p > pc; � = 1) existence is not guaranteed for all u0 2 Lq(Rn); 1 �q < qc, uniqueness can also fail, as the following theorem shows.Theorem 2.6. [11]. Assume 2 > p > pc and let 1 � q < qc and � = 1. Then, for u0 = 0,there exists a positive solution u to (2.4). In fact, u is self-similar,u(x; t) = t�kU(jxjt� 12 ); k = 2� p2(p� 1) ;where U = U(r) 2 C2([0;1)).Remark 2.7: The case of a coupled system of equations of the type (1.1) was treated in[4]. 3. Further extensions. The case � = �1.We consider here some further results for solutions of Eq. (1.1) (or (2.4)) under theassumptions that � = �1 and u0 � 0. The maximum-minimum principle guarantees thatthe solution u is nonnegative and is majorized by the corresponding solution of the heatequation.In this case, the subcritical part of Theorem 2.2 has been extended by Benachour andLaurencot [5] to include positive bounded measures, as follows.Theorem 3.1 [ 5]. Let 1 < p < pc = n+2n+1 ; � = �1 and u0 2 M+b (Rn) (= the space ofpositive bounded Borel measures). Then there exists a unique weak solution (in the senseof (2.4)) u such that, u 2 C((0;1);L1(Rn)) \ Lploc((0;1);W 1;p(Rn)).Remark 3.2: (a) We refer to [5] for a precise de�nition of a \weak solution". Also, forthe uniqueness a \growth condition" (as t ! 0) of the \Kato-Fujita" type is required, asin the discussion preceding Theorem 2.2 above.(b) The case p = 1 (and � = �1) was treated in [7], by probabilistic methods, produc-ing a spherically symmetric solution for any initial data u0(x) which is a \pro�led"spherically symmetric bounded positive measure.6



(c) The more general equation ut ��u = �a(x)uq(ru)p; u0 � 0, was treated in [23].The supercritical case (p � pc) is more di�cult. Clearly, the method of proof ofClaim 2.3 does not work here and the question whether or not the equation is well-posedin L1(Rn) remains an open problem. However, Benachour and Laurencot [5] have managedto prove the non-existence of \source-type" solutions, namely, solutions that converge (inthe sense of distributions) to a multiple of the Delta-function. The exact formulation ofthe theorem is as follows.Theorem 3.3. [5]. Let M;T > 0; p � pc. There is no u 2 L1((0; T );L1(Rn)) \Lp((0; T );W 1;p(Rn)) such that ut��u = �jrujp inD0(Rn�(0; T )) and limt!0 RRn u(x; t)	dx =M	(o); 8	 2 C10 (Rn). 4. Decay as t! +1.Let us go back to classical (say, as in Theorem 2.1) solutions to (1.1), where weassume now that u0 � 0 and � = �1. Then the solution u(x; t) is nonnegative andan integration of (1.1) shows that if, in addition, u0 2 L1(Rn) then u(�; t) 2 L1 for allt � 0 and the nonnegative function I(t) = RRn u(x; t)dx is nonincreasing. Thus, the limitI1 = limt!1 I(t) � 0 always exists. It is interesting that the question whether or not I1 = 0is determined uniquely by pc = n+2n+1 , the same critical value as in the previous sections.We have the following theorem.Theorem 4.1 [10]. Let 0 � u0 2 C2b (Rn )\L1(Rn ); u0 6= 0. Let u(x; t) be the solution to(1.1), with � = �1. Then I1 > 0, p > pc = n+ 2n+ 1 :Remark 4.2: As was seen in Theorem 2.2, the well-posedness of (1.1) in L1(Rn) was alsolinked to the same critical index pc. However, there is yet no direct argument connectingthis well-posedness (essentially a short-time feature) with the long-time decay as expressedin Theorem 4.1.Remark 4.3: In the case p < pc the equation is well-posed in L1(Rn). Then, as inthe discussion preceding Theorem 2.2, if 0 � u0 2 L1(Rn) (and � = �1), it follows that7
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