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A discrete fourth-order elliptic theory on a one-dimensional interval is constructed. It is based on ‘Hermitian
derivatives’ and compact higher-order finite difference operators, and is shown to possess the analogues
of the standard elliptic theory such as coercivity and compactness. The discrete version of the fourth-

order Sturm–Liouville problem
(

d
dx

)4
u + d

dx

(
A(x) d

dx u
)+ B(x)u = f on a real interval is studied in terms

of the functional calculus. The resulting (compact) finite difference scheme constitutes a scale of finite-
dimensional Sturm–Liouville problems. A major difficulty is the presence of boundaries, in contrast to
periodic problems (and analogous to boundary layers in Navier–Stokes simulations). Convergence of the
finite-dimensional solutions to the continuous one is proved in the general case, and optimal (O(h4)) con-
vergence rates are obtained in the constant coefficient case. Numerical examples are given, demonstrating
the optimal rate even in highly oscillatory cases.

Keywords: discrete elliptic operator; fourth order; biharmonic; Sturm–Liouville; optimal convergence;
boundary values.

1. Introduction

In this article, we expound a discrete elliptic theory in the context of fourth-order Sturm–Liouville
problems on the intervalΩ = [0, 1]. The discrete finite-difference operators are compact and are derived
from the fundamental concept of the Hermitian derivative. It should be pointed out that the elliptic finite-
difference methodology is entirely developed in the discrete framework, independently of the classical
(continuous) elliptic theory. In particular, the concepts of classical elliptic theory, such as coercivity,
compactness (Rellich’s theorem) and a priori estimates have their equivalents in the discrete case.

One can compare the present study with the development of finite-dimensional finite element methods
for elliptic problems (Brenner & Scott, 2012).
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1486 M. BEN-ARTZI ET AL.

Once the discrete structure is established, it can be applied towards the approximation of the fourth-
order boundary value problem on the interval. The elliptic tools enable us to get ‘optimal’ error estimates,
as will be further explained below in this section.

Our approach is closely related to recently introduced compact schemes in the treatment of two-
dimensional Navier–Stokes equations (Ben-Artzi et al., 2013), where the pure stream function formulation
involves fourth-order derivatives.

Naturally, the development of the elliptic discrete methodology involves some lengthy proofs. The
reader who is primarily interested in the approximation algorithm can conveniently skip the proofs, as
indicated in the ‘box’ at the end of this section.

Turning to the approximation issue, consider the equation

LA,Bu =
(

d

dx

)4

u + A(x)

(
d

dx

)2

u + A′(x)
(

d

dx

)
u + B(x)u = f , x ∈ Ω = [0, 1], (1.1)

where A(x), B(x) are real functions, A(x) ∈ C1(Ω) and B(x) ∈ C(Ω).
The equation is supplemented with homogeneous boundary conditions

u(0) = d

dx
u(0) = u(1) = d

dx
u(1) = 0. (1.2)

As is well known, nonhomogeneous boundary conditions are accommodated by a modification of the
right-hand side function f (x).

The case of a second-order equation is generally known as the Sturm–Liouville problem. It has been
extensively studied, both from the theoretical point of view (Coddington & Levinson, 1955), dealing with
the issues of spectral structure, behaviour of eigenfunctions and their zeros, and so on, and the numerical
point of view (Iserles, 2008), dealing with discrete aspects of these topics. We mention, in particular, the
very recent article by Ramos & Iserles (2015) and references therein, where group-theoretic tools are
used for the discrete approximation of eigenvalues and eigenfunctions.

Equations such as (1.1), subject to boundary conditions at the two end points, are usually referred to as
higher-order Sturm–Liouville problems. Such problems appear in various applications, such as elasticity
theory, stream function formulation of Navier–Stokes equations or wave propagation problems with high
dispersivity. If restricted to the self-adjoint case, these are actually one-dimensional elliptic boundary
value problems, for which the basic theory is well established. In Section 2, we recall some basic facts
that are relevant to the present article.

The ‘heart of the article’, the elliptic discrete analysis, is developed in Section 3. It is designed not
only to the regular interior elliptic properties (such as coercivity), but also to the handling of boundary
values. This additional aspect complicates the treatment, but it is certainly necessary if approximation of
boundary value problems is desired. Here, we encounter phenomena of ‘discrete boundary layer’, such
as lower regularity and the fact that certain operators do not commute.

In the context of elliptic boundary value problems, in any space dimension, a basic issue is the
continuous dependence of the solutions on the data. For example, how solutions vary as the right-hand
side function f is perturbed. A fundamental tool is the compactness of the solution operator. More
specifically, it is the compact embedding (Rellich’s theorem) of the Sobolev space Hk(Ω), k ≥ 1 in
L2(Ω) (Evans, 1998, Chapter 5). Roughly speaking, it is first established that the inverse of the operator
(if it has no eigenvalue at zero) is bounded (‘stability’). Then, the compactness property is used to show
that, under continuous variation of the data, the corresponding solutions (already shown to belong to a
bounded set) vary continuously.
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DISCRETE FOURTH-ORDER OPERATORS 1487

In a finite-dimensional space, every linear operator is compact. The discrete approximation method-
ology is based on a sequence of finite-dimensional spaces with increasing dimension. A nice description
of the situation is given in Spence (1975) (in the context of computing discrete approximation of spectra):
‘A suitable error analysis must overcome the difficulty that the solutions are in an infinite dimensional
space, whereas the approximating solutions are finite dimensional vectors’.

An essential feature of our calculus consists of getting operator bounds that are independent of the
mesh size. It is in this context that we need to define the concept of compactness in an increasing sequence
of finite-dimensional spaces. This concept is introduced in Theorem 3.7.

The discrete functional calculus leads to a finite difference scheme for the approximation of (1.1).
In general terms, the scheme produces a sequence of discrete (namely, finitely valued) solutions. As
the underlying mesh is refined, it is expected that the discrete solutions ‘converge’ to the analytical one.
Because these are all finite-dimensional solutions (with increasing dimension as the mesh is refined)—one
needs to clarify the meaning of such convergence.

It turns out that Theorem 3.7, as in the analytical case, is the cornerstone of the convergence proof,
which is expounded in Section 4; we show that, for sufficiently small mesh size h, the finite-difference
scheme (4.1) can be solved (namely, the discrete operator is invertible) and, indeed, the resulting solutions
converge to the solution of the continuous equation as h → 0.

Following the general convergence proof, we consider in Section 5 the quantitative error estimates for
the discrete solutions, in the constant coefficient case (A(x) ≡ a, B(x) ≡ b). These are estimates of the
deviation of the discrete solution from the exact one. The latter is represented by its restriction to the grid
and the estimates are expressed in terms of powers of h, the mesh size. The treatment here is a crescendo
process. We first establish the general Theorem 5.2; it is the exact discrete elliptic analogue to the
continuous case, estimating the solution and its derivatives in terms of the right-hand side. When dealing
with periodic boundary conditions, this would have been the ‘end of the story’, leading automatically to
optimal convergence rates. However, the presence of boundary conditions (1.2) entails deterioration of
the truncation error near the boundary. This in turn allows only a ‘suboptimal’ estimate in Theorem 5.3.
Remarkably, the discrete elliptic properties of the operator enable us to recover, in Theorem 5.7, an
optimal O(h4) estimate (but just for the error). In Corollary 5.9, we obtain estimates for the (discrete)
derivatives of the error. As can be expected, such estimates are not quite O(h4), but they are nonetheless
significant, as they ensure that the discrete approximations are indeed close to the analytic solutions, and
do not develop spurious or oscillatory behaviour.

In Section 6, we present numerical test cases that indeed corroborate our claim of optimal error esti-
mates. This is true even for highly oscillatory solutions, such as equation (6.9), with variable coefficients
given by (6.10).

Some of these calculations were carried out in the M.Sc. thesis of Ron Katzir, supervised by M.
Ben-Artzi.

JUST THE ALGORITHM: The reader who is interested primarily in the
numerical algorithm can read only Section 3.1 for the definitions of the
discrete operators and then equation (4.1) for the discrete algorithm.

1.1 Existing literature on approximations to fourth-order boundary value problems

There is a vast literature on the numerical resolution of elliptic partial differential equations (finite-
elements, finite differences, spectral methods, and so on), and it is of course impossible for us
(and beyond the scope of the article) to give a reasonable survey. We mention the recent book by
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1488 M. BEN-ARTZI ET AL.

Jovanović & Suli (2014), where Chapter 2 is devoted to elliptic problems. More specifically, Section
2.7 there deals with the error analysis of fourth-order equations in the two-dimensional square, using
Sobolev norms and energy methods.

Numerical studies of the biharmonic equation in a square are more relevant to our interest here,
especially when they deal with issues of high-order accuracy. We refer to Abushama & Bialecki (2006)
(cubic splines collocation), Brown et al. (2000) (finite elements) and references therein.

Finally, we focus on the one-dimensional case, that is the topic of the present article. Generally
speaking, it is fair to state that the numerical treatment for higher-order Sturm–Liouville problems has
attracted little attention in the literature, when compared with the classical second-order problem. The
articles Usmani (1978); Rashidinia & Golbabaee (2005); Kasi Viswanadham et al. (2010); Gupta &
Srivastava (2011) obtain approximate solutions to the fourth-order boundary value problem by Galerkin
methods (based on B-splines). The articles Kalyani et al. (2015) and Siddiki & Akram (2008) use quintic
splines, but claim to get only second-order convergence.

We note that in all the above articles, the equation considered was y(4)(x)+ g(x)y(x) = f (x), and, in
particular, the second-order derivative y′′ is missing.

Roughly speaking, studies of this problem are motivated, for the most part, by either one of the two
following topics (that are interrelated).

• Determination of eigenvalues of the biharmonic operator and elliptic perturbations thereof by Wieners
(1997); Brown et al. (2000); Greenberg & Marletta (2000); Boumenir (2003); Rattana & Böckmann
(2013) and references therein.

• Convergence analysis of discrete schemes for the approximation of time evolution of partial differen-
tial equations of mathematical physics, involving the biharmonic operator as the principal spatial part.
In this category, we have two-dimensional elasticity theory and the two-dimensional Navier–Stokes
system in stream function formulation.

Even though our convergence analysis is time independent and confined to a one-dimensional
interval, it is inspired by the methods used in Hou & Wetton (1992); Ben-Artzi et al. (2006); Fishelov
et al. (2012), invoking discrete elliptic tools such as coercivity and compact embedding (Rellich’s
theorem).

2. The fourth-order Sturm–Liouville problem on an interval

The basic aspects of the general theory (and in fact, for elliptic operators with constant coefficients in
smooth-bounded domains in any dimension) are well known (Davies, 1995). We briefly recall those
that are relevant to the present study, where the operator LA,B (1.1) is defined on the closed interval
Ω = [0, 1].

(1) The operator LA,B defined initially on C∞
0 (0, 1) functions can be extended as a self-adjoint operator

in H4(Ω), the Sobolev space of functions having derivatives (in the sense of distributions) up to
fourth order in L2(Ω).

Its domain in this space (reflecting the homogeneous boundary conditions (1.2)) is H4 ∩H2
0 , where

H2
0 (Ω) is the completion of C∞

0 (0, 1) in the H2 norm.

