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Abstract
This paper addresses the issue of the formulation of weak solutions to systems of nonlinear 
hyperbolic conservation laws as integral balance laws. The basic idea is that the “mean-
ingful objects” are the fluxes, evaluated across domain boundaries over time intervals. 
The fundamental result in this treatment is the regularity of the flux trace in the multi-
dimensional setting. It implies that a weak solution indeed satisfies the balance law. In fact, 
it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of 
the boundary. It should be emphasized that the weak solutions considered here need not 
be entropy solutions. Furthermore, the assumption imposed on the flux f(u) is quite mini-
mal—just that it is locally bounded.

Keywords Balance laws · Hyperbolic conservation laws · Multi-dimensional · 
Discontinuous solutions · Finite-volume schemes · Flux · Trace on boundary
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1 Introduction

This paper deals with the formulation of weak solutions of nonlinear hyperbolic conserva-
tion laws as solutions of integral “balance laws”. Such laws are closely associated with 
the relevant physical laws. The basic idea is that the “meaningful objects” are the fluxes, 
evaluated across manifolds over time intervals. In contrast, the role played by the unknown 
u(x,  t) is not its pointwise value but is limited to its integral over a given domain as a 
function of time. A fundamental issue is, therefore, the meaning (and regularity) of fluxes 
across domain boundaries.
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From the numerical point-of-view, finite-volume schemes rely on an appropriate 
approximation of these fluxes, so the present paper is a contribution to the validity of the 
finite-volume approach.

The case of a single space dimension has already been studied by the authors in  [2], 
and the emphasis here is on systems of conservation laws in the multi-dimensional case.

Let

be a vector of “fluxes”. We only assume that these functions are locally bounded as func-
tions of u = (u1,⋯ , uD) ∈ ℝD.

Consider a system of hyperbolic conservation laws in ℝn of the form

subject to the initial data

Let 𝛺 ⊆ ℝn be a bounded smooth domain with � = ��, and let 0 ⩽ t1 < t2. Formally, 
by integration of the equation in Q = 𝛺 × [t1, t2] ⊆ ℝn ×ℝ+ the following “balance” 
equality holds:

Here, � is the outward unit normal to �  and dS is the surface Lebesgue measure.
NOTATION Let X be a space of scalar functions. Then, we denote by X

⨂
ℝD the 

space of vector functions of D components, where each component is an element of X. 
Thus, C∞

0
(ℝn)

⨂
ℝD is the space of D-vectors whose components are test functions in ℝn.

Equation (3) can be considered as an integrated (formal) form of (1) by using the Gauss-
Green theorem. However, the application of this theorem is certainly not straightforward, 
since the function u(x, t) is not even continuous (see  [9, Section 4.5]). We refer to  [5, 13] 
and  [6, Chapter I] for an abstract discussion of this topic. In particular, regarding the right-
hand side of  (3) it is not clear what the appropriate fluxes should be and one needs to keep 
in mind the following comment concerning them: “the drawback of this, functional ana-
lytic, demonstration is that it does not provide any clues on how the q� may be computed 
from A”  [6, Section 1.3].

In the context of theoretical continuum mechanics the quantity ∫
A
f (u(x, t)) ⋅ 𝜈dS, A ⊆ 𝛤  

is referred to as the Cauchy flux across A  [11, 12]. The pointwise value f (u(x, t)) ⋅ � is its 
density.

We now introduce the notion of a “solution to the balance law” as follows.

Definition 1 Let

f (u) = (f1(u),⋯ , fD(u)), fi(u) ∈ ℝ
n, i = 1, 2,⋯ ,D

(1)
{

u(x, t)t + ∇ ⋅ f (u(x, t)) = 0, u = (u1,⋯ , uD) ∈ ℝD, (x, t) ∈ ℝn ×ℝ+,

∇ ⋅ f (u(x, t)) = (∇x ⋅ f1(u),⋯ ,∇x ⋅ fD(u))

(2)u(x, 0) = u0(x), x ∈ ℝ
n.

(3)∫�

ui(x, t2)dx − ∫�

ui(x, t1)dx = −

[

∫
t2

t1
∫�

fi(u(x, t)) ⋅ �dS dt

]
, i = 1, 2,⋯ ,D.

u0 ∈ L1(ℝn) ∩ L∞(ℝn)
⨂

ℝ
D.
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The function u(⋅, t) ∈ C(ℝ+, L
1(ℝn)) ∩ L∞(ℝ+, L

∞(ℝn))
⨂

ℝD is a solution to the balance 
law  (3) corresponding to the partial differential equation (1) if the following conditions are 
satisfied.

