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Abstract A discrete version of the pure streamfunction formulation of the Navier-
Stokes equation is presented. The proposed scheme is fourthorder in both two and
three spatial dimensions.

1 Fourth order scheme for the Navier-Stokes equations in two
dimensions

We consider the Navier-Stokes equations in pure streamfunction form, which in the
two-dimensional case leads to the scalar equation

{

∂t∆ψ +∇⊥ψ ·∇∆ψ −ν∆ 2ψ = f (x,y, t),
ψ(x,y, t) = ψ0(x,y).

(1)

Recall that∇⊥ψ = (−∂yψ,∂xψ) is the velocity vector. The no-slip boundary con-
dition associated with this formulation is

ψ =
∂ψ
∂n

= 0 , (x,y) ∈ ∂Ω , t > 0 (2)
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and the initial condition is

ψ(x,y,0) = ψ0(x,y), (x,y) ∈ Ω . (3)

The spatial derivatives in Equation (1) are discretized as we describe next. The
fourth order discrete Laplaciañ∆hψ and biharmonic∆̃ 2

hψ operators introduced in
[3] are perturbations of the second order operators∆hψ = (δ 2

x + δ 2
y )ψ and∆ 2

hψ =

(δ 4
x +δ 4

y +2δ 2
x δ 2

y )ψ. They are designed as follows.

∆̃hψi, j = 2∆hψi, j − (δx(ψx)i, j +δy(ψy)i, j) = (∆ψ)i, j +O(h4). (4)

Here,ψx,ψy are the fourth-order Hermitian approximations to∂xψ,∂yψ described
as











σxψx =
1
6
(ψx)i−1, j +

2
3
(ψx)i, j +

1
6
(ψx)i+1, j = δxψi, j , 1≤ i, j ≤ N−1

σyψy =
1
6
(ψy)i, j−1 +

2
3
(ψy)i, j +

1
6
(ψy)i, j+1 = δyψi, j , 1≤ i, j ≤ N−1.

(5)
We use the standard central difference operatorsδx,δy, δ 2

x ,δ 2
y .

The fourth-order approximation to the biharmonic operator∆ 2ψ is

∆̃ 2
hψ = δ 4

x ψ +δ 4
y ψ +2δ 2

x δ 2
y ψ −

h2

6
(δ 4

x δ 2
y ψ +δ 4

y δ 2
x ψ) = ∆ 2ψ +O(h4), (6)

whereδ 4
x andδ 4

y are the compact approximations of∂ 4
x and∂ 4

y , respectively.

δ 4
x ψi, j =

12
h2

(

(δxψx)i, j −δ 2
x ψi, j

)

, δ 4
x ψ = ∂ 4

x ψ −
1

720
h4∂ 8

x ψ +O(h6), (7)

δ 4
y ψi, j =

12
h2

(

(δyψy)i, j −δ 2
y ψi, j

)

, δ 4
y ψ = ∂ 4

y ψ −
1

720
h4∂ 8

y ψ +O(h6). (8)

The convective term in (1) isC(ψ) = −∂yψ∆(∂xψ)+∂xψ∆(∂yψ). Its fourth-order
approximation needs special care. The mixed derivative∂x∂ 2

y ψ may be approxi-
mated to fourth-order accuracy bỹψyyx using a suitable combination of lower order
approximations.

ψ̃yyx = δ 2
y ψx +δxδ 2

y ψ −δxδyψy = ∂x∂ 2
y ψ +O(h4). (9)

For the pure third order derivative∂ 3
x ψ we note that ifψ is smooth then

ψxxx =
3

2h2

(

10δxψ −h2δ 2
x ∂xψ −10∂xψ

)

i, j +O(h4). (10)

One needs to approximate∂xψ to sixth-order accuracy in order to obtain from (10) a
fourth-order approximation for∂ 3

x ψ . Denoting this approximation bỹψx, we invoke
the Pade formulation [2], having the following form.



Highly accurate discretizations of the Navier-Stokes Equations 3

1
3
(ψ̃x)i+1, j +(ψ̃x)i, j +

1
3
(ψ̃x)i−1, j =

14
9

ψi+1, j −ψi−1, j

2h
+

1
9

ψi+2, j −ψi−2, j

4h
. (11)

At near-boundary points we apply a special treatment as in [2]. Carrying out the
same procedure for∂yψ, which yields the approximate valuẽψy, and combining
with all other mixed derivatives, a fourth order approximation of the convective
term is

C̃h(ψ) = −ψy
(

∆hψ̃x +
5
2

(

6
δxψ − ψ̃x

h2 −δ 2
x ψ̃x

)

+δxδ 2
y ψ −δxδyψ̃y

)

(12)

+ ψx
(

∆hψ̃y +
5
2

(

6
δyψ − ψ̃y

h2 −δ 2
y ψ̃y

)

+δyδ 2
x ψ −δyδxψ̃x

)

= C(ψ)+O(h4).