(2) The operator
(

d
dx

)4
(obtained from LA,B when A = B = 0) is positive with compact resolvent(

d
dx

)−4
. Therefore, its spectrum consists of an increasing sequence of positive eigenvalues, which
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DISCRETE FOURTH-ORDER OPERATORS 1489

we designate as

{0 < λ1 ≤ λ2 ≤ . . . ≤ λk . . .}.

(3) The lower order part A(x)
(

d
dx

)2 + A′(x)
(

d
dx

)+ B(x) of LA,B is compact with respect to
(

d
dx

)4
, hence

the spectrum Σ(LA,B) of LA,B consists also of an increasing sequence of real eigenvalues of finite
multiplicity.

SPECTRAL ASSUMPTION. We assume that

0 /∈ Σ(LA,B). (2.1)

NOTE: in this case L−1
A,B is a compact operator on L2(Ω). (2.2)

3. Discrete functional calculus

3.1 Basic set-up and definition of the discrete operators

We equip the interval Ω = [0, 1] with a uniform grid

xj = jh, 0 ≤ j ≤ N , h = 1

N
.

The approximation is carried out by grid functions v defined on
{
xj, 0 ≤ j ≤ N

}
. The space of these grid

functions is denoted by l2
h . For their components, we use either vj or v(xj).

For every smooth function f (x), we define its associated grid function

f ∗
j = f (xj), 0 ≤ j ≤ N . (3.1)

The discrete l2
h scalar product is defined by

(v, w)h = h
N∑

j=0

vjwj,

and the corresponding norm is

|v|2h = h
N∑

j=0

v2
j . (3.2)

For linear operators, A : l2
h → l2

h we use |A|h to denote the operator norm.
The discrete sup-norm is

|v|∞ = max
0≤j≤N

{|vj|
}
. (3.3)
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1490 M. BEN-ARTZI ET AL.

The discrete homogeneous space of grid functions is defined by

l2
h,0 = {v, v0 = vN = 0}.

Given v ∈ l2
h,0, we introduce the basic (central) finite difference operators

(δxv)j = 1

2h
(vj+1 − vj−1), 1 ≤ j ≤ N − 1,

(δ2
x v)j = 1

h2
(vj+1 − 2vj + vj−1), 1 ≤ j ≤ N − 1.

(3.4)

The cornerstone of our approach to finite difference operators is the introduction of the Hermitian
derivative of v ∈ l2

h,0, which will replace δx. It will serve not only in approximating (to fourth order
of accuracy) first-order derivatives, but also as a fundamental building block in the construction of
finite-difference approximations to higher-order derivatives.

First, we introduce the ‘Simpson operator’

(σxv)j = 1

6
vj−1 + 2

3
vj + 1

6
vj+1, 1 ≤ j ≤ N − 1. (3.5)

Note the operator relation (valid in l2
h,0)

σx = I + h2

6
δ2

x , (3.6)

so that σx is an ‘approximation to identity’ in the following sense.
Let ψ ∈ C∞

0 (Ω), then

|(σx − I)ψ∗|∞ ≤ Ch2‖ψ ′′‖L∞(Ω), (3.7)

which yields

|(σx − I)ψ∗|h ≤ Ch2‖ψ ′′‖L∞(Ω). (3.8)

In the above estimates, the constant C > 0 is independent of h, ψ .
The Hermitian derivative vx is now defined by

(σxvx)j = (δxv)j, 1 ≤ j ≤ N − 1. (3.9)

Remark 3.1 In the definition (3.9), the values of (vx)j, j = 0, N , need to be provided, to make sense
of the left-hand side (for j = 1, N − 1). If not otherwise specified, we shall henceforth assume that, in
accordance with the boundary condition (1.2), vx ∈ l2

h,0, namely

(vx)0 = (vx)N = 0.

In particular, the linear correspondence l2
h,0 � v → vx ∈ l2

h,0 is well defined, but not onto, because δx has
a nontrivial kernel.
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DISCRETE FOURTH-ORDER OPERATORS 1491

We next introduce a fourth-order replacement to the operator δ2
x (see Fishelov et al., 2012, Equation

(15) and Ben-Artzi et al., 2013, Equation (10.50)(c)),

(̃δ2
x v)j = 2(δ2

x v)j − (δxvx)j, 1 ≤ j ≤ N − 1. (3.10)

The biharmonic discrete operator is given by (for v, vx ∈ l2
h,0),

δ4
x v = 12

h2
[δxvx − δ2

x v]. (3.11)

Note that, in accordance with Remark 3.1, the operator δ̃2
x is defined on grid functions v ∈ l2

h,0, such that
also vx ∈ l2

h,0.
The connection between the two difference operators for the second-order derivative is given by

−δ̃x
2 = −δ2

x + h2

12
δ4

x . (3.12)

Remark 3.2 Clearly, the operators δx, δ2
x , δ4

x depend on h, but for notational simplicity, this dependence
is not explicitly indicated.

The fact that the biharmonic discrete operator δ4
x is positive (in particular symmetric) is proved

in (Ben-Artzi et al., 2013, Lemmas 10.9, 10.10). Therefore, its inverse
(
δ4

x

)−1
is also positive.

A fundamental tool (analogous to classical elliptic theory) is the coercivity property (with C > 0
independent of h) (Ben-Artzi et al., 2013, Propositions 10.11, 10.13),

(δ4
x z, z)h ≥ C(|z|2h + |δ2

x z|2h + |δxzx|2h), (3.13)

valid for any grid function z ∈ l2
h,0 such that also zx ∈ l2

h,0.

3.2 Uniform boundedness of the discrete operators

We first show that, in ‘operator sense’, the second-order operator δ2
x is comparable (independently of

h > 0) to (δ4
x )

1
2 .

Lemma 3.3 The operators
(
δ4

x

)− 1
2 δ2

x and δ2
x

(
δ4

x

)− 1
2 are bounded in l2

h,0, with bounds that are independent
of h.

Proof. We use the coercivity property (3.13) with z = (
δ4

x

)− 1
2 w and obtain((

δ4
x

) 1
2 w,

(
δ4

x

)− 1
2 w

)
h

≥ C

∣∣∣∣δ2
x

(
δ4

x

)− 1
2 w

∣∣∣∣2
h

. (3.14)

The operator δ2
x

(
δ4

x

)− 1
2 is therefore bounded, with a bound that is independent of h. The same is

true (with the same bound, by a well-known fact about the norms of adjoints) for its adjoint, namely,(
δ4

x

)− 1
2 δ2

x . �
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1492 M. BEN-ARTZI ET AL.

In the sequel, we shall find it useful to use slightly different (and in fact weaker) boundedness facts
(again uniform with respect to h), which are listed in the following proposition.

Proposition 3.4 The operators (δ4
x )

−1, − (δ4
x

)−1
δ̃2

x and −δ̃2
x

(
δ4

x

)−1
are bounded in l2

h,0, with bounds that
are independent of h.

Proof. The boundedness of
(
δ4

x

)−1
follows directly from the coercivity property (3.13), by an obvious

application of the Cauchy–Schwarz inequality.
In view of (3.12),

− (δ4
x

)−1
δ̃2

x = − (δ4
x

)−1
δ2

x + h2

12

(
δ4

x

)−1
δ4

x

= − (δ4
x

)−1
δ2

x + h2

12
I . (3.15)

It therefore suffices to prove the boundedness of
(
δ4

x

)−1
δ2

x . But this simply follows from Lemma 3.3
and

(
δ4

x

)−1
δ2

x = (
δ4

x

)− 1
2
(
δ4

x

)− 1
2 δ2

x . �

Remark 3.5 We can actually get explicit bounds for the operators in Proposition 3.4 as follows.
Let z, zx ∈ l2

h,0. The discrete Poincaré inequality (Ben-Artzi et al., 2013, Equation (9.37)) yields

|z|2h ≤ |δ2
x z|2h, (3.16)

and from (Ben-Artzi et al., 2013, Proposition 10.13) we have

|δ2
x z|2h ≤ 8

3
(δ4

x z, z)h. (3.17)

In view of the Cauchy–Schwarz inequality, the second estimate implies

|δ2
x z|2h ≤ 8

3
|δ4

x z|h|z|h,

and combined with (3.16)

|z|h ≤ 8

3
|δ4

x z|h. (3.18)

Also, taking z = (δ4
x )

−1w in (3.17) we get

∣∣δ2
x (δ

4
x )

−1w
∣∣2
h
≤ 8

3

(
w, (δ4

x )
−1w

)
h
≤
(

8

3

)2

|w|2h. (3.19)
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DISCRETE FOURTH-ORDER OPERATORS 1493

In conjunction with (3.12), this estimate entails

∣∣̃δ2
x (δ

4
x )

−1w
∣∣
h
≤
(

8

3
+ h2

12

)
|w|h. (3.20)

The adjoint operator (δ4
x )

−1δ̃2
x has the same bound.

3.3 Compactness—the discrete version of Rellich’s theorem

In (2.2), we noted the compactness of the inverse L−1
A,B. The compactness of the inverse of an elliptic operator

is equivalent (by domain considerations) to the compact embedding of the Sobolev space Hs, s > 0 in
L2. This is the celebrated Rellich theorem (Evans, 1998, Chapter 5.7), which is the cornerstone of the
elliptic theory. Its proof requires several tools (for example, in a popular version of the proof, the use of
Fourier transform and the Arzela–Ascoli theorem).

In the discrete framework, we do not have some of the aforementioned analytical tools. Yet we can
ask ourselves the following question.

QUESTION: Is there a suitable ‘compactness’ property of the inverse (δ4
x)

−1?

Of course, if we just consider a fixed h > 0, such a question is meaningless, because the underlying
space is finite dimensional. However, we can provide a meaningful answer if all values of h > 0 are
considered. In some sense, the compactness property is related to an ‘increasing sequence of finite-
dimensional spaces’. The proof is, understandably, quite long.

We first introduce some notation, basically relating grid functions to functions defined on the interval
Ω = [0, 1] (see Ben-Artzi et al., 2013, Section 10.2):

For a grid function z ∈ l2
h,0, we define its associated piecewise linear continuous function by

Definition 3.6

zh(x) =
{

linear in the interval Ki+ 1
2

= (xi, xi+1), 0 ≤ i ≤ N − 1,

zi, x = xi, 0 ≤ i ≤ N .

Theorem 3.7 (The discrete Rellich theorem) Let {0 < N1 < N2 < . . .Nk < . . .} be an increasing

sequence of integers and denote hk = 1
Nk

, k = 1, 2, . . . Let
{
v(k) ∈ l2

hk ,0, k = 1, 2, . . .
}

be a bounded

sequence of vectors so that

sup
{|v(k)|hk , k = 1, 2, . . .

}
< ∞, (3.21)

and let {
g(k) = (

δ4
x

)−1
(v(k)), k = 1, 2, . . .

}
.

Let
{
ghk , vhk

}∞
k=1

be the piecewise linear continuous functions in Ω = [0, 1] corresponding to{
g(k), v(k)

}∞
k=1

, respectively (Definition 3.6).
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1494 M. BEN-ARTZI ET AL.