• For every t ⩾ 0 and every smooth bounded domain 𝛺 ⊆ ℝn , the integral ∫
�
u(x, t)dx is 

well defined and is a continuous function of t.
• For every smooth bounded domain 𝛺 ⊆ ℝn and interval [t1, t2] ⊆ ℝ+ , the trace 

is well defined and is continuous with respect to suitable perturbations of the boundary 
�� (see Lemma  2 below for details). We denote by dSx the Lebesgue surface measure 
on ��.

• The balance equation  (3) is satisfied.

Definition 2 The quantities hi(t1, t2), i = 1, 2,⋯ ,D are called the fluxes associated with 
the conservation law  (1), across the boundary �� over the time interval [t1, t2].

Remark 1 Our definition of a solution to the balance law conforms to that introduced in  [6, 
Chapter I]. In fact, in Dafermos’ book the balance equation is assumed to hold for any 
domain in spacetime. We note that other authors use various other terms, such as the “inte-
gral conservation law”, and the term “balance law” is applied to a conservation law with a 
source term.

Definition  1 is closely related to the physical interpretation of fluid mechanics under the 
continuum hypothesis, that stipulates that the total quantities ∫

�
u(x, t)dx in a fixed domain 

are well defined and continuous in time. The fluxes hi(t1, t2) are defined over a time interval 
[t1, t2] rather than at any instant t,  reflecting the dynamical process of fluid flows.

The important concept of divergence-measure vector fields was introduced in  [4, Def-
inition 1.2] and then generalized in  [3]. In particular if u(x, t) is a weak solution to  (1), 
then (u(x, t), f(u(x, t)) is divergence-measure in spacetime. For such vector fields the Gauss-
Green equation can be justified   [4, Theorem  2.2], provided the domain boundary is a 
deformable Lipschitz boundary. The resulting flux turns out to be a Radon measure on the 
boundary. In our treatment here we treat more specifically weak solutions to the conserva-
tion law  (1). A distinction is made between the time coordinate and the spatial coordinates. 
Thus, the vector field f(u(x,  t)) is shown (Sect.  2.1) to be divergence-measure in space, 
for a.e. time t. However, we do not invoke the Gauss-Green formula at fixed time levels, 
but show (Sect. 2.2) that the trace of the flux is well defined when integrated over time 
intervals. Imposing a geometric condition on the boundary (stronger than just deformable 
Lipschitz), as well as on the continuity in time of the total mass, it is shown (Theorem  1) 
that the resulting flux is Lipschitz continuous with respect to boundary deformations and 
the balance equation is satisfied.

Finally, while this paper is concerned with theoretical aspects of the balance law for-
mulation, we emphasize its relevance to the numerical simulation of nonlinear hyper-
bolic conservation laws. More specifically, it serves as a theoretical basis of finite-volume 
schemes [8, 10]; in fact every cell of the discrete mesh is considered as a “control vol-
ume” in which the balance law is implemented between arbitrary time levels t1 < t2. The 

hi(t1, t2) = ∫
t2

t1

[

∫��

fi(u(x, t)) ⋅ � dSx

]
dt, i = 1, 2,⋯ ,D



 Communications on Applied Mathematics and Computation

1 3

common points between our treatment here and finite volume schemes can be summa-
rized as follows.

• The fact that the integral ∫
�
u(x, t)dx is assumed to be a continuous function of t is very 

natural when referring to the conserved quantities, such as the mass, the momentum, 
and the energy.

• The construction of approximate fluxes is a primary building block of the finite volume 
schemes. The fact that the fluxes (evaluated over time intervals) are Lipschitz continu-
ous places them at the position of the “most regular elements” in this context. This is in 
contrast to the complex discontinuities experienced by the flow variables. It, therefore, 
makes good sense, from the numerical point-of-view, to aim at approximating these 
regular fluxes, and then incorporate the approximate fluxes into the balance law.

  This is indeed reflected in the GRP methodology   [1], the MUSCL-Hancock   [15] 
scheme, as well as the full plethora of “Godunov-type” schemes.

