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CONVERGENCE OF A COMPACT SCHEME FOR
THE PURE STREAMFUNCTION FORMULATION OF

THE UNSTEADY NAVIER–STOKES SYSTEM∗
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Abstract. This paper is devoted to the analysis of a new compact scheme for the Navier–
Stokes equations in pure streamfunction formulation. Numerical results using that scheme have
been reported in [M. Ben-Artzi et al., J. Comput. Phys., 205 (2005), pp. 640–664]. The scheme
discussed here combines the Stephenson scheme for the biharmonic operator and ideas from box-
scheme methodology. Consistency and convergence are proved for the full nonlinear system. Instead
of customary periodic conditions, the case of boundary conditions is addressed. It is shown that in
one dimension the truncation error for the biharmonic operator is O(h4) at interior points and O(h)
at near-boundary points. In two dimensions the truncation error is O(h2) at interior points (due to
the cross-terms) and O(h) at near-boundary points. Hence the scheme is globally of order four in
the one-dimensional periodic case and of order two in the two-dimensional periodic case, but of order
3/2 for one- and two-dimensional nonperiodic boundary conditions. We emphasize in particular that
there is no special treatment of the boundary, thus allowing robust use of the scheme. The finite
element analogy of the finite difference schemes is invoked at several stages of the proofs in order to
simplify their verifications.
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1. Introduction. In a recent paper [3] we presented a fourth-order compact
scheme for the pure streamfunction formulation of the two-dimensional (incompress-
ible) Navier–Stokes equations. We have given there a convergence analysis for the
linearized model. In this paper we prove the convergence of the nonlinear scheme,
without any further assumptions. Recall that the pure streamfunction formulation of
the (two-dimensional) Navier–Stokes equations is classical [15]. It has the advantage
of reducing the system to a single evolution equation for the scalar streamfunction
having the form

∂Δψ

∂t
+ ∇⊥ψ · ∇Δψ − νΔ2ψ = 0.(1)

The velocity field is (u, v) = ∇⊥ψ = (−∂ψ
∂y ,

∂ψ
∂x ), and the vorticity is ω = Δψ. The

price paid for reducing the system to a single equation is that one must now deal with
the biharmonic Δ2 operator. There are therefore two boundary conditions imposed
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on ψ. For the typical “no-leak no-slip” conditions (vanishing velocity on the fixed
boundary) we have

∇ψ = 0 on the boundary.(2)

Since the function ψ is only determined up to a constant, condition (2) is equivalent
to

ψ =
∂ψ

∂n
= 0,(3)

which, for simplicity, will be the case treated in this paper. Clearly (2) is equivalent
to the assumption ψ ∈ H2

0 , the closure of smooth compactly supported test functions
in the Sobolev space of functions having square-summable derivatives up to second
order.

Our scheme can be described as follows (see [3] for details). At each time step the
scheme solves a time implicit version of (1). This leads to a fourth-order biharmonic
problem of the form

Δψ − νΔ2ψ = f,(4)

subject to the boundary conditions (2).
The spatial discretization of (4) makes use of the Stephenson scheme for the

the biharmonic operator introduced in [19], [12]. See also [2]. This scheme can be
interpreted as a mixed scheme in (ψ,∇ψ), similar in form to a version of a box scheme
[14], [7]. More specifically, its design is obtained by a spline collocation procedure on
a nine-point stencil, which we recall in section 3 below.

The streamline-vorticity formulation has been extensively used for the simulation
of the two-dimensional Navier–Stokes system. As representative references we mention
[17], [8], [5], [9], [13], and the references therein. One difficult point is that “. . . the
ψ − ω system is inextricably coupled; BC’s and solution methods must contend with
this fact. . . ” [10, p. 431]. Indeed, one must cope with the vorticity boundary values,
resulting from the fact that the relation Δψ = ω is overdetermined under condition
(2). An attempt to avoid this difficulty has been made in [4], where the need to
determine these values was circumvented by switching to the biharmonic equation (at
each time step), exploiting the natural condition (2). The scheme presented in [3],
whose convergence is proved here, has avoided all explicit mention of the vorticity
by using a pure streamfunction formulation. We mention that recently in [11] a very
similar algorithm has been proposed, but it deals only with the steady-state Navier–
Stokes system.

