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1. Introduction and Statement of Results

Let H = −
n∑

i,j=1

∂iai,j(x)∂j , where ai,j = aj,i, be a formally self-adjoint operator

in L2(Rn), n ≥ 2, where the notation ∂j = ∂
∂xj

has been used.
We assume that the real measurable matrix function a(x) = {ai,j(x)}1≤i,j≤n

satisfies, with some positive constants a1 > a0 > 0, Λ0 > 0,

a0I ≤ a(x) ≤ a1I, x ∈ Rn,(1.1)
a(x) = I for |x| > Λ0.(1.2)

In what follows we shall use the notation H = −∇ · a(x)∇.
We retain the notation H for the self-adjoint (Friedrichs) extension associated with
the form (a(x)∇ϕ,∇ψ), where (,) is the scalar product in L2(Rn) . When a(x) ≡ I
we get H = H0 = −∆.

Let

R0(z) = (H0 − z)−1, R(z) = (H − z)−1, z ∈ C± = {z/ ± Imz > 0},
be the associated resolvent operators.

The purpose of this paper is to study the continuity properties of R(z) in cer-
tain operator topologies, as z approaches the real axis. To fix the ideas, we shall
generally assume that Imz > 0, with obvious modifications for Imz < 0.

Definition 1.1. Let [α, β] ⊆ R. We say that H satisfies the ”Limiting Absorption
Principle” (LAP) in [α, β] if R(z), z ∈ C+, can be extended continuously to Imz =
0, Rez ∈ [α, β], in a suitable operator topology. In this case we denote the limiting
values by R+(λ), α ≤ λ ≤ β.

A similar definition applies for z ∈ C−, but the limiting values R−(λ) will be,
generally speaking, different from R+(λ). Observe that the precise specification of
the operator topology in the above definition is left open. Typically, it will be the
uniform operator topology associated with weighted-L2 or Sobolev spaces, which
will be introduced later.

It is well-known that our assumptions (1.1), (1.2) imply that σ(H), the spectrum
of H, is the half-axis [0,∞), and is entirely absolutely continuous. The ”threshold”
z = 0 plays a special role in this setting, as we shall see later. Thus, consider first
the case [α, β] ⊆ (0,∞).
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Under assumptions close to ours here (but also assuming that a(x) is continuously
differentiable) a weaker version (roughly, ”strong” instead of ”uniform” convergence
of the resolvents) was obtained by Eidus [14, Theorem 4 and Remark 1]. For
H = H0 the LAP has been established by Agmon [1]. Indeed, it was established
for operators of the type H0 + V , where V is a short-range perturbation. However,
an inspection of Agmon’s perturbation-theoretic proof shows that it cannot be
extended to our operator H, in a straightforward way. Observe on the other hand
that the short-range potential V can be replaced by a potential depending only on
direction (x/|x|) [15] or a perturbation of such a potential [23, 24]. In this case
the condition α > 0 is replaced by α > lim sup

|x|→∞
V (x). The LAP for the periodic

case (namely, a(x) is symmetric and periodic) has recently been established in [22]
. Note that in this case the spectrum is absolutely continuous and consists of a
union of intervals (”bands”).

We also refer to [16] where the existence and completeness of the wave operators
W±(H, H0) is established under suitable smoothness assumptions on a(x) (how-
ever, a(x) − I is not assumed to be compactly supported and H can include also
magnetic and electric potentials). Note that by a well-known theorem of Kato and
Kuroda [19] , if H, H0 satisfy the LAP in [α, β] (with respect to the same operator
topologies) then the wave operators over this interval exist and are complete.

In this paper we focus on the study of the LAP for H in [α, β] where α < 0 < β.
This case has been studied for the Laplacian H0 [6, Appendix A] and in the one-
dimensional case (n = 1) in [3, 4, 10]. The present paper deals with the multi-
dimensional case n ≥ 2.

Throughout this paper we shall make use of the following weighted-L2 and
Sobolev spaces. First, for s ∈ R and m a nonnegative integer we define.