2  The Fundamental Principle of the Hyperbolic Balance Law

As is well known, the meaning of the x and t derivatives in the conservation equation  (1) 
must be clarified since the solutions generate discontinuities, such as shocks or interfaces. 
The concept of a weak solution is introduced precisely in order to handle this difficulty  [7, 
Chapter 11] as follows.

Definition 3 The function u(x,  t) is a weak solution of   (1) if the following condition is 
satisfied: for every cylinder Q = 𝛺 × [t1, t2] ⊆ ℝn ×ℝ+, if

then

Recall that our only assumption on the fluxes 
{
fi(u)

}D

i=1
 is that they are locally bounded 

(as functions of u).

2.1  Boundedness of the Flux Divergence

Definition 3 is a mathematical artifact and does not yield (in a straightforward fashion) the 
desired balance equality  (3). The following lemma pretty much summarizes what can be 
said about the pointwise regularity of the flux function. Observe that in the one-dimen-
sional (spatial) case the lemma already implies the Lipschitz regularity of the flux [2]. Nev-
ertheless, this is not true in the higher dimensional case.

Lemma 1 Let u(x,  t) be a weak solution to the system (1) with the initial function 
u0 ∈ (L1(ℝn) ∩ L∞(ℝn))

⨂
ℝD.

Assume that u(x, t) satisfies the following properties:

�(x, t) =
(
�1(x, t),⋯ ,�D(x, t)

)
∈ C∞

0
(Q)

⨂
ℝ

D,

(4)
D∑

i=1
∫

t2

t1
∫�

[
ui(x, t)

�

�t
�i + fi(u(x, t)) ⋅ ∇x�i

]
dx dt = 0.
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• u(x, t) is locally bounded in ℝn ×ℝ+;
• for every fixed bounded 𝛺 ⊆ ℝn the mass

(more precisely, the function m(t) that is defined a.e.t is a restriction of a continuous 
function).

Then, for every fixed [t1, t2] ⊆ ℝ , the function g(x; t1, t2) = ∫ t2
t1
f (u(x, t))dt satisfies 

∇x ⋅ g(x; t1, t2) ∈ L∞
loc
(ℝn)

⨂
ℝD.

Proof For every cylinder Q = 𝛺 × [t1, t2] ⊆ ℝn ×ℝ+ , we define

Note that in   (3), the “fixed time” integrals in the left-hand side exist by the assumed 
continuity (in time) of m(t). Pick �(x, t) = �(t)�(x) in (4), where � ∈ C∞

0
(t1, t2) and 

� ∈ C∞
0
(�)

⨂
ℝD. Take 0 ⩽ � ⩽ 1 and such that

Letting � → 0, (4) yields by the assumed continuity of m(t), 

Equation  (7) can be rewritten as

Note that the scalar product in the integral in the left-hand side is in ℝD while the one in the 
right-hand side is in ℝn.

Since |u(x, t)| ⩽ CQ ,  it follows that

Define the linear functional for � ∈ C∞
0
(Ω)

⨂
ℝD

The estimate  (8) shows that G is continuous with respect to the L1 norm. The den-
sity of C∞

0
(�) in L1(�) and the L1, L∞ duality entail that there exists a function 

r(x) ∈ L∞(�)
⨂

ℝD such that

(5)m(t) = ∫�

u(x, t)dx is a well defined and continuous function of t ∈ ℝ+

(6)CQ = sup {|u(x, t)|, (x, t) ∈ Q}.

𝜃(t) =

{
1, t1 + 𝜖 ⩽ t ⩽ t2 − 𝜖,

0, t < t1 − 𝜖 or t > t2 + 𝜖.

(7)∫�

[u(x, t2) − u(x, t1)] ⋅ �(x)dx = ∫� ∫
t2

t1

f (u(x, t))dt ⋅ ∇�(x)dx.

∫�

[u(x, t2) − u(x, t1)] ⋅ �(x)dx = ∫�

g(x; t1, t2) ⋅ ∇�(x)dx =

D∑

i=1
∫�

gi(x; t1, t2) ⋅ ∇�i(x)dx.

(8)
����∫�

g(x; t1, t2) ⋅ ∇�(x)dx
����
⩽ 2CQ‖�‖1.