The paper is organized as follows. First, we introduce in section 2 our notation and
the setup for our discrete spaces. Then we establish in sections 3 and 4 the necessary
analytic properties of the scheme in one and two dimensions. In particular, in analogy
with the coercivity of Δ2 in H2

0 , we prove the coercivity of the discretized biharmonic
operator in a suitable discrete analogue of H2

0 . We prove that the truncation error
of the biharmonic scheme is of order four in one dimension and of order two in two
dimensions, at all interior points and of first order at near-boundary points, giving
a 3/2 order of convergence rate in the natural discrete L2 norm. Note that in the
periodic case all points are interior. Then in section 5, we prove that the same order
of convergence extends to the spatial semidiscrete version of the full nonlinear scheme.
We emphasize the fact that we do not need any special treatment of boundary points,
and the boundary condition (2) is naturally incorporated here. As mentioned above,
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this causes a reduced (from four to one) order of local truncation error at the boundary,
and is reflected in the fact that our result yields a 3/2 convergence rate in the discrete
L2 norm. The present convergence result can be compared to the convergence results
obtained in [9], [13]. In both papers, the time evolution is performed on the vorticity,
and hence a very careful treatment of the vorticity boundary conditions is required,
either by “ghost-points” [9] or by replacing condition (2) on the normal derivative
of the streamfunction by boundary conditions on the vorticity [13] (which, as these
authors observe, amounts to an algorithm for vorticity generation on the boundary).

2. Discrete spaces and basic inequalities. Let 0 ≤ i, j ≤ N . We denote by
(ih, jh) a finite difference mesh on the square [0, 1]2, with equal mesh size h = 1/N in
the x and y directions. We denote by ui,j a grid function on [0, 1]2, with 0 ≤ i, j ≤ N .
The centered and upwind derivative operators δx, δ±x are defined as usual in each
direction by

δxui,j =
ui+1,j − ui−1,j

2h
, δ+

x ui,j =
ui+1,j − ui,j

h
, δ−x ui,j =

ui,j − ui−1,j

h
,(5)

and similarly in the y direction:

δyui,j =
ui,j+1 − ui,j−1

2h
, δ+

y ui,j =
ui,j+1 − ui,j

h
, δ−y ui,j =

ui,j − ui,j−1

h
.(6)

The centered second-order derivatives are

δ2
xui,j =

ui+1,j + ui−1,j − 2ui,j

h2
, δ2

yui,j =
ui,j+1 + ui,j−1 − 2ui,j

h2
.(7)

The five-point Laplacian is

Δhui,j = δ2
xui,j + δ2

yui,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
.(8)

The crossed derivative operators δ+
xy, δ

−
xy, δxy are

δ+
xyui,j = δ+

x δ
+
y ui,j =

ui+1,j+1 − ui+1,j − ui,j+1 + ui,j

h2
,(9)

δ−xyui,j = δ−x δ−y ui,j =
ui,j − ui,j−1 − ui−1,j + ui−1,j−1

h2
,(10)

δxyui,j = δxδyui,j =
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4h2
.(11)

It is easy to check that

δ2
xδ

2
yui,j = δ+

xyδ
−
xyui,j .(12)

The L2
h space is the space of sequences ui,j , 0 ≤ i, j ≤ N . L2

h,0 is the subspace of
ui,j with zero boundary conditions ui,j = 0 for i ∈ {0, N} or j ∈ {0, N}. The scalar
product on L2

h,0 is

(u, v)h = h2
N−1∑
i,j=1

ui,jvi,j ,(13)
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with the corresponding norm

|u|h =

{
h2

N−1∑
i,j=1

(ui,j)
2

}1/2

.(14)

Furthermore, we denote by l2h the space of sequences ui, 0 ≤ i ≤ N , and by l2h,0 the
subspace of sequences with zero boundary conditions. The scalar product and the
norm on l2h,0 are

(u, v)h = h

N−1∑
i=1

uivi, |u|2h =

{
h

N−1∑
i=1

u2
i

}1/2

.(15)

We also define the discrete infinity norm

|u|∞,h = max
i

|ui|.(16)

We skip the proof of the following lemma, which states the discrete integration
by parts in L2

h,0 for the operators δ±x , δ2
x. For each grid function u ∈ L2

h,0, we denote

the one-dimensional column vector uj = [u1,j , u2,j , . . . , uN−1,j ]
T , 1 ≤ j ≤ N − 1.

