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Abstract A discrete version of the pure streamfunction formulatiéthe Navier-
Stokes equation is presented. The proposed scheme is fodehin both two and
three spatial dimensions.

1 Fourth order schemefor the Navier-Stokes equationsin two
dimensions

We consider the Navier-Stokes equations in pure strearti@umiorm, which in the
two-dimensional case leads to the scalar equation

{MWDW-DvaAZw— fxyt), 1)
L»U(vavt) = anO(va)'

Recall that- gy = (—dyp, dktp) is the velocity vector. The no-slip boundary con-
dition associated with this formulation is

_ovy _
(,U_%—O,(X,y)eﬁ_(),t>0 (2)
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and the initial condition is

L»U(va7 0) = QUO(X’Y)v (va) €Q. )

The spatial derivatives in Equation (1) are discretized eslescribe next. The
fourth order discrete Laplaciaty,y and biharmonioﬁﬁw operators introduced in
[3] are perturbations of the second order operafpng = (82 + §2) andAZy =

(8¢ + & +23287) Y. They are designed as follows.

B j = 200§ — (&(Us)ij + 8y(Wy)i ) = (AW)ij+O(h?). (4)

Here, Y, ) are the fourth-order Hermitian approximationsaay, dyy described
as

1 2 1 -
leﬂxz§(’~I»’x)i—1,j+§(WX)i,j+§(WX>i+lfi:6><wi~,j » 1=h]<N-1

oy = g (W1t 3 (Wi + g (Whijwa=dt; , 1<ij<N-1

We use the standard central difference operair,, 62, 6&
The fourth-order approximation to the biharmonic operaity is

~ h2
By =Y+ U+ 255y — (8w +8/8Y) =A%y +0(h),  (6)
wheredg andg} are the compact approximationsdff andd}', respectively.

12 1
Gy =1z (B = &i) o &Y =8-S haw+O(h), (7)

12 1
Gy =13 (B~ &) &Y=3a/y——hhy+O(h). (8)
The convective term in (1) () = —oy YA (dx) + KPA(oyy). Its fourth-order
approximation needs special care. The mixed derivaijeé%w may be approxi-

mated to fourth-order accuracy Ifyyx using a suitable combination of lower order
approximations.

ll’yyx: Q?Wx—ﬁ-d(d/zw—d(@lﬂy: 0X05w+o(h4)- (9)
For the pure third order derivativi& i we note that ifiy is smooth then

3

wXXX = 2h2

(108 — h?&cp — 100cy), ; +O(h"). (10)
One needs to approximadigy to sixth-order accuracy in order to obtain from (10) a
fourth-order approximation fa2 s . Denoting this approximation b, we invoke
the Pade formulation [2], having the following form.
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1 1 AWr — U1t 1Uhai— o
é(‘l’x)wl,jJr(’l’x)i,jJré(’l’x)ifl,j:§w+1’12hw 1’J+§w+2’14hw 2l (11)

At near-boundary points we apply a special treatment as]inJarrying out the
same procedure fad,, which yields the approximate valup,, and combining
with all other mixed derivatives, a fourth order approxiioatof the convective
termis

&) =~y 2628 20 sy -ssm)  12)

+ U (OnQy + g (66%]%% — 820y) + 8,02 — 8,5y
= C(y) +O(h*).

Our implicit-explicit time-stepping scheme is of the CraNicholson type as fol-
lows.

A i n+1/2_ (A N ~ ~ ~
Cuih) At/Z( e —Chw(n)+%[Ar%w:j+l/2+4§wi?j] (13)
A~ i.n+1_A“ i_.n ~ ~ ~
(Bnti) At< neg)" _Chw(n+1/2)+%[A§wir3r1+Aﬁwir7j]. (14)

Due to stability reasons we have chosen an Explicit-Imiplicie stepping scheme.
It is possible however to use an explicit time-stepping suddé one can afford a
small time step in order to advance the solution in time. Bi@Elinear equations is
solved via a FFT solver using the Sherman-Morrison formséee [4]). This solver
is of O(N?logN) operations, where N is the number of grid points in each apati
direction. For the application of the pure streamfunctiomfulation on an irregular
domain see [5].

2 The pure streamfunction formulation in three dimensions

Let Q be a bounded domain iR®. The three-dimensional Navier-Stokes equations
in vorticity-velocity formulation is

w+0x(wxu)—vAw=0Oxf, in Q
w=0xu, O-u=0, in Q

u=0 ondQ

w(x,0) = wo(x):=0xug, in Q.