Our implicit-explicit time-stepping scheme is of the Crank-Nicholson type as fol-
lows.

(∆̃hψi, j )
n+1/2−(∆̃hψi, j )

n

∆ t/2 = −C̃hψ(n) + ν
2 [∆̃ 2

hψn+1/2
i, j + ∆̃ 2

hψn
i, j ] (13)

(∆̃hψi, j )
n+1−(∆̃hψi, j )

n

∆ t = −C̃hψ(n+1/2) + ν
2 [∆̃ 2

hψn+1
i, j + ∆̃ 2

hψn
i, j ]. (14)

Due to stability reasons we have chosen an Explicit-Implicit time stepping scheme.
It is possible however to use an explicit time-stepping scheme if one can afford a
small time step in order to advance the solution in time. The set of linear equations is
solved via a FFT solver using the Sherman-Morrison formula (see [4]). This solver
is of O(N2logN) operations, where N is the number of grid points in each spatial
direction. For the application of the pure streamfunction formulation on an irregular
domain see [5].

2 The pure streamfunction formulation in three dimensions

Let Ω be a bounded domain inR3. The three-dimensional Navier-Stokes equations
in vorticity-velocity formulation is

ω t +∇× (ω ×u)−ν∆ω = ∇× f, in Ω
ω = ∇×u, ∇ ·u = 0, in Ω
u = 0 on ∂Ω
ω(x,0) = ω0(x) := ∇×u0, in Ω .

(15)

whereω = ∇×u and the no-slip boundary condition has been imposed. The pure
streamfunction formulation for this system is obtained by introducing a streamfunc-
tion ψ(x, t) ∈ R3, such that

u = −∇×ψ. (16)

This is always possible since∇ ·u = 0. Thus,
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ω = ∇×u = ∆ψ −∇(∇ ·ψ). (17)

Imposing a gauge condition
∇ ·ψ = 0, (18)

yields
ω = ∆ψ. (19)

The system (15) can now be rewritten as

∂∆ψ
∂ t

−∇× (∆ψ × (∇×ψ)) = ν∆ 2ψ +∇× f, in Ω . (20)

The boundary conditionsu = 0 translates to∇×ψ = 0 on∂Ω . We require that

n×ψ = 0, n× (∇×ψ) = 0, on ∂Ω . (21)

The conditionn×ψ = 0 means thatψ is parallel ton, hence the normal component
of the velocity vector is zero on the boundary. Adding the condition n×(∇×ψ) = 0
ensures that the full velocity vector vanishes on the boundary. The requirements
in (21) are equivalent to four scalar conditions, namely thevanishing of the two
tangential components ofψ and∇×ψ.

Turning now to the gauge condition∇ ·ψ = 0, we add the condition

∂ (ψ ·n)

∂n
= 0, on ∂Ω . (22)

Together with the vanishing of the tangential components ofψ, it implies that
∇ ·ψ = 0 on∂Ω .

Equations (21)-(22) consist of five scalar conditions forψ on the boundary. We
can still add one more scalar boundary condition, as the equations for the 3- com-
ponent streamfunctionψ contain the fourth order biharmonic operator. The sixth
scalar boundary condition that we choose to add is

∆(∇ ·ψ) = 0, on ∂Ω . (23)

We thus obtain
∇ ·ψ = 0, ∆(∇ ·ψ) = 0, on ∂Ω . (24)

We assume that the initial valueψ(x,0) satisfies(∇ ·ψ)(x,0) = 0. Taking the
divergence of (20) we obtain an evolution equation for∇ ·ψ.

∂∆(∇ ·ψ)

∂ t
= ν∆ 2(∇ ·ψ), in Ω . (25)

Equations (24)-(25) together with the assumption that∇ ·ψ = 0 initially ensure that
∇ ·ψ = 0 for all t > 0. See also [1], [6] and [7]. Finally, we have the following
three-dimensional pure streamfunction formulation
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









∂∆ψ
∂ t −∇× (∆ψ × (∇×ψ)) = ν∆ 2ψ +∇× f, in Ω

n×ψ = 0, ∂ (ψ·n)
∂n = 0, on ∂Ω

n× (∇×ψ) = 0, ∆(∇ ·ψ) = 0, on ∂Ω .