Lemma 2.1 (discrete integration by parts). For any u, v ∈ L2
h,0, we have

(i) (δ+
x u, v)h = −(u, δ−x v)h;(17)

(ii) (δ2
xu, v)h = −(δ+

x u, δ
+
x v)h = −(δ−x u, δ−x v)h.(18)

Note that in (17), (18), the finite difference operators are extended to the points
i = 0, i = N by

δ±x u0 = δ±x uN = 0, δ2
xu0 = δ2

xuN = 0.(19)

Observe that this assumption is only for notational convenience, in order to have
formally δ±x u, δ2

xu ∈ L2
h,0. Results similar to (17), (18) in the y direction are ob-

tained by substituting the subscript y to the subscript x. The following lemma is the
counterpart of the Poincaré inequality at the discrete level.

Lemma 2.2 (discrete Poincaré inequality). For all u ∈ L2
h,0 and any 1 ≤ j ≤

N − 1,

|uj |h ≤ 2|δ+
x u

j |h.(20)

Corollary 2.1. For all u ∈ L2
h,0,

|u|h ≤
√

2
[
|δ+

x u|2h + |δ+
y u|2h

]1/2
.(21)

Proof. For all u ∈ l2h,0, we have

|u|2h = h

N−1∑
i0=1

u2
i0 .(22)

For all 1 ≤ i0 ≤ N − 1,

u2
i0 =

i0−1∑
i=0

(ui+1 − ui)(ui+1 + ui) =

i0−1∑
i=0

hδ+
x ui(ui + (Su)i)

≤ 2|δ+
x u|h|u|h,
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where (Su)j = uj+1, j = 0, . . . , N − 1. Therefore,

|u|2h = h

N−1∑
i0=1

u2
i0 ≤ 2|δ+

x u|h|u|h,(23)

which gives (20).
Now for all u ∈ L2

h,0, we have

|u|2h = h

N−1∑
j0=1

|uj0 |2h ≤ 2h

N−1∑
j0=1

|δ+
x u

j0 |h|uj0 |h(24)

≤ 2

(N−1∑
j0=1

h|δ+
x u

j0 |2
)1/2(N−1∑

j0=1

h|uj0 |2
)1/2

≤ 2|δ+
x u|h|u|h.

In a similar way, we obtain in the y direction

|u|2h ≤ 2|δ+
y u|h|u|h.(25)

Summing (24) and (25), we obtain (21).

3. The Stephenson scheme in one dimension.

3.1. Design by collocation. Consider the one-dimensional biharmonic equa-
tion {

u(4)(x) = f(x), 0 < x < 1,
u(0) = u(1) = ux(0) = ux(1) = 0.

(26)

Suppose that at each node xj = jh, 0 ≤ j ≤ N , of a finite difference grid, there
are two unknowns uj and ux,j approximating, respectively, u(xj) and ux(xj), which
is referred to as a “mixed scheme.” The values uj , ux,j are solutions of the linear
system, designed by the following Galerkin collocation method. At each interior node
j, 1 ≤ j ≤ N − 1, we consider a fourth-order polynomial, with domain [xj−1, xj+1]

Q(x) = a0 + a1(x− xj) + a2(x− xj)
2 + a3(x− xj)

3 + a4(x− xj)
4.(27)

The five coefficients ak, k ∈ {0, 1, 2, 3, 4}, are defined by the five collocation conditions
on the compact stencil {xj−1, xj , xj+1} (see Figure 1):{

Q(xj−1) = uj−1, Q(xj) = uj , Q(xj+1) = uj+1,
Q′(xj−1) = ux,j−1, Q′(xj+1) = ux,j+1.

(28)

The five coefficients of the unique polynomial (27), solution of (28), are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = uj ,

a1 =
3

2
δxuj −

1

4
(ux,j+1 + ux,j−1),

a2 = δ2
xuj −

1

2
(δxux)j ,

a3 =
1

h2
(δxuj − ux,j) =

1

6
(δ2

xux)j ,

a4 =
1

2h2

[
(δxux)j − δ2

xuj

]
.

(29)
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Fig. 1. Stephenson’s scheme for u(4) = f : The finite difference operator δ4xuj at point j is

Q(4)(xj), where Q(x) ∈ P 4[xj−1, xj+1] is defined by the five collocated values for uj−1, uj , uj+1,
ux,j−1, ux,j+1.