(15)

wherew = [0 x u and the no-slip boundary condition has been imposed. The pur
streamfunction formulation for this system is obtainedriydducing a streamfunc-
tion Y(x,t) € R®, such that

u=-0Oxy. (16)

This is always possible sindeé-u = 0. Thus,
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w=0xu=Ap-0(0-¢). a7
Imposing a gauge condition
U-¢=0, (18)
yields
w=AY. (29)
The system (15) can now be rewritten as
a?—tw—Dx(wa(wa)):vAzt,UJerf, in Q. (20)

The boundary conditions = 0 translates té] x ¢y = 0 ond Q. We require that
nxy=0 nx(Oxy)=0 on 29Q. (22)

The conditiom x ( = 0 means thatp is parallel ton, hence the normal component
of the velocity vector is zero on the boundary. Adding thediton n x (O x ) =0
ensures that the full velocity vector vanishes on the bogndehe requirements
in (21) are equivalent to four scalar conditions, namely thrishing of the two
tangential components gf and(] x .

Turning now to the gauge conditidn- ¢ = 0, we add the condition

a(y-n)
on

Together with the vanishing of the tangential componentig,af implies that
O-¢g=00n0Q.

Equations (21)-(22) consist of five scalar conditions¢oon the boundary. We
can still add one more scalar boundary condition, as thetimsafor the 3- com-
ponent streamfunctiogy contain the fourth order biharmonic operator. The sixth
scalar boundary condition that we choose to add is

=0, on 0Q. (22)

A(d-¢)=0, on 0Q. (23)

We thus obtain
O.¢g=0, AO-¢)=0  on 29Q. (24)

We assume that the initial valug(x,0) satisfies(d - ¢)(x,0) = 0. Taking the
divergence of (20) we obtain an evolution equationfonp.

0A0- ¢)

— 20, i
ot =vA“(d-¢), in Q. (25)

Equations (24)-(25) together with the assumption thag = 0 initially ensure that
O.-¢ =0 for allt > 0. See also [1], [6] and [7]. Finally, we have the following
three-dimensional pure streamfunction formulation
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2V _Ox (Agx (Oxy))=vA2y+Oxf, in Q
nxy=02%Y_0 on 90 (26)
nx(Oxy)=0, A0-¢)=0, on 24Q.

3 The Numerical Scheme

Our numerical scheme is based on the approximation of th@nfivlg equation

any

o (Ox @) - DAY+ (AY-O)(Ox @) —vA2y=0xf, in Q, (27)

assuming that) € Hg(Q). For the vector functioy we construct a fourth-order ap-
proximation to the the biharmonic operator as follows. Theegourth-order deriva-
tives are approximated by, &/, 37 as in (7)-(8).

The mixed termsfiyyy, Yyyzzandy,xxare approximated by

éxzywi,j,k = 38207 j k — 020Uy k — 020Uk jk = 202U jk +O(h?)
Q5 jk = 38702 |k — & Oz jk — 07 Oy Wi jk = OZ 07 ¢ jk+O(h?)  (28)
ZWijk = 30202 jk — 020U j k — 020Uk k = 02021 j k +O(hH).

A fourth order approximation of the biharmonic operatothiert obtained as
BRY = Biw+ 8+ B+ 282+ 2820+ 283, (29)

The approximate derivatives, 4 andy, are related ta via the Hermitian deriva-
tives as in (5).

Equation (29) provides a fourth order compact operatonfap, which involves
values ofy, Yk, Yy and @, at (i, j,k) and at its twenty six nearest neighbors. The
Laplacian operator is approximated by a fourth order operaa

An = 28n — (S + S,y + S;). (30)

The nonlinear part in (27) consists of two terms, the conivederm and the
stretching term. We design a fourth-order scheme whichaqimates the convec-
tive term. The convective term in the three-dimensionatésis

Cly)=—((Oxy)-O0)AY = uAdY + VAP + WA, . (31)

Here(u,v,w) = u = —0 x g is the velocity vector, whose components contain first
order derivatives of the streamfunction, and thus may becxpated to fourth-
order accuracy. The terndsos, Ad,, Ad,ip may be approximated as in the two-
dimensional case. The terfv,y, for example, may be written as

AbyP = 03P+ 3k + 0,071, (32)
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Here, the pure and mixed type derivatives may be approxomasein the two-
dimensional Navier-Stokes equations (see (10), (9)). Wietdethe approximation
to the convective term b (y).