(1.3) L2,s(Rn) := {u(x) / ‖u‖20,s =
∫

Rn

(1 + |x|2)s|u(x)|2dx < ∞}

(1.4) Hm,s(Rn) := {u(x) /Dαu ∈ L2,s, |α| ≤ m, ‖u‖2m,s =
∑

|α≤m

‖Dαu‖20,s}

(we write ‖u‖0 = ‖u‖0,0).
More generally, for any σ ∈ R, let Hσ ≡ Hσ,0 be the Sobolev space of order σ,

namely,

(1.5) Hσ = {û /u ∈ L2,σ, ‖û‖σ,0 = ‖u‖0,σ}
where the Fourier transform is defined as usual by

û(ξ) = (2π)−
n
2

∫

Rn

u(x) exp(−iξx)dx.

For negative indices we denote by
{
H−m,s, ‖·‖−m,s

}
the dual space of Hm,−s.

In particular, observe that any function f ∈ H−1,s can be represented (not uniquely)
as

(1.6) f = f0 +
n∑

k=1

i−1 ∂

∂xk
fk, fk ∈ L2,s, 0 ≤ k ≤ n.

In the case n = 2 and s > 1, we define
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L2,s
0 (R2) = {u ∈ L2,s(R2) /û(0) = 0},

and set H−1,s
0 (R2) to be the space of functions f ∈ H−1,s(R2) which have a repre-

sentation (1.6) where fk ∈ L2,s
0 , k = 0, 1, 2.

For any two normed spaces X, Y , we denote by B(X, Y ) the space of bounded
linear operators from X to Y , equipped with the operator-norm topology.

The fundamental result obtained in the present paper is given in the following
theorem.

THEOREM A. Suppose that a(x) satisfies (1.1),(1.2). Then the operator H
satisfies the LAP in R. More precisely, using the density of L2,s in H−1,s, consider
the resolvent R(z) = (H − z)−1, Im z 6= 0, as two operator-valued functions,
defined respectively in the lower and upper half-planes,

(1.7) z → R(z) ∈ B(H−1,s(Rn),H1,−s(Rn)), s > 1, ±Im z > 0.

Then these functions can be extended continuously from C± = {z/ ± Imz > 0} to
C± = C±⋃

R, with respect to the operator-norm topology. In the case n = 2 replace
H−1,s by H−1,s

0 .

In particular, it follows that the limiting values R±(λ) are continuous at λ = 0
and H has no resonance there. The study of the resolvent near the threshold λ = 0
is sometimes referred to as ”low energy estimates”. As mentioned earlier, this result
has been established in the case H = H0 [6, Appendix A]. The paper [25] deals
with the two-dimensional (n = 2) case, but the resolvent R(z) is restricted to con-
tinuous compactly supported functions f , thus enabling the use of pointwise decay
estimates of R(z)f at infinity. The case of the closely related ”acoustic propagator”
, where the matrix a(x) = b(x1)I is scalar and dependent on a single coordinate
, has been extensively studied [4, 9, 12, 17, 18, 20], as well as the ”anisotropic”
case where b(x1) is a general positive matrix [5]. The proof of the theorem will be
given in Section 3. It is based on an extended version of the LAP for H0, with the
resolvent R0(z) acting on elements of H−1,s, for suitable positive values of s (see
Section 2).

An important application of the LAP in the case of perturbations of the Lapla-
cian is the derivation of an ”eigenfunction expansion theorem”, where the eigen-
functions are perturbations of plane waves exp(iξx) [1, 29]. We can use the LAP
result of Theorem A in order to derive a similar expansion for the operator H. In
fact, our generalized eigenfunctions are given by the following definition.

Definition 1.2. For every ξ ∈ Rn let

(1.8)
ψ±(x, ξ) = −R∓(|ξ|2)((H − |ξ|2) exp(iξx)) =

R∓(|ξ|2)(∑n
l,j=1 ∂l(al,j(x)− δl,j)∂j) exp(iξx).