Now, since Q′(xj) = a1 and Q′′′′(xj) = 24a4, it is natural to define the following com-
pact scheme: find [u0, u1, . . . , uN−1, uN ], [ux,0, ux,1, . . . , ux,N−1, ux,N ] ∈ l2h,0, which
solve ⎧⎨⎩

(a) (Pxux)j = δxuj , 1 ≤ j ≤ N − 1,
(b) δ4

xuj = f(xj), 1 ≤ j ≤ N − 1,
(c) u0 = u1 = ux,0 = ux,N = 0,

(30)

where the operators Px, δ4
x are, respectively, defined in (31), (34).

For u ∈ l2h,0, the operator Px is defined by

(Pxu)j =
1

6
uj−1 +

2

3
uj +

1

6
uj+1, 1 ≤ j ≤ N − 1.(31)

Px will be referred to as the Simpson operator in the x direction, because the coef-
ficients in (30) are those of the Simpson quadrature formula over [xj−1, xj+1]. Note
also that

Px = I +
h2

6
δ2
x.(32)

We also note that the connection (30)(a) is already given in the classical book by
Collatz [6, Chap. III, Eq. 2.9]. We call S the discrete space of grid functions (u, ux) ∈
l2h,0 × l2h,0,

S =
{
(u, ux) ∈ l2h,0 such that Pxux = δxu

}
.(33)

In (30), we define the Stephenson discrete biharmonic to be the compact difference
operator given on S by

δ4
xuj =

12

h2

{
(δxux)j − δ2

xuj

}
, 1 ≤ j ≤ N − 1.(34)

This is a one-dimensional version of the original scheme proposed by Stephenson in
[19]. Note that for simplicity, we will refer in what follows to a grid function in S by
u ∈ S, meaning that it is the first component of a pair (u, ux) ∈ S.

Remark. We note that the implicit scheme (30)(a) defining the grid function ux as
a function of u is exactly the one obtained in the piecewise cubic spline interpolation;
see, e.g., [18]. The classical question that occurs in spline interpolation about fixing
the two degrees of freedom ux,0, ux,N at end points is here pointless, since they are
precisely given in (30)(c).
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3.2. Consistency. On a periodic grid, the order of consistency can be obtained
by a simple Taylor expansion at point xj . Equivalently, one can compute the symbol
of the operators. Recall that in the context of finite difference operators, we have
to use the semidiscrete Fourier transform; see, e.g., [20]. In practice, if the values of
the periodic grid function (uj) are represented by eijξh, then the symbol of the linear
operator Lh is lh(ξ) defined by

Lhuj = lh(ξ)uj .(35)

Furthermore, if l(ξ) is the symbol of L, then the order of consistency is given by the
greatest value p > 0 such that (see [20])

lh(ξ) − l(ξ) = O(hp).(36)

Doing so, it is quite easy to verify that the Stephenson gradient is fourth-order accu-
rate and that the biharmonic operator (34) is as well. Indeed, we verify the following:

• The symbol of the discrete operator ux in (30)(a) is

gh(ξ) = iξ − 1

180
iξ5h4 + O(h6),(37)

so that the order of accuracy with respect to the operator ∂x, whose symbol is iξ, is

gh(ξ) − iξ = O(h4).(38)

• The symbol of the discrete operator δ4
xu in (34) is

dh(ξ) = ξ4 − 1

720
ξ8h4 + O(h6),(39)

so that the order of accuracy with respect to ∂4
x is

dh(ξ) − (iξ)4 = O(h4).(40)

On a finite grid with homogeneous boundary conditions at the two ends, we have to
perform a more careful analysis, because the symbolic computation no longer holds
in this case.

Lemma 3.1. Suppose that u(x) is a regular function on [0, 1]. Then the finite
difference gradient ux defined from the values u(xj), 0 ≤ j ≤ N , by (Pxux)j = δxu(xj)
has a truncation error (ux)j − u′(xj) of order four at each point xj. More precisely,

|(ux)j − u′(xj)| ≤ Ch4|u(5)|∞,[0,1].(41)

Proof. The Stephenson gradient ux is defined in the space l2h,0 by

(Pxux)j = (δxu)j , 1 ≤ j ≤ N − 1,(42)

where Px is the N − 1×N − 1 matrix-operator acting on l2h,0 as defined in (31), that
is,

Px =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2
3

1
6 0 . . . 0

1
6

2
3

1
6

. . .
...

. . .
. . .

0 . . . 1
6

2
3

1
6

0 . . . . . . 1
6

2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.(43)
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Consider a regular function u(x), differentiable as much as needed, and denote by u′,
u′′, . . . , u(p), its derivatives. At each point xj , 1 ≤ j ≤ N−1, the Taylor formula gives

(we note u
(m)
j = u(m)(xj))

(δxu)(xj) = u′
j +

h2

6
u

(3)
j +

h4

2 5!