(26)

3 The Numerical Scheme

Our numerical scheme is based on the approximation of the following equation

∂∆ψ
∂ t

− ((∇×ψ) ·∇)∆ψ +(∆ψ ·∇)(∇×ψ)−ν∆ 2ψ = ∇× f, in Ω , (27)

assuming thatψ ∈H2
0(Ω). For the vector functionψ we construct a fourth-order ap-

proximation to the the biharmonic operator as follows. The pure fourth-order deriva-
tives are approximated byδ 4

x ,δ 4
y ,δ 4

z as in (7)-(8).
The mixed termsψxxyy, ψyyzzandψzzxxare approximated by







δ̃ 2
xyψi, j,k = 3δ 2

x δ 2
y ψi, j,k−δ 2

x δyψy,i, j,k−δ 2
y δxψx,i, j,k = ∂ 2

x ∂ 2
y ψi, j,k +O(h4)

δ̃ 2
yzψi, j,k = 3δ 2

y δ 2
z ψi, j,k−δ 2

y δzψz,i, j,k−δ 2
z δyψy,i, j,k = ∂ 2

y ∂ 2
z ψi, j,k +O(h4)

δ̃ 2
zxψi, j,k = 3δ 2

z δ 2
x ψi, j,k−δ 2

z δxψz,i, j,k−δ 2
x δzψx,i, j,k = ∂ 2

z ∂ 2
x ψi, j,k +O(h4).

(28)

A fourth order approximation of the biharmonic operator is then obtained as

∆̃ 2
hψ = δ 4

x ψ +δ 4
y ψ +δ 4

z ψ +2δ̃ 2
xyψ +2δ̃ 2

yzψ +2δ̃ 2
zxψ. (29)

The approximate derivativesψx, ψy andψz are related toψ via the Hermitian deriva-
tives as in (5).

Equation (29) provides a fourth order compact operator for∆ 2ψ, which involves
values ofψ,ψx,ψy andψz at (i, j,k) and at its twenty six nearest neighbors. The
Laplacian operator is approximated by a fourth order operator via

∆̃hψ = 2∆hψ − (δxψx +δyψy +δzψz). (30)

The nonlinear part in (27) consists of two terms, the convective term and the
stretching term. We design a fourth-order scheme which approximates the convec-
tive term. The convective term in the three-dimensional case is

C(ψ) = −((∇×ψ) ·∇)∆ψ = u∆∂xψ +v∆∂zψ +w∆∂zψ. (31)

Here(u,v,w) = u = −∇×ψ is the velocity vector, whose components contain first
order derivatives of the streamfunction, and thus may be approximated to fourth-
order accuracy. The terms∆∂xψ,∆∂zψ,∆∂zψ may be approximated as in the two-
dimensional case. The term∆∂xψ, for example, may be written as

∆∂xψ = ∂ 3
x ψ +∂x∂ 2

y ψ +∂x∂ 2
z ψ. (32)
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Here, the pure and mixed type derivatives may be approximated as in the two-
dimensional Navier-Stokes equations (see (10), (9)). We denote the approximation
to the convective term bỹCh(ψ).

Now, we construct a fourth-order approximation to the stretching termS =
(ω ·∇)u =−(∆ψ ·∇)(∇×ψ). Note that the stretching term contains∆ψ and mixed
second order derivatives of the streamfunction. The Laplacian ofψ may be approx-
imated to fourth-order accuracy, as in (30). The second order mixed terms, such as
∂x∂yψ, may be approximated using a Hermitian approximation of thetype

(σxσy)(ψxy)i, j,k = δxδyψi, j,k. (33)

Hence,

(I +
h2

6
δ 2

x )(I +
h2

6
δ 2

y )(ψxy)i, j,k = δxδyψi, j,k ,1≤ i, j,k≤ N−1 (34)

is an implicit equation forψxy. We denote the approximation of the stretching term
by S̃h(ψ). For the approximation in time, we apply a Crank-Nicholson scheme (see
the comment after (13)-(14)).