In addition, let
{
g(k)x

}∞
k=1

be the sequence of Hermitian derivatives of
{
g(k)
}∞

k=1
and let

{
phk

}∞
k=1

be
the piecewise linear continuous functions in Ω = [0, 1] corresponding to

{
g(k)x

}∞
k=1

. Then, there exist
subsequences {

gj := ghkj
, pj := phkj

, vj := vhkj

}∞

j=1

and limit functions g(x), p(x), v(x), such that

lim
j→∞

gj(x) = g(x) in C(Ω), (3.22)

lim
j→∞

pj(x) = p(x) in C(Ω), (3.23)

lim
j→∞

vj(x) = v(x) weakly in L2(Ω). (3.24)

The limit function g(x) is in H4(Ω) ∩ H2
0 (Ω) and its derivatives satisfy

g′(x) = p(x),

(
d

dx

)4

g(x) = v(x). (3.25)

Proof. In view of Proposition 3.4, both sequences of norms{|g(k)|hk

}∞
k=1

,
{|δ2

x g
(k)|hk

}∞
k=1

are bounded by a constant C > 0.
We use the discrete Poincaré inequality (Ben-Artzi et al., 2013, Equation (9.36))

|δ2
x z|2h ≥ h

Nk−1∑
i=0

(
zi+1 − zi

h

)2

, (3.26)

with z = g(k) to conclude that, by the Cauchy–Schwarz inequality,

Nk−1∑
i=0

|g(k)i+1 − g(k)i | ≤ N
1
2

k

{Nk−1∑
i=0

(g(k)i+1 − g(k)i )
2

} 1
2

≤ (hkNk)
1
2 |δ2

x g
(k)|hk ≤ C. (3.27)

Recall that (see Ben-Artzi et al., 2013, Lemma 10.4) ‖ghk ‖L2(Ω) ≤ |g(k)|hk and that the total variation
of ghk satisfies

TV(ghk ) =
Nk−1∑
i=0

|g(k)i+1 − g(k)i |.

The fact that g(k) ∈ l2
h,0 implies that |ghk |L∞(Ω) ≤ TV(ghk ) ≤ C.
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DISCRETE FOURTH-ORDER OPERATORS 1495

For any two indices 1 ≤ p < m ≤ Nk − 1, we get as in (3.27)

m∑
i=p

|g(k)i+1 − g(k)i | ≤ (m − p)
1
2

{Nk−1∑
i=0

(
g(k)i+1 − g(k)i

)2
} 1

2

≤ [hk(m − p)] 1
2 |δ2

x g
(k)|hk ≤ C|xm − xp| 1

2 . (3.28)

Thus, for any 0 ≤ x < y ≤ 1,

|ghk (y)− ghk (x)| ≤ C|y − x| 1
2 , (3.29)

where C > 0 is independent of k.
It follows that the sequence

{
ghk

}∞
k=1

is uniformly bounded and equicontinuous. The Arzela–Ascoli

theorem implies that there exists a subsequence
{

gj := ghkj

}∞

j=1
that converges uniformly, as asserted

in (3.22).
Let g(4) be the fourth derivative (in the sense of distributions) of the function g and let φ ∈ C∞

0 (0, 1)
be a test function. Denoting by < ·, · >, the pairing of distributions and test functions we have

< g(4),φ >=
∫ 1

0
g(x)φ(4)(x) dx = lim

j→∞

∫ 1

0
gj(x)φ

(4)(x) dx. (3.30)

Let φ(4)j (x) = φ
(4)
hkj
(x) be the piecewise linear continuous function corresponding to (φ(4))∗ (on the grid

with mesh size hkj ). Clearly, the sequence
{
φ
(4)
j

}∞

j=1
converges uniformly to φ(4), so that

lim
j→∞

∫ 1

0
gj(x)φ

(4)(x) dx = lim
j→∞

∫ 1

0
gj(x)φ

(4)
j (x) dx. (3.31)

The integral in the right-hand side, involving only piecewise linear functions, can be expressed as (see
Ben-Artzi et al., 2013, Lemma 10.4)

∫ 1

0
gj(x)φ

(4)
j (x) dx =

(
g(kj),

(
φ
(4)
j

)∗)
hkj

− hkj

6

Nkj
−1∑

m=0

(
g
(kj)

m+1 − g
(kj)
m

) ((
φ
(4)
j

)∗

m+1
− (φ

(4)
j )

∗
m

)
, (3.32)

where (φ(4)j )
∗ ∈ l2

hkj
,0 is the grid function associated with the function φ(4)(x) (with mesh size hkj ).

Clearly,

max
0≤m≤Nkj

−1

(
φ
(4)
j

)∗

m+1
−
(
φ
(4)
j

)∗

m

∣∣∣ −−→
j→∞

0,

so that in view of (3.27) we obtain from (3.32)

lim
j→∞

∫ 1

0
gj(x)φ

(4)
j (x) dx = lim

j→∞

(
g(kj),

(
φ
(4)
j

)∗)
hkj

. (3.33)
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We now invoke the estimate (see Ben-Artzi et al., 2013, Proposition 10.8)∣∣∣δ4
xφ

∗ −
(
φ
(4)
j

)∗∣∣∣
hkj

≤ Ch
3
2
kj

,

with a constant C > 0 depending only on φ. Note that δ4
x acts in the space l2

hkj
,0.

It follows that

lim
j→∞

(
g(kj),

(
φ
(4)
j

)∗)
hkj

= lim
j→∞

(
g(kj), δ4

xφ
∗)

hkj
, (3.34)

and combining equations (3.31)–(3.34), we obtain

lim
j→∞

∫ 1

0
gj(x)φ

(4)(x) dx = lim
j→∞

(
g(kj), δ4

xφ
∗)

hkj
. (3.35)

In view of equation (3.30) and the symmetry of δ4
x the last equation yields

< g(4),φ >= lim
j→∞

(δ4
x g

(kj),φ∗)hkj
= lim

j→∞
(v(kj),φ∗)hkj

. (3.36)

We now turn to the sequence
{
v(k) ∈ l2

hk ,0, k = 1, 2, . . .
}

and its associated sequence of piecewise

linear continuous functions vhk .

Since ‖vhk ‖L2(Ω) ≤ |v(k)|hk , a subsequence of
{

vj = vhkj

}∞

j=1
converges weakly to a function v ∈ L2(Ω).

We retain the notation {kj} for this subsequence.
Denote by φj(x) = φhkj

(x), the piecewise linear continuous function corresponding to φ∗ (with mesh

size hkj ). As in (3.32), we have

(v(kj),φ∗)hkj
=
∫ 1

0
vj(x)φj(x) dx + hkj

6

Nkj
−1∑

m=0

(
v
(kj)

m+1 − v
(kj)
m

) (
(φj)

∗
m+1 − (

φj

)∗
m

)
. (3.37)

By the Cauchy–Schwarz inequality

∣∣∣∣∣∣
Nkj

−1∑
m=0

(
v
(kj)

m+1 − v
(kj)
m

)∣∣∣∣∣∣ ≤ N
1
2

kj

⎧⎨⎩
Nkj

−1∑
m=0

(
v
(kj)

m+1 − v
(kj)
m

)2

⎫⎬⎭
1
2

≤ Ch−1
kj

.

Also, with a constant C > 0 depending only on φ,

|(φj)
∗
m+1 − (φj)

∗
m| ≤ Chkj , m = 1, 2, . . .Nkj ,

so the last equation yields,

lim
j→∞

(v(kj),φ∗)hkj
= lim

j→∞

∫ 1

0
vj(x)φj(x) dx. (3.38)
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Since vj(x) converges weakly to v(x) and φj(x) converges uniformly to φ(x), we get finally from
equation (3.36)

< g(4),φ >=
∫ 1

0
v(x)φ(x) dx. (3.39)

By standard elliptic theory, we conclude that g ∈ H4(Ω), the Sobolev space of order four, and g(4) = v.
The Sobolev embedding theorem now yields

g ∈ C3(0, 1). (3.40)

Our next goal is to obtain the boundary values of g(x). This will be carried out by establishing the
limit (3.23) (taking a further subsequence, if needed).

By the definition of the inverse operator
(
δ4

x

)−1
, we know that

g(k)0 = g(k)Nk
= (g(k)x )0 = (g(k)x )Nk = 0, k = 1, 2, . . . , (3.41)

and we need to establish similar values for g.
From the uniform convergence (3.22) and the fact that gj(0) = gj(1) = 0, j = 1, 2, . . ., we obtain

g(0) = g(1) = 0. (3.42)

In order to deal with the boundary values of g′(x), we consider the sequence of grid functions
{
g(k)x

}∞
k=1

,

the Hermitian derivatives of the sequence
{
g(k)
}∞

k=1
. Let

{
p(k)h (x)

}∞

k=1
be the corresponding sequence of

continuous piecewise linear functions (Definition 3.6).
In addition to (3.13), we have also the coercivity property (Ben-Artzi et al., 2013, Propositions 10.11),

(v(k), g(k))h = (δ4
x g

(k), g(k))h ≥ h
Nk−1∑
i=0

(
(g(k)x )i+1 − (g(k)x )i

h

)2

(3.43)

(Compare (3.26)).
As in (3.28) we have, for any two indices 1 ≤ p < m ≤ Nk − 1,

m∑
i=p

|(g(k)x )i+1 − (g(k)x )i| ≤ (m − p)
1
2

{Nk−1∑
i=0

[(g(k)x )i+1 − (g(k)x )i]2

} 1
2

≤ [hk(m − p)] 1
2 |δ4

x g
(k)| 1

2
hk

|g(k)| 1
2
hk

≤ C|xm − xp| 1
2 . (3.44)

Thus, for any 0 ≤ x < y ≤ 1,

|phk (y)− phk (x)| ≤ C|y − x| 1
2 , (3.45)

where C > 0 is independent of k.
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1498 M. BEN-ARTZI ET AL.

It follows that the sequence
{
phk

}∞
k=1

is uniformly bounded and equicontinuous, so the Arzela–Ascoli

theorem yields the existence of a subsequence (we retain the notation kj used above)
{

pj := phkj

}∞

j=1
that

converges uniformly to a continuous function p(x). Remark that p(0) = p(1) = 0, because this is true
for all pj.

We shall now establish the fact that

p(x) ≡ g′(x). (3.46)

Let φ ∈ C∞
0 (0, 1) be a test function as above, and let φj(x) = φhkj

(x) (resp. φ′
j(x) = φ′

hkj
(x)) be

the piecewise linear continuous function corresponding to φ∗ (resp. (φ′)∗). Clearly, the sequence
{
φ′

j

}∞
j=1

converges uniformly to φ′.
As in (3.33), we get∫ 1

0
p(x)φ(x) dx = lim

j→∞

∫ 1

0
pj(x)φ(x) dx

= lim
j→∞

∫ 1

0
pj(x)φj(x) dx = lim

j→∞
(g
(kj)
x ,φ∗)hkj

. (3.47)

Invoking the definition (3.9) of the Hermitian derivative,

(g
(kj)
x ,φ∗)hkj

= (σ−1
x δxg

(kj),φ∗)hkj
= (δxg

(kj), σ−1
x φ∗)hkj

. (3.48)

From (3.26) we infer that

sup
j=1,2,...

{|δxg
(kj)|h

} ≤ C sup
j=1,2,...