The generalized eigenfunctions of H are defined by

(1.9) ϕ±(x, ξ) = exp(iξx) + ψ±(x, ξ).

Remark 1.3. We label the eigenfunctions as ”generalized” because they do not
belong to the Hilbert space L2(Rn).



4 MATANIA BEN-ARTZI

In analogy with the eigenfunction expansion theorem for short or long range
perturbations of the Laplacian [1, 29] we can now state an eigenfunction expansion
theorem for the operator H. We assume n ≥ 3 in order to simplify the statement of
the theorem. As we show below (see Proposition ??) the generalized eigenfunctions
are (at least) continuous in x, so that the integral in the statement makes sense.

THEOREM B
Suppose that n ≥ 3 and that a(x) satisfies (1.1),(1.2). For any compactly supported
f ∈ L2(Rn) define

(1.10) (F±f)(ξ) = (2π)−
n
2

∫

Rn

f(x)ϕ±(x, ξ)dx, ξ ∈ Rn.

Then the transformations F± can be extended as unitary transformations (for
which we retain the same notation) of L2(Rn) onto itself. Furthermore, these
transformations ”diagonalize” H in the following sense.
f ∈ L2(Rn) is in the domain D(H) if and only if |ξ|2(F±f)(ξ) ∈ L2(Rn) and

(1.11) H = F∗±M|ξ|2F±,

where M|ξ|2 is the multiplication operator by |ξ|2.

As is well-known from the theory of Schrödinger operators, the LAP and the eigen-
function expansion theorem provide powerful tools for the treatment of a wide
array of related problems. Here we give one such application, dealing with global
space-time estimates for a generalized wave equation.

We consider the equation

(1.12)
∂2u

∂t2
= Hu = −

n∑

i,j=1

∂iai,j(x)∂ju,

subject to the initial data

(1.13) u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ Rn.

We next replace the assumptions (1.1),(1.2) by stronger ones as follows.
Let g(x) = (gi,j(x))1≤i,j≤n be a smooth Riemannian metric on Rn such that

(1.14) g(x) = I for |x| > Λ0.

and assume that

(1.15) a(x) = g−1(x) = (gi,j(x))1≤i,j≤n.

We have the following theorem.

THEOREM C
Suppose that n ≥ 3 and that a(x) satisfies (1.14),(1.15). Assume further that the ge-
ometry defined by the metric g has no ”trapped geodesics” [27]. Then for any s > 1
there exists a constant C = C(s, n) > 0 such that the solution to (1.12),(1.13)
satisfies

(1.16)

∫
R

∫
Rn

(1 + |x|2)−s|u(x, t)|2dxdt ≤
C[‖u0‖20 + ‖|D|−1v0‖20],
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where as usual |D|−1 denotes multiplication by the symbol |ξ|−1.

This estimate generalizes similar estimates obtained for the classical (g = I) wave
equation [2, 21].

We do not provide proofs of the theorems, but we include below the treatment
of the unperturbed operator H0. This treatment is already new in the sense that
it extends the treatment of the LAP beyond the L2 setting (see the statement of
Theorem A).

2. The Operator H0 = −∆

Let
{
E0(λ)

}
be the spectral family associated with H0, so that

(2.1) (E0(λ)h, h) =
∫

|ξ|2≤λ

|ĥ|2dξ, λ ≥ 0, h ∈ L2(Rn).

Following the methodology of [7, 13] we see that the weak derivative A0(λ) =
d

dλE0(λ) exists in B(L2,s, L2,−s) for any s > 1
2 and λ > 0. (Here and below we

write L2,s for L2,s(Rn)). Furthermore,

(2.2) < A0(λ)h, h >= (2
√

λ)−1

∫

|ξ|2=λ

|ĥ|2dτ,

where <,> is the (L2,−s, L2,s) pairing and dτ is the Lebesgue surface measure.
Recall that by the standard trace lemma we have

(2.3)
∫

|ξ|2=λ

|ĥ|2dτ ≤ C‖ĥ‖2Hs , s >
1
2
.