We obtain the following scheme

(∆̃hψi, j,k)
n+1/2−(∆̃hψi, j,k)

n

∆ t/2 = −C̃hψ(n)
i, j,k + S̃hψ(n)

i, j,k + ν
2 [∆̃ 2

hψn+1/2
i, j,k + ∆̃ 2

hψn
i, j,k] (35)

(∆̃hψi, j,k)
n+1−(∆̃hψi, j,k)

n

∆ t = −C̃hψ(n+1/2)
i, j,k + S̃hψ(n+1/2)

i, j,k + ν
2 [∆̃ 2

hψn+1
i, j + ∆̃ 2

hψn
i, j,k]. (36)

At present, a direct solver is invoked to solve the linear setof equations (35)-(36).
Some preliminary MATLAB computations with coarse grids confirm the fourth

order accuracy of the scheme. We first show numerical resultsfor the time-dependent
Stokes equations

∂∆ψ
∂ t

= ν∆ 2ψ + f, in Ω . (37)

We have picked the exact solutionψ

ψT(x, t) = −
1
4

e−t (z4,x4,y4) (38)

in the cubeΩ = (0,1)3. Here,f is chosen such thatψ in (38) satisfied (37) exactly.
In the numerical results shown here we have chosen the time step ∆ t of orderh2

in order to retain the overall fourth-order accuracy of the scheme. In practice, if
we are interested mainly in the steady state solution, a larger time step, which is
independent ofh, may be used. In Table 1 we show results for the Stokes problem
with ∆ t = 0.1h2 andt = 0.00625. Heree is the error in thel2

h norm, i.e.

e2 = ∑
i

∑
j
∑
k

(ψ3(xi ,y j ,zk)− ψ̃3(xi ,y j ,zk))
2h3,
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grid rate grid rate grid
5×5×5 9×9×9 17×17×17

e 2.5460(-9) 3.82 1.8017(-10) 3.98 1.1443(-11)
ey 7.7417(-9) 3.73 5.8037(-10) 3.96 3.7391(-11)

div (ψ) 1.3409(-8) 3.74 1.0052(-9) 3.96 6.4621(-11)

Table 1 Stokes equations fort = 0.00625 using∆ t = 0.1h2.

whereψ3 is thez component of the exact solution andψ̃3 is thez component of the
approximate solution.ey is thel2

h in they derivative ofψ3. In Table 2 we display the
results fort = 0.0625 using∆ t = h2 .

grid rate grid rate grid
5×5×5 9×9×9 17×17×17

e 9.6461(-7) 4.41 4.5309(-8) 4.00 2.8291(-9)
ey 3.0293(-6) 4.33 1.5049(-7) 3.99 9.4269(-9)

div (ψ) 5.2470(-6) 4.33 2.6066(-7) 4.00 1.6328(-8)

Table 2 Stokes equations with∆ t = h2 for t = 0.0625.

Next we show results for the Navier-Stokes Equations

∂∆ψ
∂ t

− ((∇×ψ) ·∇)∆ψ +(∆ψ ·∇)(∇×ψ)−ν∆ 2ψ = ∇× f, in Ω (39)

in the cubeΩ = (0,1)3. Here, the source termg = ∇ × f is chosen such that
ψT(x, t) = −1

4e−t
(

z4,x4,y4
)

is an exact solution of (39). In Table 3 we present
results fort = 0.00625 using∆ t = 0.1h2.

grid rate grid rate grid
5×5×5 9×9×9 17×17×17

e 2.4497(-9) 3.86 1.6924(-10) 4.01 1.0473(-11)
ey 7.6486(-9) 3.75 5.6845(-10) 3.98 3.5917(-11)

div (ψ) 1.2294(-8) 3.71 9.3619(-10) 3.92 6.1700(-11)

Table 3 Navier-Stokes equations fort = 0.00625 using∆ t = 0.1h2.

In Table 4 we show results for the Navier-Stokes Equations with ∆ t = h2 for t =
0.0625. In Figures 1(a) and 1(b) we display the errors for Navier-Stokes equations
in ψ3 and(ψ3)y at t = 0.0625 withdt = h2 and a 173 grid.



8 D. Fishelov, M. Ben-Artzi and J.-P. Croisille

grid rate grid rate grid
5×5×5 9×9×9 17×17×17

e 9.4418(-7) 4.46 4.2709(-8) 4.04 2.5934(-9)
ey 2.9836(-6) 4.38 1.4334(-7) 4.03 8.7800(-9)

div (ψ) 5.0471(-6) 4.40 2.3944(-7) 4.02 1.4778(-8)

Table 4 Navier-Stokes equations fort = 0.0625 using∆ t = h2.
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Fig. 1 Navier-Stokes : Errors in (a)ψ3 and (b)(ψ3)y for N = 17, t = 0.0625, dt = h2.
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