[
u(5)(ξ−1,j) + u(5)(ξ+

1,j)
]
,(44)

where ξ−1,j ∈ ]xj−1, xj [ and ξ+
1,j ∈ ]xj , xj+1[. Similarly, there exist ξ−2,j ∈ ]xj−1, xj [,

ξ+
2,j ∈ ]xj , xj+1[ such that

(δ2
xu)(xj) = u′′

j +
h2

4!

[
u(4)(ξ−2,j) + u(4)(ξ+

2,j)
]
.(45)

We deduce that, applying (45) to u′,

δxu(xj) − Pxu
′(xj) = δxu(xj) −

[
u′(xj) +

h2

6
δ2
xu

′(xj)

]
= u′

j +
h2

6
u

(3)
j +

h4

2.5!

(
u(5)(ξ−1,j) + u(5)(ξ+

1,j)

)
−
[
u′
j +

h2

6

(
u

(3)
j +

h2

4!

[
u(5)(ξ−2,j) + u(5)(ξ+

2,j)
])]

= h4vj ,

where the grid function vj is defined by

vj =
1

2.5!

(
u(5)(ξ+

1,j) + u(5)(ξ−1,j)
)
− 1

6.4!

(
u(5)(ξ−2,j) + u(5)(ξ+

2,j)
)
.(46)

Therefore, the grid function u ∈ l2h,0 verifies the identity

δxu(xj) − Pxu
′(xj) = h4vj .(47)

On the other hand, ux ∈ l2h,0 is defined by

δxu− Pxux = 0.(48)

Subtracting (48) from (47), we obtain the identity in l2h,0,

u′ − ux = h4P−1
x v,(49)

where u′ = [u′(x1), . . . , u
′(xN−1)]. Writing Px = I+ h2

6 δ2
x, the inverse of Px is obtained

by the Neumann series

P−1
x =

∞∑
k=0

(
− h2

6
δ2
x

)k

,(50)

which gives the estimate of |P−1
x |∞,h,

|P−1
x |∞,h ≤

∞∑
k=0

h2k

6k
|δ2

x|k∞,h ≤
∞∑
k=0

(
2

3

)k

= 3.(51)
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Observe that the matrix-operator δ2
x above is defined at the near-boundary points

j = 1, j = N − 1 by

δ2
xu1 =

u2 − 2u1

h2
, δ2

xuN−1 =
uN−2 − 2uN−1

h2
.(52)

We deduce now from (49) and (51) that

|u′ − ux|∞,h ≤ h4|P−1
x |∞,h|v|∞,h ≤ Ch4|u(5)|∞,[0,1].(53)

Lemma 3.2. Suppose that u(x) is a regular function on [0, 1]. Then the Stephen-
son biharmonic operator δ4

x defined by (34) has a truncation error δ4
xu− u(4) of order

3/2 in the l2h,0 norm,

|δ4
xu− u(4)|h ≤ Ch3/2

(
|u(6)|∞,[0,1] + |u(5)|∞,[0,1]

)
,(54)

where the notation u(4) stands for

u(4) = [u(4)(x1), . . . , u
(4)(xN−1)] ∈ l2h,0.(55)

Remark. The difference in accuracy between the periodic case and the nonperiodic
case is only due to the near-boundary points 1 and N − 1.

Proof. Recall that the finite difference biharmonic operator δ4
x is the three-points

compact operator, expressed in terms of u and ux by

δ4
xuj =

12

h2

[
δxux − δ2

xu
]
.(56)

Here, we handle the finite difference operators acting on one-dimensional grid func-
tions u = [u1, . . . , uN−1], as N − 1 ×N − 1 matrices; see [3]. We can rewrite (30)(a)
as

Pxux =
1

2h
Ku = δxu ∈ l2h,0,(57)

where the antisymmetric matrix K = {Ki,m}1≤i,m≤N−1 is given by

Ki,m =

{
sgn(m− i), |m− i| = 1,
0, |m− i| �= 1,

(58)

and the operator δx is expressed as

δx =
1

2h
K.(59)

In matrix form, (57) is simply written as

Pxux = δxu or ux = P−1
x δxu.(60)