{|δ2
x g

(kj)|h
}
< ∞. (3.49)

Also σ−1
x φ∗

hkj
−φ∗

hkj
= σ−1

x [φ∗
hkj

− σxφ
∗
hkj

], and it is known (Ben-Artzi et al., 2013, Equation (10.87)) that

the operator bound of σ−1
x is independent of h. Thus, noting (3.8), we infer from (3.48)

lim
j→∞

(g
(kj)
x ,φ∗)hkj

= lim
j→∞

(δxg
(kj),φ∗)hkj

= − lim
j→∞

(g(kj), δxφ
∗)hkj

= − lim
j→∞

∫ 1

0
gj(x)φ

′(x) dx = −
∫ 1

0
g(x)φ′(x) dx. (3.50)

With the same arguments as those leading to equation (3.33), we get

lim
j→∞

∫ 1

0
pj(x)φ(x) dx = lim

j→∞
(g
(kj)
x ,φ∗)hkj

= − lim
j→∞

∫ 1

0
gj(x)φ

′(x) dx = −
∫ 1

0
g(x)φ′(x) dx. (3.51)

Combining this result with (3.47) we conclude that g′(x) = p(x) and in particular g′(0) = g′(1) = 0. �
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In the proof of Theorem 3.7 we have seen that, in addition to the convergence (3.22), the piecewise

linear functions corresponding to the Hermitian derivatives
{
g
(kj)
x

}∞

j=1
converge uniformly to g′(x) (3.23).

Next, we show that a weaker convergence statement holds for the second-order derivatives.

Corollary 3.8 In the setting of Theorem 3.7, let

w(k) = δ̃2
x g

(k) = δ̃2
x

(
δ4

x

)−1
(v(k)).

Let whk be the piecewise linear continuous functions in Ω = [0, 1] corresponding to w(k) (Defini-
tion 3.6).

Let the sequences
{

gj := ghkj
, vj := vhkj

}∞

j=1
and limit functions g(x), v(x), be as in theorem 3.7 and

let
{

wj := whkj

}∞

j=1
.

Then

lim
j→∞

wj(x) = g′′(x) weakly in L2(Ω). (3.52)

Proof. Let φ(x) be a test function as in the proof of Theorem 3.7. Then, with the notation used in that
proof and using the definition (3.9) of the Hermitian derivative,

(w(kj),φ∗)hkj
= (̃δ2

x g
(kj),φ∗)hkj

= (g(kj), δ̃2
xφ

∗)hkj
.

With the same arguments as in the proof of the theorem (see in particular equation (3.33)) we get

lim
j→∞

∫ 1

0
wj(x)φ(x) dx = lim

j→∞
(w(kj),φ∗)hkj

= lim
j→∞

∫ 1

0
gj(x)φ

′′(x) dx =
∫ 1

0
g(x)φ′′(x) dx, (3.53)

which proves (3.52). �

3.4 Connection to the continuous case

The fact that the boundedness assumption (3.21) deals with a general sequence of grid functions allowed
us to get only the weak convergence result of Corollary 3.8. However, if we deal with a sequence of grid
functions associated with the same test function, we can obtain a better result.

We first connect the discrete biharmonic operator to the continuous one by the following claim
(Ben-Artzi et al., 2013, Theorem 10.19). In fact, we are using the (stronger) sup-norm estimate that is
included in the proof of that theorem (Ben-Artzi et al., 2013, Equation (10.167)).

Claim 3.9 Let f (x) be a smooth function in Ω = [0, 1]. Let u(x) satisfy(
d

dx

)4

u(x) = f (x),
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subject to homogeneous boundary conditions (1.2). Then

|u∗ − (δ4
x )

−1f ∗|∞ = O(h4). (3.54)

Remark 3.10 The ‘O(h4)’ here means that there exists a constant C > 0, depending only on f , such that
for all integers N > 1,

|u∗ − (δ4
x )

−1f ∗|∞ ≤ Ch4, h = 1

N
.

Observe that the grid functions in this estimate are defined on the grid of (the variable) mesh size h.

We can now introduce the following improvement to the weak convergence result of Corollary 3.8.

Proposition 3.11 Let φ ∈ C∞
0 (0, 1). Let {0 < N1 < N2 < . . .Nk < . . .} be an increasing sequence of

integers and denote hk = 1
Nk

, k = 1, 2, . . . Let

{
v(k) = φ∗

k ∈ l2
hk ,0, k = 1, 2, . . .

}
be the bounded sequence of grid functions corresponding to φ(x) (on the sequence of grids with mesh
sizes hk).

Then, in the setting (and notations) of Corollary 3.8, we have instead of (3.52)

lim
j→∞

wj(x) = g′′(x) in C(Ω), (3.55)

where g ∈ H4(Ω) ∩ H2
0 (Ω) satisfies

(
d
dx

)4
g(x) = φ(x). In fact, as is seen from the proof, the whole

sequence
{
whk

}∞
k=1

converges in the sense of (3.55).

Proof. Let g(x) ∈ H4(Ω) ∩ H2
0 (Ω) (and in fact it is a C∞ function) satisfy

g(4)(x) = φ(x).

(Note that the function φ here is clearly the limit function v in (3.25)).
The basic optimal convergence fact in Claim 3.9 yields here

|g∗
k − (δ4

x )
−1φ∗

k |∞ ≤ Ch4
k , k = 1, 2, . . . , (3.56)

where g∗
k ∈ l2

hk ,0 is the grid function corresponding to g and C > 0 is independent of k. Observe that g∗
k

is the grid function corresponding to the continuous solution, and thus not equal to the approximate grid
function g(k) = (δ4

x )
−1φ∗

k of Theorem 3.7.
By the definition (3.4) of δ2

x we get

|δ2
x g∗

k − δ2
x (δ

4
x )

−1φ∗
k |∞ ≤ Ch2

k , k = 1, 2, . . . ,
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and in view of (3.12) also

|δ2
x g∗

k − δ̃2
x(δ

4
x )

−1φ∗
k |∞ = |δ2

x g∗
k − w(k)|∞ ≤ Ch2

k , k = 1, 2, . . . ,

where w(k) is as introduced in Corollary 3.8.
Replacing δ2

x g∗
k by (g′′)∗k ∈ l2

hk ,0, the grid function corresponding to g′′, the Taylor expansion yields

|(g′′)∗k − w(k)|∞ ≤ Ch2
k , k = 1, 2, . . . . (3.57)

Let
{
(g′′)hk (x)

}∞
k=1

be the sequence of piecewise linear continuous functions inΩ = [0, 1] corresponding
to
{
(g′′)∗k

}∞
k=1

(Definition 3.6). The inequality (3.57) yields a similar one for the corresponding piecewise
linear functions

max
0≤x≤1

|(g′′)hk (x)− whk (x)| ≤ Ch2
k , k = 1, 2, . . . . (3.58)

Clearly

max
0≤x≤1

|g′′(x)− (g′′)hk (x)| ≤ Ch2
k , k = 1, 2, . . . ,

and inserting this in (3.58), we infer

max
0≤x≤1

|g′′(x)− whk (x)| ≤ Ch2
k , k = 1, 2, . . . , (3.59)

which concludes the proof of the proposition. �

4. A discrete version of the fourth-order Sturm–Liouville equation

Using the finite difference operators introduced in Section 3, and taking h = 1
N , we introduce the discrete

analogue of equation (1.1) by

[LA,B,hg
h]i = (δ4

x g
h)i + A∗,h

i (̃δ
2
x g

h)i + (A′)∗,h
i (g

h
x)i + B∗,h

i gh
i = f ∗,h

i , 1 ≤ i ≤ N − 1, (4.1)

where f ∗,h, A∗,h, (A′)∗,h, B∗,h are the grid functions corresponding, respectively, to f (x), A(x), A′(x), B(x).
We assume that f (x) is continuous in Ω = [0, 1].
The equation is supplemented with homogeneous boundary conditions

gh
0 = (gh

x)0 = gh
N = (gh

x)N = 0.

Thus, we seek solution gh ∈ l2
h,0, such that also gh

x ∈ l2
h,0.

Remark 4.1 As in Remark 3.1, we assume that all grid functions and their Hermitian derivatives are in
l2
h,0. This amounts simply to extending the grid functions (whose relevant values are at the interior points
{xi, 1 ≤ i ≤ N − 1}) as zero at the end points x0, xN .
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In what follows, we designate,⎧⎪⎨⎪⎩
gh

x , the Hermitian derivative of gh,

vh = δ4
x g

h,

wh = δ̃2
x g

h = δ̃2
x

(
δ4

x

)−1
vh.

(4.2)

The basic result here is that ‘stability’ implies ‘convergence’ as follows.

Theorem 4.2 (General convergence) Let {0 < N1 < N2 < . . .Nk < . . .} be an increasing sequence of
integers and denote hk = 1

Nk
, k = 1, 2, . . .

Let
{
g(k) = ghk ∈ l2

hk ,0, k = 1, 2, . . .
}

be a sequence of solutions to equation (4.1) (with h = hk). Let

v(k) = vhk and assume that v(k)x ∈ l2
hk ,0, k = 1, 2, . . .

Assume that

sup
{|v(k)|hk = |δ4

x g
(k)|hk , k = 1, 2, . . .

}
< ∞. (4.3)

Let ghk , vhk be the piecewise linear continuous functions in Ω = [0, 1] corresponding to g(k), v(k)

(Definition 3.6).
Then, these sequences converge to limit functions g(x), v(x), in the following sense

lim
k→∞

ghk (x) = g(x) in C(Ω), (4.4)

lim
k→∞

vhk (x) = v(x) weakly in L2(Ω). (4.5)

The limit function g(x) is in H4(Ω) ∩ H2
0 (Ω) and satisfies equation (1.1):

LA,Bg =
(

d

dx

)4

g + A(x)

(
d

dx

)2

g + A′(x)
(

d

dx

)
g + B(x)g = f .

Proof. Writing equation (4.1) in terms of the function v(k) yields

v(k)i + A
∗,hk
i [̃δ2

x (δ
4
x )

−1v(k)]i + (A′)∗,hk
i [((δ4

x )
−1v(k))x]i

+ B∗,hk
i [(δ4

x )
−1v(k)]i = f ∗,hk

i , 1 ≤ i ≤ N − 1. (4.6)

The boundedness assumption (4.3) enables us to invoke Theorem 3.7 and Corollary 3.8. Thus, there exist

subsequences
{

gj := ghkj
, vj := vhkj

}∞

j=1
and limit functions g(x), v(x), such that

⎧⎨⎩ lim
j→∞

gj(x) = g(x) in C(Ω),

lim
j→∞

vj(x) = v(x) weakly in L2(Ω).
(4.7)

The limit function g(x) is in H4(Ω) ∩ H2
0 (Ω) and

(
d
dx

)4
g = v.
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Denote by phk , whk the piecewise linear continuous functions in Ω = [0, 1] corresponding,

respectively, to g(k)x , w(k) (Definition 3.6). Let
{

pj = phkj
, wj := whkj

}∞

j=1
.

From (3.23) and (3.52) we obtain,

⎧⎨⎩ lim
j→∞

pj(x) = g′(x) in C(Ω),

lim
j→∞

wj(x) = g′′(x) weakly in L2(Ω).
(4.8)

Inserting these limits in (4.6), we conclude that the following equation is satisfied in the weak sense.

(
d

dx

)4

g + A(x)

(
d

dx

)2

g + A′(x)
(

d

dx

)
g + B(x)g = f . (4.9)

However, in view of the Assumption (2.1), there is a unique solution to this equation, so all subsequences
of
{
ghk , vhk

}∞
k=1

converge to the same limit. This concludes the proof of the theorem. �

In the proof of Theorem 5.2, we shall need a variant of Theorem 4.2, keeping all the assumptions of
the latter, but allowing the right-hand side in equation (4.1) to be a general decaying sequence of vectors.
In the following corollary, we use the notation introduced in Theorem 4.2.