Now, we construct a fourth-order approximation to the striglg termS =
(w-O)u=—(Ayg-0)(Ox ). Note that the stretching term contaiigy and mixed
second order derivatives of the streamfunction. The Lagtacf ¢ may be approx-
imated to fourth-order accuracy, as in (30). The secondramieed terms, such as
OxdyY, may be approximated using a Hermitian approximation otype

(0x0y) (Uny)i j k = OOy j k- (33)
Hence,

h2 -
(+ 6@ LpXYIJk_a)(éyu"Ijk alﬁlajakSN_l (34)

is an implicit equation foxy. We denote the approximation of the stretching term
by Sh(w) For the approximation in time, we apply a Crank-Nicholsohesne (see
the comment after (13)-(14)).

We obtain the following scheme

(Bnth )™ 2= (B 10" n+1/2

At/2 - _Chl"ul B k+$\w| s k+ [Ah q”l i,k +A~Ewir.1j,k] (35)

Ay - AL (A ~
(O j k) - (Ahwl,]‘k) C wl n+1/2 +Snw| n+1/2 [Ah Ll"|n+1+Ar%qurjj,k}- (36)

At present, a direct solver is mvoked to solve the lineao$eiguations (35)-(36).
Some preliminary MATLAB computations with coarse grids fion the fourth
order accuracy of the scheme. We first show numerical refeultise time-dependent

Stokes equations
oAy
ot
We have picked the exact solutign

=vA%P+f, in Q. (37)

W) = g (Y (38)

in the cubeQ = (0,1)3. Here,f is chosen such thaf in (38) satisfied (37) exactly.

In the numerical results shown here we have chosen the tiapeAstof order h?

in order to retain the overall fourth-order accuracy of tibhesne. In practice, if

we are interested mainly in the steady state solution, ataime step, which is
independent oh, may be used. In Table 1 we show results for the Stokes problem
with At = 0.1h? andt = 0.00625. Heree is the error in théZ norm, i.e.

&= 3 Y 3 (Walxin0 - By, 20
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grid rate grid rate grid
5x5x5 9x9x9 17x 17x 17
e 2.5460(-9) 3.82 1.8017(-10) 3.98 1.1443(-11)
=V 7.7417(-9) 3.73 5.8037(-10) 3.96 3.7391(-11)
div (¢) 1.3409(-8) 3.74 1.0052(-9) 3.96 6.4621(-11)

Table1 Stokes equations far= 0.00625 usingAt = 0.1h2,

wheres is thez component of the exact solution afig is thez component of the
approximate solutiorey is thelﬁ in they derivative ofys. In Table 2 we display the
results fort = 0.0625 usingAt = h? .

grid rate grid rate grid
5x5x5 9x9x9 17x 17x 17
e 9.6461(-7) 4.41 4.5309(-8) 4.00 2.8291(-9)
& 3.0293(-6) 4.33 1.5049(-7) 3.99 9.4269(-9)
div (¢) 5.2470(-6) 4.33 2.6066(-7) 4.00 1.6328(-8)

Table2 Stokes equations witAt = h? for t = 0.0625.

Next we show results for the Navier-Stokes Equations

A .
‘Z—t"’—((mx ) - DAY+ (Ap-0)(Ox @) —vA2p=0xf, in Q (39)
in the cubeQ = (0,1)3. Here, the source terrg = [ x f is chosen such that
YT (xt) = —Fe7t (Z,x%y*) is an exact solution of (39). In Table 3 we present

results fort = 0.00625 usingAt = 0.1h?.

grid rate grid rate grid
5x5x5 9x9x%x9 17x 17x 17
e 2.4497(-9) 3.86 1.6924(-10) 4.01 1.0473(-11)
& 7.6486(-9) 3.75 5.6845(-10) 3.98 3.5917(-11)
div (¢) 1.2294(-8) 3.71 9.3619(-10) 3.92 6.1700(-11)

Table 3 Navier-Stokes equations for= 0.00625 usingAt = 0.1h2.

In Table 4 we show results for the Navier-Stokes Equationis M = h? for t =
0.0625. In Figures 1(a) and 1(b) we display the errors for NaSiekes equations
in Y5 and(ys)y att = 0.0625 withdt = h? and a 17 grid.
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grid rate grid rate grid
5x5x5 9x9x9 17x 17x 17
e 9.4418(-7) 4.46 4.2709(-8) 4.04 2.5934(-9)
=V 2.9836(-6) 4.38 1.4334(-7) 4.03 8.7800(-9)
div (¢) 5.0471(-6) 4.40 2.3944(-7) 4.02 1.4778(-8)

Table4 Navier-Stokes equations for= 0.0625 usingAt = h?.

B . 3 . 2
efror in psi with 17 points, t=0.0625, dt=h eror in (psiy), with 17° points, 1=0.0625, dt=h’

!
)

}&N

)

Fig. 1 Navier-Stokes : Errors in (a3 and (b)(ys)y for N = 17,t = 0.0625 dt = h?.
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