Using (34), the operator δ4
x can be rewritten in matrix form

δ4
x =

12

h2

[
δxP

−1
x δx − δ2

x

]
=

12

h2

[
P−1
x (δx)2 +

[
δxP

−1
x − P−1

x δx
]
δx − δ2

xu
]
.
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Applying the operator Px, we obtain, for all u ∈ l2h,0,

Px

[
δ4
xu− u(4)

]
=

12

h2

[
(δx)2u + [Pxδx − δxPx]P−1

x δxu− Pxδ
2
xu
]
− Pxu

(4) := v.(61)

Note that in (60)–(61), we refer to Px as the symmetric positive definite matrix (see
(32)–(43)),

(Px)i,m =

⎧⎪⎨⎪⎩
2
3 , m = i,
1
6 , |m− i| = 1,

0, |m− i| ≥ 2.

(62)

Clearly the commutator [Px,K] = PxK −KPx is

(PxK −KPx)i,j =

⎧⎨⎩
− 1

3 , i = j = 1,
1
3 , i = j = N − 1,
0 otherwise,

(63)

so that the commutator [Px, δx] = 1
2h [Px,K] is

Pxδx − δxPx =

⎧⎨⎩
− 1

6h , i = j = 1,
1
6h , i = j = N − 1,
0 otherwise.

(64)

This means that the operators Px and δx do not commute and that the nonzero
commutator values are restricted to points j = 1 and j = N − 1.

Let us first evaluate (61) at points j = 2, 3, . . . , N − 2.

12

h2

[
(δx)2uj − Pxδ

2
xuj

]
− Pxu

(4)
j =

12

h2

{
(δx)2uj(65)

−
[
2

3
δ2
xuj +

1

6
δ2
xuj+1 +

1

6
δ2
xuj−1

]}
−
[
2

3
u

(4)
j +

1

6
u

(4)
j−1 +

1

6
u

(4)
j+1

]
.

The first term on the right-hand side of (65) is

(δx)2uj = u′′
j +

h2

3
u

(4)
j +

32

6!
h4u

(6)
j +

128

8!
h6u

(8)
j + Ch8u(10)(ξj).(66)

Using (45) for evaluating δ2
xum at m = j − 1, j, j + 1, we find that Pxδ

2
xuj in (65) is

2

3
δ2
xuj +

1

6
δ2
xuj+1 +

1

6
δ2
xuj−1 = u′′

j +
1

4
h2u

(4)
j +

22

6!
h4u

(6)
j +

86

8!
h6u

(8)
j + h8wj ,(67)

where |wj | ≤ C|u(10)|∞,[0,1]. In addition, we have that the third line of the right-hand
side in (65) is [

2

3
u

(4)
j +

1

6
u

(4)
j−1 +

1

6
u

(4)
j+1

]
= u

(4)
j +

1

6
h2u

(6)
j + Ch4zj ,(68)
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where |zj | ≤ C|u(8)|∞,[0,1]. Therefore, we have, for 2 ≤ j ≤ N − 2,∣∣∣∣12

h2

[
(δx)2u− Pxδ

2
xuj

]
− Pxu

(4)
j

∣∣∣∣ ≤ Ch4|u(8)|∞,[0,1],(69)

and this order is optimal. Consider now the truncation term for j = 1 (the computa-
tion is the same for j = N − 1). We have

(δ4
xu)1 =

12

h2

[
(δxux)1 − δ2

xu1

]
.(70)

Since |ux,j − u′
j | ≤ Ch4|u(5)|∞,[0,1], we have

(δxux)1 =
ux,2

2h
=

ux,2 − ux,0

2h
(71)

=
u′(x2) − u′(x0)

2h
+ ṽ

= u′′(x1) +
h2

6
u(4)(x1) + ṽ,

where ṽ stands for a generic term such that |ṽ| ≤ Ch3|u(5)|∞,[0,1]. In addition, we
have

(δ2
xu)1 = u′′(x1) +

h2

12
u(4)(x1) + w,(72)

where

|w| ≤ Ch4|u(6)|∞,[0,1].(73)

Therefore (71), (73) show that the truncation error at the near-boundary point x1 is

12

h2

[
(δxux)1 − (δ2

xu)1
]
− u(4)(x1) = t1, with |t1| ≤ Ch|u(5)|∞,[0,1].(74)

We deduce from (61), (69), (74) that the truncation error e = δ4
xu−u(4) is the solution

of the linear system

P xe = v, v ∈ l2h,0, e ∈ l2h,0,(75)

where P x is the matrix

P x =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
1
6

2
3

1
6 . . . 0

...
...