Corollary 4.3 Suppose that we have a sequence of grid functions
{
ghk
}∞

k=1
, with hk ↓ 0 as k → ∞,

satisfying the equation

[LA,B,hg
hk ]i = (δ4

x g
hk )i + A

∗,hk
i (̃δ2

x g
hk )i + (A′)∗,hk

i (ghk
x )i + B

∗,hk
i g

hk
i = r

hk
i , 1 ≤ i ≤ N − 1, (4.10)

where

lim
k→∞

|rhk |hk = 0. (4.11)

Assume that (4.3) holds. Then,

lim
k→∞

ghk (x) = g(x) in C(Ω), (4.12)

where the limit function g(x) is in H4(Ω) ∩ H2
0 (Ω) and satisfies the equation

(
d

dx

)4

g + A(x)

(
d

dx

)2

g + A′(x)
(

d

dx

)
g + B(x)g = 0.

Proof. The proof follows verbatim the proof of Theorem 4.2 and, in getting equation (4.9) for the limit,
the right-hand side is zero due to the assumption (4.11). �
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5. Error estimates of the discrete approximation

In Theorem 4.2, we have established the convergence of the discrete solutions of (4.1) (extended as
piecewise linear continuous functions) to the solutions of the differential equation (1.1).

The purpose of this section is to provide a more quantitative rate of convergence.

Remark 5.1 It is fundamentally important to note that our estimates become complicated due to the
presence of boundary conditions. If instead of the (homogeneous) boundary conditions, we impose
periodicity conditions (namely, the equation is solved on a circle), then the whole issue of estimating
the error is reduced to the determination of the truncation error, which in our scheme is ‘optimal’ (of
fourth-order) as will be discussed in detail below.

We shall carry the study under the simplifying assumption that the coefficients in (1.1) are constant,
namely, there are constants a, b ∈ R so that

A(x) ≡ a, B(x) ≡ b, x ∈ Ω = [0, 1].
Equation (1.1) now takes the simplified form(

d

dx

)4

u + a

(
d

dx

)2

u + bu = f , x ∈ Ω = [0, 1]. (5.1)

In this case, equation (4.1) takes the simpler form

(δ4
x g

h)i + a(̃δ2
x g

h)i + bgh
i = f ∗,h

i , 1 ≤ i ≤ N − 1. (5.2)

The equation is supplemented with homogeneous boundary conditions

gh
0 = (gh

x)0 = gh
N = (gh

x)N = 0.

Thus, we seek solution gh ∈ l2
h,0, such that also gh

x ∈ l2
h,0.

Observe that

sup
N=1,2,...

|f ∗,h|h < ∞, h = 1

N
.

5.1 Elliptic estimates—up to the boundary

We shall first look at the general discrete elliptic equation,

δ4
x w

h + ãδ2
x w

h + bwh = rh, rh ∈ l2
h,0, (5.3)

subject to the homogeneous boundary conditions.
Note that equation (5.2) is a special case, with the right-hand side equal to f ∗.
The following theorem states that all three terms in the left-hand side of (5.3) are uniformly bounded

for sufficiently small h and, in particular, guarantees the bounded invertibility of the operator

Lh = δ4
x + ãδ2

x + bI , (5.4)

acting on grid functions v ∈ l2
h,0 such that also vx ∈ l2

h,0.
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The theorem to be proved is the precise analogue of the global regularity estimates for elliptic operators
in the continuous case (Friedman, 1969, Section I.17).

Theorem 5.2 (Fundamental discrete Sobolev estimates) Let wh be the solution to (5.3). Then, there
exists an integer N0 > 1 and a constant C > 0 (depending only on N0) such that

|δ4
x w

h|h + |̃δ2
x w

h|h + |wh|h ≤ C|rh|h, N0 < N , h = 1

N
. (5.5)

Proof. We first show the estimate for the fourth-order discrete derivative δ4
x w

h. The estimates for the
lower-order terms will easily follow from that.

Suppose to the contrary that there exist sequences hk → 0 and
{
rhk ∈ l2

hk ,0

}∞

k=1
such that |rhk |hk = 1

while

lim
k→∞

|δ4
x w

hk |hk = +∞. (5.6)

From equation (5.3), it follows that

|δ4
x w

hk |2hk
≤ [|a||̃δ2

x w
hk |hk + |b||whk |hk + |rhk |hk

]2
. (5.7)

The coercivity property (3.13) (note also (3.10)) implies that

|̃δ2
x w

hk |2hk
≤ 1

2(1 + |a|) |δ
4
x w

hk |2hk
+ 1 + |a|

2
|whk |2hk

.

Plugging this estimate into (5.7) and recalling that |rhk |hk = 1, we get

|δ4
x w

hk |2hk
≤ C[1 + |whk |2hk

], k = 1, 2, . . . , (5.8)

where C > 0 is a constant depending on a, b, but not on hk .
Let zhk = δ4

x w
hk . We normalize by setting

w̃hk = whk

|zhk |hk

, z̃hk = zhk

|zhk |hk

.

Note in particular that |̃zhk |h = 1. Equation (5.3) can be rewritten as

δ4
x w̃

hk + ãδ2
x w̃

hk + bw̃hk = rhk

|zhk |hk

, k = 1, 2, . . . . (5.9)

By the above normalization, the condition (4.3) is satisfied (with v(k) there corresponding to z̃hk here).
Let w̃hk (x), z̃hk (x) be the piecewise linear continuous functions corresponding, respectively, to w̃hk , z̃hk .
We can invoke Corollary 4.3 and obtain that the following limit exists.

lim
k→∞

w̃hk (x) = w̃(x) in C(Ω). (5.10)
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The limit function w̃(x) is in H4(Ω) ∩ H2
0 (Ω) and satisfies the equation

(
d

dx

)4

w̃ + a

(
d

dx

)2

w̃ + bw̃ = 0. (5.11)

In view of the Assumption (2.1), we must have

w̃ ≡ 0.

However, from (5.8), we get 1 ≤ C

|δ4
x whk |2hk

+ |w̃hk |2hk
. Owing to (5.6), we conclude that for some η > 0,

|w̃hk |hk > η, k = 1, 2, . . . , (5.12)

hence by (5.10) also

|w̃|L2(Ω) ≥ η,

which is a contradiction. Thus, for some N0 > 1,

|δ4
x w

h|h < C, N0 < N , h = 1

N
.

Finally, the other two estimates in (5.5) follow from the coercivity property (3.13). �

5.2 Error estimates by the general elliptic (energy) approach

The discrete (finite difference) operators introduced in Section 3, acting on grid functions associated with
smooth functions, should approximate the corresponding differential operators, as h → 0. Obviously,
the first requirement is the ‘consistency’, namely, that the ‘truncation error’ should vanish as h → 0.
However, we aim to derive ‘accuracy’ estimates, measuring the difference between the discrete and
continuous solutions, in an appropriate functional setting.

We first establish an error estimate in terms of the truncation error t(h) involved in the discretization
of the simplified equation (5.1). This is achieved as a straightforward application of the fundamental
Theorem 5.2.

The truncation error results from replacing the continuous differential operators by their discrete
analogues. We use a superscript ‘h’ to indicate the dependence on the mesh size. Thus,

δ4
x u∗,h + ãδ2

x u∗,h + bu∗,h = f ∗,h + t(h). (5.13)

Note that t(h) ∈ l2
h,0.

Let gh ∈ l2
h,0 be the solution to (5.2).

The ‘error’ grid function is defined as

eh = u∗,h − gh, (5.14)
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DISCRETE FOURTH-ORDER OPERATORS 1507

and subtracting (5.2) from (5.13), we obtain

δ4
x e

h + ãδ2
x e

h + beh = t(h). (5.15)

The error estimate is then given in the following theorem.

Theorem 5.3 (Convergence by elliptic estimates) The convergence of the discrete solution to the con-
tinuous solution is of order 3

2 , namely, e = O(h
3
2 ). The same rate applies also to the discrete derivatives

up to fourth order.
More explicitly, there exists a constant C > 0, depending only on f , and an integer N0 > 1, such that

|δ4
x e

h|h + |̃δ2
x e

h|h + |eh|h ≤ Ch
3
2 , N0 < N , h = 1

N
. (5.16)

Proof. From Theorem 5.2 we infer that there exists an integer N0 > 1 and a constant (depending only on
N0) C > 0 such that

|δ4
x e

h|h + |̃δ2
x e

h|h + |eh|h ≤ C|t(h)|h, N0 < N , h = 1

N
. (5.17)

To get a detailed estimate, we take a closer look at the truncation term t(h). Due to the presence of a
boundary (in contrast to the periodic case), the near-boundary points display a lower order of accuracy.
In fact, we have by Taylor’s expansion

(δ2
x u∗)j =

((
d

dx

)2

u

)∗

j

+ h2

12
(u(4))∗j + O(h4), 1 ≤ j ≤ N − 1.

The derivative (u(4))∗j can be replaced by (δ4
x u∗)j, with truncation error O(h) for j = 1, N − 1 and O(h4)

for 2 ≤ j ≤ N −2 (Ben-Artzi et al., 2013, Proposition 10.8). Thus, in view of equation (3.12), we obtain

∣∣∣∣∣∣
[(

d

dx

)2

u

]∗

j

− [̃δ2
x u∗]j

∣∣∣∣∣∣ ≤
{

Ch3, j = 1, N − 1,

Ch4, 2 ≤ j ≤ N − 2.
(5.18)

As for the fourth-order derivative, we have, using again (Ben-Artzi et al., 2013, Proposition 10.8) (and
the Simpson operator σx defined in (3.5)),

∣∣∣σx

[(
u(4)
)∗ − δ4

x u∗]
j

∣∣∣ ≤
{

Ch, j = 1, N − 1,

Ch4, 2 ≤ j ≤ N − 2.
(5.19)

From these two estimates, we infer,

|t(h)|2h ≤ Ch
[
h2 + Nh8

] ≤ Ch3, (5.20)

where C > 0 depends only on f .
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(Compare the proof of Proposition 10.8 in Ben-Artzi et al., 2013, Eq. (10.66), for the pure biharmonic
equation.)

Inserting this estimate in (5.17) we get (5.16).
�

Remark 5.4 Note that the theorem does not give us the ‘optimal’ h4 convergence. This is due to the
presence of boundary conditions, as mentioned in Remark 5.1 above. Recall that in the ‘pure’ case
a = b = 0, we do have the optimal error estimate as in Claim 3.9.

On the other hand, it gives us also estimates for the (discrete) derivatives of the error. In what follows,
we rely on these estimates to recover, in Theorem 5.7, an optimal (h4) error estimate for e satisfying (5.15),
but not for its derivatives.

5.3 Optimal error estimate

The ‘suboptimal’ estimates (Remark 5.4) were a consequence of the loss of accuracy near the boundary
(see (5.18) , (5.19)). The remedy to that fact is to apply the inverse operator

(
δ4

x

)−1
, which retains optimal

accuracy also near the boundary. This is what we do next.
The following proposition deals with the approximation of the second-order derivative.