G� = ∫�

g(x; t1, t2) ⋅ ∇�(x)dx =

D∑

i=1
∫�

gi(x; t1, t2) ⋅ ∇�i(x)dx.

(9)∫�

g(x; t1, t2) ⋅ ∇�(x)dx = ∫�

r(x) ⋅ �(x)dx, � ∈ C∞
0
(�)

⨂
ℝ

D.
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We conclude that the distributional divergence of g(x; t1, t2) satisfies 
∇x ⋅ g(x; t1, t2) = −r(x) in �.

This concludes the proof of the lemma.

Remark 2 We could replace the continuity assumption (5) by the stronger assumption 
that the map t → u(⋅, t) ∈ L∞(ℝ) weak∗ is continuous. This latter assumption is univer-
sally imposed when dealing with entropy solutions to nonlinear conservation laws [6, Sec-
tion 4.5]. However, the continuity condition   (5) is valid for weak solutions that are not 
necessarily entropy solutions. In fact, it holds for weak solutions that have bounded (locally 
in time) total variation. This is expressed by Dafermos as “mechanism of regularity trans-
fer from the spatial to the temporal variables”  [6, Theorem 4.3.1].

2.2  Traces of Fluxes—Geometric Approach

In order to replace “weak solutions” by “solutions to balance laws” and make good sense 
of (3) we need to establish the meaning of fluxes across domain boundaries. The regular-
ity result of Lemma 1 falls short of this goal. We, therefore, need to address directly such 
traces.

Let 𝛺 = 𝛺0 ⊆ ℝn be a bounded domain with the smooth boundary � = �0 = ��.

Starting with �0 , we can construct a tubular neighborhood  [14, Chapter 9, Addendum] 
with the following properties. For some small 0 < 𝛿 < 1 , there exists a family of “expand-
ing” smooth bounded domains 

{
𝛺y ⊆ ℝn, y ∈ (−𝛿, 1 − 𝛿)

}
 so that their respective bound-

aries 
{
�y, y ∈ (−�, 1 − �)

}
 form a foliation of a tubular neighborhood of �0. The coordi-

nate y ∈ (−�, 1 − �) is normal to �y so that �
�y

= � is the unit normal. We designate by dSy 
the Lebesgue surface measure on �y, y ∈ (−�, 1 − �).

In direct continuation to Lemma  1, we now have.

Lemma 2 Let u(x,  t) be a weak solution to the system  (1) with the initial function 
u0 ∈ (L1(ℝn) ∩ L∞(ℝn))

⨂
ℝD.

Assume that u(x, t) satisfies the following properties:

• u(x, t) is locally bounded in ℝn ×ℝ+;
• for every fixed bounded 𝛺 ⊆ ℝn , the mass

For every smooth domain � and the geometric construction above, and for every fixed 
[t1, t2] ⊆ ℝ , define the trace function h(y; t1, t2) = (h1(y; t1, t2),⋯ , hD(y; t1, t2)) by

Then, h is Lipschitz continuous with respect to y ∈ (−�, 1 − �).

Proof As in the proof of Lemma 1, we obtain (see (7)) for every smooth domain �̃

(10)m(t) = ∫�

u(x, t)dx is a well defined and continuous function of t ∈ ℝ+.

hi(y; t1, t2) = ∫
t2

t1

[

∫�y

fi(u(x, t)) ⋅ � dSy(x)

]
dt, i = 1, 2,⋯ ,D, y ∈ (−�, 1 − �).
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We construct �̃ as the tubular domain

Let � ∈ C∞
0
(�̃)

⨂
ℝD such that

where �(y) ∈ C∞
0
(−�, 1 − �)

⨂
ℝD.

Equation  (11) can now be rewritten as (where � = (�1,⋯ , �D))

namely,

Define the linear functional

From (13) and the boundedness assumption on u, we infer that G is continuous with respect 
to the L1(−�, 1 − �) norm. The density of C∞

0
(−�, 1 − �) in L1(−�, 1 − �) and the L1, L∞ 

duality entail that there exists a function r(y) ∈ L∞(−�, 1 − �)
⨂

ℝD such that

It follows that the distributional derivative �

�y
h(y; t1, t2) = −r(y) is bounded, which con-

cludes the proof of the lemma.

We summarize the above result as the fundamental theorem of fluxes.

Theorem  1 Let u(x,  t) be a weak solution to the system (1) with the initial function 
u0 ∈ (L1(ℝn) ∩ L∞(ℝn))

⨂
ℝD.