... . . .
...

0 . . . 1
6

2
3

1
6

0 . . . 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,(76)

and v is such that

|v1|, |vN−1| ≤ Ch|u(5)|∞,[0,1]; |vj | ≤ Ch4|u(8)|∞,[0,1], j = 2, . . . , N − 2.(77)

By Gerschgorin’s theorem, P
−1

x is a bounded matrix independent of h; therefore

e = P
−1

x v is such that

|e|h ≤ C|v|h,(78)
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where

|v|2h ≤ Ch

(
2h2 +

N−2∑
j=2

h8

)
≤ Ch3.(79)

Taking the square root in (79), we obtain (54) (using the weaker estimate |vj | ≤
Ch2|u(6)|∞,[0,1] at interior points).

Remark. Note that the error at the interior points is fourth order and that the
h3/2 error is fully due to the loss of accuracy at the two boundary points j = 1,
j = N − 1.

3.3. Interpretation with finite elements. In this section, we establish the fi-
nite element counterpart of scheme (30). This allows us to obtain in a simple way the
stability of the Stephenson finite difference operator δ4

x. To each grid function v ∈ l2h,0,
we match the function vh(x) defined by vh(xj) = vj , in the finite element space
P 1
c,0, the space of continuous functions, piecewise linear in each interval [xj , xj+1],

j = 0, . . . , N − 1, and such that vh(x0) = vh(xN ) = 0. Clearly, it is an isomorphism
between l2h,0 and P 1

c,0. In addition, starting with v ∈ l2h,0, we introduce the two piece-
wise constant functions v̄h and vh,x, defined in each interval Kj+1/2 = ]xj , xj+1[ by

v̄h,j+1/2 =
vj + vj+1

2
, vh,x,j+1/2 =

vj+1 − vj
h

.(80)

An important aspect of using P 1
c,0 in the study of finite difference schemes is that

it allows one to streamline analytic operations like integration by parts or averaged
quantities over intervals Kj+1/2 = [xj , xj+1]. The L2[0, 1] scalar product is denoted by

(ϕ,ψ) =

∫ 1

0

ϕ(x)ψ(x)dx.(81)

Writing the representation of uh(x) in Kj+1/2 as (xj+1/2 = 1
2 (xj+1 + xj)),

uh(x)|Kj+1/2
= ūh,j+1/2 + uh,x,j+1/2(x− xj+1/2),(82)

we can compare different scalar products for (., .)h and in L2(0, 1) as follows.
Lemma 3.3. For any u, v ∈ l2h,0, let uh(x), vh(x) ∈ P 1

c,0 be the corresponding
finite element functions. Then we have

(i) (u, v)h = (uh, vh) +
h2

6
(uh,x, vh,x) = (ūh, v̄h) +

h2

4
(uh,x, vh,x);(83)

(ii) (δxu, v)h = (uh,x, vh);(84)

(iii) (δ2
xu, v)h = −(δ+

x u, δ
+
x v)h = −(δ−x u, δ−x v)h = −(uh,x, vh,x) (see (18)).(85)

Proof. The proof is an elementary computation resulting from the piecewise
linearity of uh(x) in each Kj+1/2 = [xj , xj+1] given by (82). In fact, it clearly suffices
to check that (83), (84), (85) hold for uh = ϕk, vh = ϕm, where (ϕk) is a basis of
P 1
c,0.

Let (u, ux) ∈ S. Since ux ∈ l2h,0, it has a matching function ph ∈ P 1
c,0. On the

other hand, we have the piecewise constant function uh,x. The connection between
these two functions is given by the following lemma.
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Lemma 3.4. (i) Let u ∈ S with grid gradient ux ∈ l2h,0. Then the finite element

function ph(x) ∈ P 1
c,0 corresponding to ux is the orthogonal projection of the piecewise

constant function uh,x onto P 1
c,0. In other words, it is the unique solution ph ∈ P 1

c,0

of

(ph, qh) = (uh,x, qh) ∀qh ∈ P 1
c,0.(86)

In addition, we have, with qh ∈ P 1
c,0 corresponding to q ∈ l2h,0,

(Pxux, q)h = (ph, qh) = (ux, Pxq)h.(87)

(ii) Let u, v ∈ S and let (uh, ph), (vh, qh) ∈ P 1
c,0 × P 1

c,0 be the matching finite
element functions. Then the bilinear form 〈.; .〉h defined on S × S by

〈u, v〉h = (δ4
xu, v)h =

12

h2

(
uh,x − ph, vh,x − qh

)
= (u, δ4

xv)h(88)

is a scalar product on S × S.
(iii) Translated in terms of finite difference operators, (88) is

(89)

〈u, v〉h =

N−1∑
j=0

h
ux,j+1 − ux,j

h

vx,j+1 − vx,j
h

+
12

h2

N−1∑
j=0

h

[
uj+1 − uj

h
− 1

2
(ux,j + ux,j+1)

][
vj+1 − vj

h
− 1

2
(vx,j + vx,j+1)

]
.