Proposition 5.5 For a smooth function u(x), satisfying the homogeneous boundary conditions,

(
δ4

x

)−1

⎡⎣(( d

dx

)2

u

)∗

j

− δ̃2
x u∗

j

⎤⎦ = O(h4), 1 ≤ j ≤ N − 1. (5.21)

Proof. Using Taylor’s expansion

(δ2
x u∗)j =

((
d

dx

)2

u

)∗

j

+ h2

12
(u(4))∗j + O(h4), 1 ≤ j ≤ N − 1,

so that acting with σx yields

(σxδ
2
x u∗)j = σx

[((
d

dx

)2

u

)∗]
j

+ h2

12
σx[(u(4))∗]j + O(h4), 1 ≤ j ≤ N − 1.

In view of the equality (3.12), it follows that,

(
σx δ̃2

x u∗
)

j
= (σxδ

2
x u∗)j − h2

12
(σxδ

4
x u∗)j,

hence, for 1 ≤ j ≤ N − 1,

(
σx δ̃2

x u∗
)

j
= σx

[((
d

dx

)2

u

)∗]
j

+ h2

12

[
σx[(u(4))∗ − δ4

x u∗]]
j
+ O(h4). (5.22)
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We know that (Fishelov et al., 2012, Proposition 3; Ben-Artzi et al., 2013, Proposition 10.8),

σx[(u(4))∗ − δ4
x u∗)]j =

{
O(h4), j = 2, . . . , N − 2,

O(h), j = 1, N − 1.
(5.23)

Thus,

R(u) := σx

[
δ̃2

x u∗ −
((

d

dx

)2

u

)∗]
j

=
{

O(h4), j = 2, . . . , N − 2,

O(h3), j = 1, N − 1.
(5.24)

Now, we can write

σ−1
x

(
δ4

x

)−1

[((
d

dx

)2

u

)∗
− δ̃2

x u∗
]

= (
σxδ

4
xσx

)−1
R(u). (5.25)

Clearly, the operators σx, σ−1
x (see (3.5)) are uniformly (with respect to the mesh size h) bounded, so to

prove the estimate (5.21) it suffices to estimate the right-hand side of (5.25). At this point, we invoke
the detailed structure of the matrix (̃S)−1 associated with the operator

(
σxδ

4
xσx

)−1
(see Fishelov et al.,

2012, Theorem 6; Ben-Artzi et al., 2013, Theorem 10.19). In fact, S̃ = PSP in Ben-Artzi et al. (2013,
Equation (10.111)). The result we need is the following: the scales (in powers of h) of the elements of
(̃S)−1 are such that all the components of the vector (̃S)−1R(u), where R(u) satisfies (5.24), are O(h4).
This therefore concludes the proof. �

We now rewrite equation (5.1) as

(
d

dx

)−4

f = u + a

(
d

dx

)−4 ( d

dx

)2

u + b

(
d

dx

)−4

u, x ∈ Ω = [0, 1], (5.26)

subject to the homogeneous boundary conditions

u(0) = u(1) = u′(0) = u′(1) = 0,

and equation (5.2) as

(δ4
x )

−1f ∗,h = gh + a(δ4
x )

−1δ̃2
x g

h + b(δ4
x )

−1gh, h = 1

N
, (5.27)

subject to the boundary conditions

gh
0 = (gh

x)0 = gh
N = (gh

x)N = 0.

Now Claim 3.9 says that (for smooth functions) we can replace the continuous operator
(

d
dx

)−4

(evaluated at grid points) by the discrete operator
(
δ4

x

)−1
‘at the expense’ of an O(h4) error.
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1510 M. BEN-ARTZI ET AL.

Thus, we conclude from (5.26) that

(δ4
x )

−1f ∗,h = u∗,h + (δ4
x )

−1

[
a

(
d

dx

)2

u + bu

]∗,h

+ O(h4). (5.28)

Given Proposition 5.5, we obtain from (5.28)

(δ4
x )

−1f ∗,h

= u∗,h + a
(
δ4

x

)−1
δ̃2

x u∗,h + b
(
δ4

x

)−1
u∗,h + O(h4). (5.29)

Subtracting (5.27) from (5.29), we obtain, with a constant C > 0 independent of h,

0 = eh + a
(
δ4

x

)−1
δ̃2

x e
h + b

(
δ4

x

)−1
eh + rh, |rh|h ≤ Ch4. (5.30)

The error term rh is now majorized by h4, and our goal is to obtain a similar estimate for eh from equa-
tion (5.30). Note that equation (5.26) is not a differential equation, but rather a ‘pseudo-differential’ one.
Similarly, equation (5.27) is a ‘discrete pseudo-differential’ equation. In seeking an estimate for eh from
equation (5.30), we shall therefore need a pseudo-differential version of the discrete elliptic Theorem 5.2.
The result will depend on the ‘suboptimal’ (see Remark 5.4) estimates obtained in Theorem 5.3. Although
the estimates there were not of fourth order, they involved also the discrete derivatives of the error. We
shall incorporate these estimates (for eh and its derivatives) in the following proposition.

Proposition 5.6 (Fundamental discrete pseudo-differential estimates) Let
{
vh ∈ l2

h,0, 0 < h < h0

}
be a

family of solutions (depending on the mesh-size parameter h) to the equation

vh + a
(
δ4

x

)−1
δ̃2

x v
h + b

(
δ4

x

)−1
vh = rh. (5.31)

Assume that vh
x ∈ l2

h,0, and that, for some β > 0 (independent of h)

|δ4
x v

h|h ≤ β. (5.32)

Then, there exists an integer N0 > 1 and a constant C > 0 (depending only on N0) such that

|vh|h ≤ C|rh|h, N0 < N , h = 1

N
. (5.33)

Proof. Suppose to the contrary that there exist sequences hk → 0 and
{
rhk ∈ l2

hk ,0

}∞

k=1
such that

lim
k→∞

|rhk |hk = 0 (5.34)

while

|vhk |hk = 1, k = 1, 2, . . . . (5.35)
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Let ghk = (δ4
x )

−1vhk , so that equation (5.31) takes the form

vhk + a
(
δ4

x

)−1
δ̃2

x v
hk + bghk = rhk . (5.36)

Note that the operators δ4
x and δ̃2

x do not commute, and this is the reason we cannot invoke Theorem 5.2
at this point.

By (5.35) |δ4
x g

hk |hk = |vhk |hk = 1.

Let ψ ∈ C∞
0 (0, 1) and set ψ(4) = φ. Let

{
φ∗

hk
∈ l2

hk ,0, k = 1, 2, . . .
}

be the sequence of grid functions

corresponding to φ(x) (see (3.1)).
Taking the scalar product of the equality in (5.36) with φ∗

hk
and using the symmetry of the discrete

operators, we get

(vhk ,φ∗
hk
)hk + a

(
vhk , δ̃2

x (δ
4
x )

−1φ∗
hk

)
hk

+ b(ghk ,φ∗
hk
)hk = (rhk ,φ∗

hk
)hk . (5.37)

By assumption (5.34), the right-hand side in equation (5.37) tends to zero as k → ∞.
Denote whk = δ̃2

x (δ
4
x )

−1φ∗
hk

.
We recall Definition 3.6 and introduce the continuous, piecewise linear functions vhk (x), ghk (x), whk (x),

φhk (x) corresponding, respectively, to the grid functions vhk , ghk , whk , φ∗
hk

.
The discrete scalar products in (5.37) can be replaced by integrals of the corresponding functions,

using the algebraic equality (Ben-Artzi et al., 2013, Lemma 10.4)):

(vhk ,φ∗
hk
)hk =

∫ 1

0
vhk (x)φhk (x) dx

+ hk

6

Nk−1∑
m=0

((vhk )m+1 − (vhk )m)((φ
∗
hk
)

m+1
− (φ∗

hk
)

m
), Nk = 1

hk
, (5.38)

and similarly for the other terms (compare (3.37)).
We therefore have (compare derivation of (3.38))

lim
k→∞

(vhk ,φhk )L2(Ω) + a(vhk , whk )L2(Ω) + b(ghk ,φhk )L2(Ω) = 0. (5.39)

Since |vhk |hk = 1, k = 1, 2, . . . we can invoke the compactness Theorem 3.7 and obtain a subsequence{
gj(x) = ghkj

(x)
}∞

j=1
converging uniformly to a function g(x) ∈ H4(Ω) ∩ H2

0 (Ω). Furthermore, the

corresponding subsequence
{

vj(x) = vhkj
(x)
}∞

j=1
converges weakly to v(x) = g(4)(x). However, this con-

vergence is in fact uniform in view of the assumption (5.32) (again using Theorem 3.7). We therefore
have

v ∈ H4(Ω) ∩ H2
0 (Ω),

and the normalization assumption (5.35) entails

|v|L2(Ω) = 1. (5.40)
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We can use Proposition 3.11, with the function g there replaced by ψ here, namely, lim
k→∞

whk (x) =
ψ ′′(x) in C(Ω). Passing to the limit (as j → ∞) in equation (5.39), we obtain,

(g(4),φ)L2(Ω) + a(g(4),ψ ′′)L2(Ω) + b(g,φ)L2(Ω) = 0. (5.41)

Since ψ ∈ C∞
0 (0, 1), the same is true for its derivatives and we can integrate twice by parts in the middle

term, so that

(g(4),ψ ′′)L2(Ω) = (g′′,φ)L2(Ω),

and inserting this in (5.41)

(g(4) + ag′′ + bg,φ)L2(Ω) = 0. (5.42)

Since ψ(4) = φ, it follows that ((
d

dx

)4

(g(4) + ag′′ + bg),ψ

)
L2(Ω)

= 0.

From the fact that ψ is a general test function, we infer that(
d

dx

)4

(g(4) + ag′′ + bg) = 0 ⇒ g(4) + ag′′ + bg = p(x),

where p(x) is at most a cubic polynomial.
Recall that v(x) = g(4)(x) and v ∈ H2

0 ∩ H4, so we can differentiate the last equation four times to get

v(4) + av′′ + bv = 0. (5.43)

Assumption (2.1) implies v = 0. This is in contradiction to (5.40), thus proving (5.33). �

The optimal (fourth-order) estimate of the error is stated in the following theorem.

Theorem 5.7 (Fourth-order estimate of the error) Consider equation (5.1) and the corresponding finite-
difference scheme (5.2).

Let eh = u∗,h − gh be the error grid function (5.14).
Then, we have an optimal estimate

|eh|h = O(h4).

More explicitly, there exists a constant C > 0, depending only on f , and an integer N0 > 1, such that

|eh|h ≤ Ch4, N0 < N , h = 1

N
. (5.44)
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Proof. eh satisfies equation (5.30). From Theorem 5.3 we know that it satisfies the condition (5.32), hence
we can apply Proposition 5.6. Thus, from (5.30)

|eh|h ≤ C|rh|h ≤ Ch4. �

Remark 5.8 (small coefficients) If the coefficients a, b are small, then the optimal error estimate follows
directly from the invertibility of equation (5.30), in view of the explicit bounds (independent of h) in
Remark 3.5.

The optimal estimate of Theorem 5.7 is in contrast to the estimates in Theorem 5.3, concerning the
errors involved in comparing the derivatives of the exact solution to those of the discrete one. Invoking
the coercivity property of the discrete biharmonic operator, we can actually improve these estimates as
follows.