Assume that u(x, t) satisfies the following properties:

• u(x, t) is locally bounded in ℝn ×ℝ+;
• for every fixed bounded 𝛺 ⊆ ℝn the mass

(11)∫�̃

[u(x, t2) − u(x, t1)] ⋅ �(x)dx = ∫�̃ ∫
t2

t1

f (u(x, t))dt ⋅ ∇�(x)dx.

�̃ = ∪
{
�y, y ∈ (−�, 1 − �)

}
.

(12)�(x) = �(y), x ∈ �y,

∫�̃

[u(x, t2) − u(x, t1)] ⋅ �(x)dx =

D∑

i=1
∫

t2

t1

[

∫
1−�

−� ∫�y

fi(u(x, t))
�

�y
�i(y) ⋅ � dSy(x)dy

]
dt,

(13)∫�̃

[u(x, t2) − u(x, t1)] ⋅ �(x)dx =

D∑

i=1
∫

1−�

−�

hi(y; t1, t2)
�

�y
�i(y)dy.

G� =

D∑

i=1
∫

1−�

−�

hi(y; t1, t2)
�

�y
�i(y)dy, �(y) ∈ C∞

0
(−�, 1 − �)

⨂
ℝ

D.

(14)
∫

1−�

−�

h(y; t1, t2) ⋅
�

�y
�(y)dy = ∫

1−�

−�

r(y) ⋅ �(y)(y)dy, � ∈ C∞
0
(−�, 1 − �)

⨂
ℝ

D.

(15)m(t) = ∫�

u(x, t)dx is a well defined and continuous function of t ∈ ℝ+.
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Then, for any smooth bounded domain 𝛺 ⊆ ℝn and for every time interval [t1, t2] the flux

is well defined and (3) holds.

Proof In light of Lemma  2, it only remains to establish the validity of the balance equation 
(3). Starting from (7) and using the geometric construction above, we select the test func-
tion �(x) = (�1(x),⋯ ,�D(x)) as follows:

Letting � → 0 and using the continuity of the traces obtained in Lemma 2, we obtain 
(3).

The statement of Theorem  1 is closely related to the more fluid dynamical viewpoint: 
the “conservation law”, which is a partial differential equation, is replaced by a “balance 
law”.

Note that as in the case of weak solutions, no uniqueness assumption is imposed on the 
solution.

Theorem 1 implies that a weak solution satisfying certain hypotheses (in particular an 
entropy solution) is a solution to the balance law in the sense of Definition 1. It is easy to 
see that conversely, a solution to the balance law is a weak solution of the conservation law 
(1).

An important observation is that the flux h(t1, t2) is defined over a time interval. In other 
words, there is no meaning attached to the instantaneous value ∫

��
fi(u(x, t)) ⋅ �dS. How-

ever, the flux is continuous with respect to the time interval, as in the following proposition.

Proposition 1 Under the conditions of Theorem  1, the flux h(t1, t2) is continuous with 
respect to t1, t2.

Proof This follows from the balance equation (3) and the assumption about the continuity 
of m(t).

It is easy to see how to generalize the theorem to bounded domains with piecewise-
smooth boundaries. From the point-of-view of applications, the most important instance 
is that of polygonal domains. For finite-volume schemes on regular meshes, every cell is a 
rectangular box, and we state the result explicitly for this case.

Corollary 1 Let u(x,  t) be a weak solution to the system (1), satisfying the conditions of 
Theorem 1. Let

and let

hi(t1, t2) = ∫
t2

t1
∫��

fi(u(x, t)) ⋅ �dS(x) dt, i = 1, 2,⋯ ,D

�i(x) ∈ C∞
0
(�0) and�i(x) ≡ 1, x ∈ �−� .

� =

n∏

i=1

[ai, xi],

Sj =
{
y = (y1,⋯ , yj−1, xj, yj+1,⋯ , yn), yi ∈ [ai, xi], i ≠ j

}
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be the section of �� at xj.

For any 1 ⩽ j ⩽ n and any 0 ⩽ t1 < t2 , define the flux

where ej is the unit vector in the xj direction.

Then, Fj(xj; t1, t2) , is well defined and indeed is a locally Lipschitz function of xj. Fur-
thermore, the following balance equation holds:
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