However, we can refine this estimate near λ = 0 as follows.

Proposition 2.1. Let 1
2 < s < 3

2 , h ∈ L2,s. For n = 2 assume further that s > 1
and h ∈ L2,s

0 . Then

(2.4)
∫

|ξ|2=λ

|ĥ|2dτ ≤ C min(λγ , 1)‖ĥ‖2Hs ,

where

(2.5) 0 < γ < s− 1
2
,

and C = C(s, γ, n). (Actually we can take γ = s− 1
2 if s ≤ 1 and n ≥ 3).

Proof. If n ≥ 3, the proof follows from [8, Appendix]. If n = 2 and 1 < s < 3
2 we

have, for h ∈ L2,s
0 ,

|ĥ(ξ)| = |ĥ(ξ)− ĥ(0)| ≤ Cs,δ|ξ|δ‖ĥ‖Hs ,

for any 0 < δ < min(1, s− 1). Using this estimate in the integral in the right-hand
side of (2.4) the claim follows also in this case. ¤
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Combining Equations (2.2),(2.3) and (2.4) we conclude that,

| < A0(λ)f, g > | ≤< A0(λ)f, f >
1
2 < A0(λ)g, g >

1
2(2.6)

≤ C min(λ−
1
2 , λη)‖f‖0,s‖g‖0,σ, f ∈ L2,s, g ∈ L2,σ,

where either

(i) n ≥ 3,
1
2

< s, σ <
3
2
, s + σ > 2 and 0 < 2η < s + σ − 2,

or(2.7)

(ii) n = 2, 1 < s <
3
2
,

1
2

< σ <
3
2
, s + σ > 2, 0 < 2η < s + σ − 2

and f̂(0) = 0.

In both cases, A0(λ) is Hölder continuous and vanishes at 0,∞, so as in [7] we
obtain

Proposition 2.2. The operator-valued function

(2.8) z → R0(z) ∈
{

B(L2,s, L2,−σ), n ≥ 3,

B(L2,s
0 , L2,−σ), n = 2,

where s, σ satisfy (2.7), can be extended continuously from C± to C±, in the respec-
tive uniform operator topologies.

We shall now extend this proposition to more general function spaces. Let g ∈
H1,σ, where s, σ satisfy (2.7).Let f ∈ H−1,s have a representation of the form (1.6).
Equation (2.2) can be extended in an obvious way to yield

(2.9) i−1 < A0(λ)
∂

∂xk
fk, g >= (2

√
λ)−1

∫

|ξ|2=λ

ξkf̂k(ξ)ĝ(ξ)dτ, k = 1, ..., n.

We therefore obtain

Proposition 2.3. The operator-valued function of Proposition 2.2 is well-defined
(and analytic) for nonreal z in the following functional setting.

(2.10) z → R0(z) ∈
{

B(H−1,s,H1,−σ), n ≥ 3,

B(H−1,s
0 ,H1,−σ), n = 2,

where s, σ satisfy (2.7). Furthermore, it can be extended continuously from C± to
C±, in the respective uniform operator topologies.

Proof. In view of (2.9) and the considerations preceding Proposition 2.2 , since
g ∈ H1,σ, we have instead of (2.6),

(2.11)
| < A0(λ)

∂

∂xk
fk, g > |

≤ C min(λ−
1
2 , λη)‖f‖−1,s‖g‖1,σ , f ∈ H−1,s, g ∈ H1,σ,

so that the claim holds true if H1,−σ is replaced by H−1,−σ. However, using that
H0R0(z) = I + zR0(z) we see that also H0R0(z) can be extended continuously
(as z approaches the real line from either half-plane) with values in H−1,−σ. The
conclusion of the proposition follows since the norm of H1,−σ is equivalent to the
graph-norm of H0 in H−1,−σ. ¤
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