Corollary 5.9 The Hermitian derivative eh
x and the second-order derivative δ̃2

x e
h of the error function

are, respectively, of order O(h
27
8 ) and O(h

11
4 ). More explicitly, there exists a constant C > 0, independent

of h, such that

|eh
x |h ≤ Ch

27
8 , |̃δ2

x e
h|h ≤ Ch

11
4 , N0 < N , h = 1

N
. (5.45)

Proof. Applying the coercivity property (3.13) to eh and, using the estimates (5.44) and (5.16), we get

|̃δ2
x e

h|2h ≤ C|δ4
x e

h|h|eh|h ≤ Ch
3
2 h4,

hence, indeed, the O(h
11
4 ) for δ̃2

x e
h.

We now use the coercivity property of the second-order derivative (Ben-Artzi et al., 2013, Equation
(9.34)) and the previous estimate to get

|δxe
h|2h ≤ C|δ2

x e
h|h|eh|h ≤ Ch4+ 11

4 = Ch
27
4 ,

from which we infer that |δxe
h|h = O(h

27
8 ). However, by definition (3.9) we have eh

x = σ−1
x δxe

h, and
the operator σ−1

x is uniformly (with respect to h) bounded (Ben-Artzi et al., 2013, Equation (10.24)). It

follows that also |eh
x |h = O(h

27
8 ). �

6. Numerical results

In this section, we present numerical results of a representative set of test problems. The underlying
equation is always (1.1), subject to the homogeneous boundary conditions (1.2). The scheme used is (4.1).

Our notation here is in accord with that employed in the previous sections, in particular Section 5.
For the reader’s convenience, we recall the main features to be used here as follows.

For a given continuous function v(x), x ∈ [0, 1], we denote by v∗ (3.1) its associated grid function.
When it is expedient to indicate explicitly the mesh size h, we use the notation v∗,h, as in (5.13).

v∗,h
j = v(xj), xj = jh, 0 ≤ j ≤ N .

gh (4.1) is the discrete solution, approximating the analytic solution u(x).
eh = u∗,h − gh is the error grid function (5.14).
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The discrete grid functions corresponding to the second-order and third-order derivatives are,
respectively, δ̃2

x g
h (3.10) and δ2

x g
h
x .

The discrete norms | · |h and | · |∞ are defined, respectively, by (3.2) and (3.3).
For linear operators A : l2

h → l2
h , we use |A|h to denote the operator norm.

Remark 6.1 (Concerning errors for derivatives) In Corollary 5.9, we derived estimates for the derivatives
of the error function eh. These are the discrete derivatives, so that only values of the exact solution itself
are used. In contrast, in our numerical test cases here, we compare (discrete) derivatives of the calculated
solution to the grid functions corresponding to the exact derivatives. Thus, the error for the first derivative
is displayed here as

(
d
dx u
)∗,h − gh

x and not u∗,h
x − gh

x , the difference of the Hermitian derivatives.
Indeed, comparing with derivatives of the exact solution seems to be a stricter criterion. However,

due to the high-order accuracy of the Hermitian derivative
( (

d
dx u
)∗,h − u∗,h

x = O(h4), Ben-Artzi et al.,
2013, Lemma 10.1

)
, the two estimates are compatible.

A similar observation is valid for higher-order derivatives as well.

Remark 6.2 (Numerical efficiency) Even though the main purpose of the article is to present a ‘discrete
elliptic theory’, resulting in a high-order compact scheme, the solution of the linear system (4.1) is quite
efficient. In fact, it involves (that is, the compactness of the scheme) the inversion of a three-diagonal
matrix of size N ×N . In addition, another (simultaneous) inversion of the three-diagonal Simpson matrix
σx (see (3.9)) is required for the connection of the unknown gh to its Hermitian derivative gh

x . Thus,
the algorithm requires the inversion of two three-diagonal N × N matrices. The fact that the scheme
possesses ‘optimal accuracy’ enables us to use a very low N . This is demonstrated in the numerical
examples hereafter.

We display numerical results for three test cases.

• The first test case deals with the pure biharmonic equation. We give detailed results for the differences
of all derivatives (up to third order).

• The second test case is an example of equation (5.1) and shows fourth-order accuracy for u, in
agreement with Theorem 5.7. Fourth-order accuracy is actually obtained not only for u, but also for

the derivative u′(x), whereas Corollary 5.9 states only O(h
27
8 ) error estimate for the derivative.

• The third test case is a numerical example introduced in Fishelov et al. (2012).
The solution is highly oscillatory around the centre of the interval [0, 1].

6.1 A pure biharmonic problem

The first test case corresponds to the pure biharmonic problem{
u(4)(x) = f (x), 0 < x < 1,

u(0) = u(1) = 0, u′(0) = u′(1) = 0,
(6.1)

where

f (x) = ex

2
Re
[
1 − (1 + 4iπ)4e4iπx

]
, (6.2)

Downloaded from https://academic.oup.com/imajna/article-abstract/38/3/1485/4084722
by guest
on 17 July 2018



DISCRETE FOURTH-ORDER OPERATORS 1515

with exact solution

u(x) = ex sin2(2πx). (6.3)

The numerical scheme is (5.2), which in this case reduces to

δ4
x g

h = f ∗,h. (6.4)

In Table 1, we display the errors using both the l∞ norm (3.3) and the l2
h norm (3.2) on a number of grids

ranging from N = 8 points (very coarse grid) to N = 64 points.
The observed convergence rates are 4, 4, 4 and 2 for u(x), u′(x), u′′(x) and u(3)(x), respectively, better

than claimed in Corollary 5.9.
In Table 1, we also present, for u(x), u′(x), u′′(x), the relative errors. They have a magnitude of 2, 0.1,

0.01 and 0.005% on the grids N = 8, 16, 32 and 64, respectively. The relative error for u(3)(x) is of 20, 5,
1 and 0.5% on the same grids.

In the last row of Table 1, we display the truncation error for the fourth-order derivative

τj = δ4
x (u

∗,h − gh)j, 1 ≤ j ≤ N − 1. (6.5)

In view of (6.4), this is just the difference between the discrete operator δ4
x acting on the grid function

u∗,h (the exact solution restricted to the grid) and the grid function corresponding to the exact right-hand
side f (x).

In accordance with the analysis in Ben-Artzi et al. (2013, Section 10.4), we obtain an asymptotic
value of O(h) in the maximum norm and of O(h

3
2 ) in the l2

h norm.

6.2 A regular test case

We consider equation (5.1) with a = 1, b = 1:{ (
d
dx

)4
u + (

d
dx

)2
u + u = f , x ∈ Ω = [0, 1],

u(0) = u(1) = 0, u′(0) = u′(1) = 0.
(6.6)

Let

f (x) = ex

2

{
3 − [(

3 − 7(4π)2 + (4π)4
)

cos(4πx)− (
8π(3 − 32π 2)

)
sin(4πx)

]}
.

The exact solution u(x) is readily seen to be

u(x) = ex sin2(2πx). (6.7)

The scheme is (5.2), which in our case reduces to

(δ4
x g

h)j + (̃δ2
x g

h)j + gh
j = f ∗,h

j , 1 ≤ j ≤ N − 1. (6.8)

The functions u(x), u′(x), u′′(x),
(

d
dx

)3
u(x) and

(
d
dx

)4
u(x) are displayed in Fig. 1.
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Table 1 Error levels and convergence rates for the test case (6.1)–(6.3). For each function u(x), u′(x),
u′′(x) and

(
d
dx

)3
u(x), the max error, relative max error and l2 errors are given. The convergence rates

are 4 for u(x), 4 for u′(x), 4 for u′′(x) and 2 for
(

d
dx

)3
u(x). On the last two lines, the truncation error for

δ4
x u∗,h − f ∗,h are displayed in max norm (convergence rate 1) and l2 norm (convergence rate 3/2)

N = 8 Rate N = 16 Rate N = 32 Rate N = 64

|u∗,h − gh|∞ 5.8852(−2) 4.43 2.7340(−3) 4.09 1.6000(−4) 4.03 9.8219(−6)

|u∗,h − gh|∞/‖u‖∞ 2.76(−2) 1.28(−3) 7.51(−5) 4.61(−6)

|u∗,h − gh|h 3.1390(−2) 4.43 1.4604(−3) 4.11 8.4766(−5) 4.03 5.2006(−6)

|(u′)∗,h − gh
x |∞ 3.5830(−1) 4.15 2.0183(−2) 4.01 1.2489(−3) 4.01 7.7252(−5)

|(u′)∗,h − gh
x |∞/‖u′‖∞ 2.55(−2) 1.44(−3) 8.89(−5) 5.50(−6)

|(u′)∗,h − gh
x |h 2.3440(−1) 4.21 1.2680(−2) 4.05 7.6410(−4) 4.01 4.7323(−5)

|(u′′)∗,h − (̃δ2
x g

h)|∞ 4.8479(+0) 3.92 3.1931(−1) 4.03 1.9543(−2) 3.98 1.2345(−3)

|(u′′)∗,h − (̃δ2
x g

h)|∞/‖u′′‖∞ 2.26(−2) 1.49(−3) 9.13(−5) 5.77(−6)

|(u′′)∗,h − δ̃2
x g

h|h 2.6941(+0) 4.08 1.5902(−1) 4.00 9.9617(−3) 3.99 6.2722(−4)∣∣( ( d
dx

)3
u
)∗,h − (δ2

x g
h
x)
∣∣
∞ 4.7894(+2) 1.95 1.2391(2) 1.95 3.2148(1) 2.00 8.0205(0)

∣∣(( d
dx

)3
u
)∗,h

−(δ2
x gh

x )

∣∣
∞

‖u(3)‖∞ 1.95(−1) 5.04(−2) 1.31(−2) 3.26(−3)

∣∣( ( d
dx

)3
u
)∗,h − δ2

x g
h
x

∣∣
h

2.6552(+2) 1.99 6.6681(1) 2.00 1.6714(1) 2.00 4.1869(0)

|τ |∞ 1.2395(+3) 1.80 3.5509(+2) 1.10 1.6531(+2) 1.02 8.1351(+1)

|τ |h 4.9450(+2) 2.32 9.8824(+1) 1.61 3.2373(1) 1.52 1.1249(+1)

The values of the discrete solution gh and its subsequent discrete derivatives on the coarse grid N = 8
are represented by squares. This very coarse grid corresponds to the minimally acceptable resolution with
five points per wavelength.

In Table 2, we give the error values in the l∞ norm, the relative errors in the l∞ norm and the errors
in the l2

h norm for u, u′, u′′,
(

d
dx

)3
u and

(
d
dx

)4
u.

The excellent accuracy is clearly observed for u(x), u′(x), u′′(x) and
(

d
dx

)4
u(x).

6.3 Oscillating test case

Here, we consider the full equation (1.1):{ (
d
dx

)4
u + A(x)

(
d
dx

)2
u + A′(x)

(
d
dx

)
u + B(x)u(x) = f (x), 0 < x < 1,

u(0) = u(1) = 0, u′(0) = u′(1) = 0.
(6.9)
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A B

C

E

D

Fig. 1. Exact (solid curve) and calculated solution (black squares) using a seven-point grid (N = 8), for equation (6.6). The exact

solution is given in (6.7) and the calculated solution is solution of (6.8). The magnitude of u(x), u′(x), u′′(x),
(

d
dx

)3
u(x) and(

d
dx

)4
u(x) is accurately calculated even on the very coarse grid with parameter N = 8. (A) Exact and calculated u(x). (B) Exact

and calculated u′(x). (C) Exact and calculated u′′(x). (D) Exact and calculated
(

d
dx

)3
u(x). (E) Exact and calculated

(
d
dx

)4
u(x).

The functions A(x) and B(x) are taken as oscillatory (but regular) functions, defined by:{
A(x) = CA(1 + 0.5 sin(40πx)); A′(x) = 20CAπ cos(40πx);

B(x) = CB sin(40πx).
(6.10)
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Table 2 Error levels and convergence rates for the test case (6.6)–(6.7). For each function u(x), u′(x),
u′′(x),

(
d
dx

)3
u(x) and

(
d
dx

)4
u(x), the max error, relative max error and l2 errors are given. The convergence

rates are 4 for u(x), 4 for u′(x), 4 for u′′(x), 2 for
(

d
dx

)3
u(x) and 4 for

(
d
dx

)4
u(x). On the last two lines, the

truncation error for δ4
x u∗,h −f ∗,h are displayed in max norm (convergence rate 1) and l2 norm (convergence

rate 3/2)

N = 8 Rate N = 16 Rate N = 32 Rate N = 64

|u∗,h − gh|∞ 5.9484(−2) 4.43 2.7681(−3) 4.09 1.6199(−4) 4.03 9.9484(−6)
|u∗,h − gh|∞/‖u‖∞ 2.79(−2) 1.30(−3) 7.60(−5) 4.67(−6)
|u∗,h − gh|h 3.1726(−2) 4.42 1.4784(−3) 4.11 8.5855(−5) 4.03 5.2681(−6)

|(u′)∗,h − gh
x |∞ 3.5792(−1) 4.15 2.0155(−2) 4.02 1.2465(−3) 4.02 7.7101(−5)

|(u′)∗,h − gh
x |∞/‖u′‖∞ 2.55(−2) 1.43(−3) 8.87(−5) 5.49(−6)

|(u′)∗,h − gh
x |h 2.3329(−1) 4.21 1.2609(−2) 4.05 7.5974(−4) 4.01 4.7051(−5)

|(u′′)∗,h − δ̃2
x g

h|∞ 4.8838(+0) 3.93 3.2109(−1) 4.03 1.9667(−2) 3.99 1.2419(−3)
|(u′′)∗,h − δ̃2

x g
h|∞/‖u′′‖∞ 2.28(−2) 2.50(−3) 9.19(−5) 5.80(−6)

|(u′′)∗,h − δ̃2
x g

h|h 2.7085(+0) 4.08 1.5991(−1) 4.00 1.0020(−2) 3.99 6.3095(−4)∣∣( ( d
dx

)3
u
)∗,h − (δ2

x g
h
x)
∣∣
∞ 4.7848(+2) 1.95 1.2388(+2) 1.95 3.2146(+1) 2.00 8.0204(+0)∣∣(( d

dx

)3
u
)∗,h

−(δ2
x gh

x )

∣∣
∞

‖
(

d
dx

)3
u‖∞

1.95(−1) 5.04(−2) 1.31(−2) 3.26(−3)

∣∣( ( d
dx

)3
u
)∗,h − (δ2

x g
h
x)
∣∣
h

2.6533(+2) 1.99 6.6667(+1) 2.00 1.6713(+1) 2.00 4.1668(+0)

∣∣( ( d
dx

)4
u
)∗,h − (δ4

x g
h)
∣∣
∞ 4.8245(+0) 3.92 3.1840(−1) 4.03 1.9505(−2) 3.98 1.23332(−3)∣∣(( d

dx

)4
u
)∗,h

−(δ4
x gh)

∣∣
∞∥∥∥∥( d

dx

)4
u

∥∥∥∥∞
1.49(−4) 9.82(−6) 6.01(−7) 3.80(−8)

∣∣( ( d
dx

)4
u
)∗,h − (δ4

x g
h)
∣∣
h

2.6901(+0) 4.08 1.5916(−1) 4.00 9.9782(−3) 3.99 6.2845(−4)

|τ |∞ 1.2430(+3) 1.81 3.5504(+2) 1.10 1.6530(+2) 1.02 8.1350(+1)
|τ |h 4.9663(+2) 2.33 9.8831(+1) 1.61 3.2372(+1) 1.52 1.1249(+1)

The function u(x) is in this case (Fishelov et al., 2012):

u(x) = p(x)/(sin(q(x))+ ε) (6.11)

with

p(x) = x2(1 − x)2, q(x) = (x − 1/2)2, ε > 0. (6.12)

The parameter ε = 0.025 serves for monitoring the oscillations frequency. The source term f (x) is
obtained by applying equation (6.9) to the function (6.11).

Downloaded from https://academic.oup.com/imajna/article-abstract/38/3/1485/4084722
by guest
on 17 July 2018



DISCRETE FOURTH-ORDER OPERATORS 1519

A B

C

E

D

Fig. 2. Exact (solid curve) and calculated solution (black squares) using an 80-point coarse grid (N = 80), for equation (6.9).
The exact solution is given in (6.11)–(6.12). Despite the highly oscillatory behaviour of u(x) and its derivatives, the magnitude of

u(x), u′(x), u′′(x),
(

d
dx

)3
u(x) and

(
d
dx

)4
u(x) is very accurately captured even on the very coarse resolution of the N = 80 grid.

(A) Exact and calculated u(x). (B) Exact and calculated u′(x). (C) Exact and calculated u′′(x). (D) Exact and calculated
(

d
dx

)3
u(x).

(E) Exact and calculated
(

d
dx

)4
u(x).

The scaling constants CA and CB are chosen to ensure that the magnitudes of the various terms in
(6.9) are roughly equal.

The values are CA = 104 and CB = 108.
Taking into account the frequency of the oscillations of A(x) and B(x) in (6.10), a plausible stencil

of five points per wavelength gives a mesh size of h = 1/80. This resolution is therefore a lower bound
for a computational grid.

The numerical scheme is now the full scheme (4.1).
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Table 3 Error levels and convergence rates for the test case (6.9)–(6.10). For each function u(x), u′(x),
u′′(x),

(
d
dx

)3
u(x) and

(
d
dx

)4
u(x), the max error, relative max error and l2 errors are given. The convergence

rates are 4 for u(x), 4 for u′(x), 4 for u′′(x), 2 for
(

d
dx

)3
u(x) and 4 for

(
d
dx

)4
u(x). On the last two lines, the

truncation error for δ4
x u∗,h − f ∗,h are displayed in max norm (convergence rate 4) and l2 norm (convergence

rate 4)

N = 64 Rate N = 128 Rate N = 256 Rate N = 512

|u∗,h − gh|∞ 8.3916 (−1) 5.03 2.5677 (−2) 4.08 1.5147 (−3) 4.00 9.4041 (−5)
|u∗,h − gh|∞/‖u‖∞ 8.4228 (−1) 2.5777 (−2) 1.5204 (−3) 9.4390 (−5)
|u∗,h − gh|h 1.7924 (−1) 4.82 6.3341 (−3) 4.11 3.6767 (−4) 4.02 2.2604 (−5)

|(u′)∗,h − gh
x |∞| 3.9828 (+1) 4.25 2.0891 (+0) 4.17 1.1605 (−1) 4.04 7.0551 (−3)

|(u′)∗,h − gh
x |∞/‖u′‖∞ 2.5858 (−1) 1.3563 (−2) 7.5342 (−4) 4.5804 (−5)

|(u′)∗,h − gh
x |h 1.0114 (+1) 4.43 4.6866 (−1) 4.13 2.6838 (−2) 4.03 1.6451 (−3)

|(u′′)∗,h − δ̃2
x g

h|∞ 1.4971 (+4) 4.70 5.7429 (+2) 4.04 3.4817 (+1) 3.96 2.2349 (+0)
|(u′′)∗,h−δ̃2

x gh|∞
‖u′′‖∞ 5.9422 (−1) 2.2794 (−2) 1.3820 (−3) 8.8707 (−5)

|(u′′)∗,h − δ̃2
x g

h|h 3.9786 (+3) 4.85 1.3824 (+2) 4.09 8.1374 (+0) 4.02 5.0119 (−1)

|(u(3))∗,h − δ2
x g

h
x |∞ 1.6790 (+6) 1.60 5.5408 (+5) 1.90 1.4872 (+5) 1.99 3.7450 (+4)

|(u(3))∗,h−δ2
x gh

x |∞
‖u(3)‖∞ 4.0468 (−1) 1.3355 (−1) 3.5845 (−2) 9.0266 (−3)

|(u(3))∗,h − δ2
x g

h
x |h 5.2628 (+5) 1.80 1.5138 (+5) 1.99 3.8188 (+4) 2.00 9.57779 (+3)

|(u(4))∗,h − δ4
x g

h|∞ 1.4720 (+8) 4.65 5.8746 (+6) 4.02 3.61729 (+5) 3.95 2.3428 (+4)

|(u(4))∗,h−δ4
x gh|∞

‖u(4)‖∞ 2.0996 (−1) 8.3792 (−3) 5.2094 (−4) 3.3416 (−5)

|(u(4))∗,h − δ4
x g

h|h 3.9528 (+7) 4.86 1.3573 (+6) 4.08 8.0024 (+4) 4.02 4.9385 (+3)

|τ |∞ 3.2156 (+8) 4.86 1.10859 (+7) 4.18 6.1042 (+5) 4.01 3.7991 (+4)
|τj|h 9.6786 (+7) 5.19 2.6503 (+6) 4.28 1.3638 (+5) 4.07 8.1440 (+3)

In Fig. 2, we plot (as solid lines) the graphs of the exact solution and its derivatives, and indicate
the corresponding discrete solutions using the coarse grid (N = 80, i.e., h = 1/80). Even at this low
resolution, all the five functions u(x), u(x), u′′(x),

(
d
dx

)3
u(x) and

(
d
dx

)4
u(x) are very well approximated.

This is particularly true for the functions u′(x) and
(

d
dx

)4
u(x). In Table 3, we display the errors, convergence

rates and relative errors for the grid functions corresponding to u(x), u(x), u′′(x), u(3)(x) and u(4)(x)
compared, respectively, with their discrete analogues gh, gh

x , δ̃2
x g

h, δ2
x g

h
x , δ4

x g
h.

Observe that the truncation errors (6.5),

τj = δ4
x (u

∗,h − gh)j, 1 ≤ j ≤ N − 1, (6.13)
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Fig. 3. Convergence rate for the test case (6.9)–(6.10). A series of five grids with N = 128, 256, 512, 1024 and 2048 is used. Fourth

order is obtained for u, u′, u′′ and
(

d
dx

)4
u. Second order is obtained for

(
d
dx

)3
u.

are of order 4, better than what could be inferred from Corollary 5.9. This is typical of a periodic
behaviour due to the fact that all derivatives almost vanish near the boundary. See Remark 5.1. Figure 3
shows the convergence rates for the discrete approximations to the functions u(x), u′(x), u′′(x),

(
d
dx

)3
u(x)

and
(

d
dx

)4
u(x) in terms of decreasing h.

Fourth-order convergence is observed for u(x), u′(x), u′′(x) and
(

d
dx

)4
u(x). Second-order convergence

is obtained for
(

d
dx

)3
u(x).
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