Proof. (i) The discrete gradient ux ∈ l2h,0 is defined by[
Pxux

]
j

= δxuj , 1 ≤ j ≤ N − 1,(90)

where Px is the Simpson operator given in (31). Equation (90) is equivalent to

(ux, q)h +
1

6
h2(δ2

xux, q)h = (δxu, q)h ∀q ∈ l2h,0.(91)

Taking any q ∈ l2h,0 and the ph corresponding to ux ∈ l2h,0, and using (83), (84), and
(85), we can rewrite (91) as

(uh,x, qh) = (δxu, q)h = (ux, q)h +
h2

6
(δ2

xux, q)h

= (ph, qh) +
h2

6
(ph,x, qh,x) − h2

6
(ph,x, qh,x)

= (ph, qh),

which gives (86). The symmetry of Px is clear from the definition; see (31), (62). In
addition, we have

(Pxux, q)h = (δxu, q)h = (uh,x, qh) = (ph, qh),(92)

which proves (87).
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(ii) The Stephenson biharmonic operator is (see (34))

δ4
xuj =

12

h2

{
(δxux)j − δ2

xuj

}
.(93)

We have

(δ4
xu, v)h =

12

h2

[
(ph,x, vh) + (uh,x, vh,x)

]
=

12

h2

(
vh,x, uh,x − ph

)
.(94)

Subtracting (qh, uh,x − ph) = 0 from (94), we deduce

〈u, v〉h = (δ4
xu, v)h =

12

h2

(
uh,x − ph, vh,x − qh

)
.(95)

We verify now that 〈u, u〉1/2h is a norm on S. 〈u, u〉h = 0 is equivalent to |uh,x−ph| = 0.
Therefore the piecewise affine function ph ∈ P 1

c,0 is actually piecewise constant. Since
it vanishes at x = 0 and is continuous at any xj , we have ph ≡ 0, which is uh,x ≡ 0.
Therefore uh is piecewise constant as well. Since uh(0) = 0 we have also uh ≡ 0.

Finally, we prove (89). Recall that for any qh ∈ P 1
c,0, the difference qh − qh is

orthogonal to piecewise constant functions. Thus, replacing in (95) ph, qh by ph, qh,
respectively, and noting (see (83)) that

(ph, qh) = (ph, qh) +
h2

12
(ph,x, qh,x),(96)

we get

〈u, v〉h = (ph,x, qh,x) +
12

h2
(uh,x − p̄h, vh,x − q̄h),(97)

which gives (89) using (80).
Remarks. The result of Lemma 3.4(ii) gives the uniqueness of the discrete solution

of scheme (30).
The following lemma states the discrete counterpart of the equivalence of
(i) |ux| and ‖u‖H1 for u ∈ H1

0 ;
(ii) |uxx| and ‖u‖H2 for u ∈ H2

0 .
Lemma 3.5. There exist constants C, C ′, C ′′ independent of h such that for any

grid function u ∈ S,

(i) |uh| ≤ |u|h ≤ C|δ+
x u|h = C|uh,x| (Poincaré inequality);(98)

(ii) |δ+
x u|h ≤ C ′〈u, u〉1/2h ;(99)

(iii) |δ+
x ux|h ≤ C ′′〈u, u〉1/2h .(100)

Proof. Inequality (i) is simply the Poincaré inequality (21) in the one-dimensional
setting, reformulated with the finite element notation. Inequality (iii) follows directly
from (97) since δ+

x ux = ph,x as piecewise constant functions.
For (ii), we use the notation p for the grid function ux and, as before, denote by

uh, ph the P 1
c,0 functions associated with u, p, respectively. In view of (86), we have

|δ+
x u|2h = |uh,x|2 = (uh,x − ph, uh,x − ph) + (ph, ph)(101)

=
h2

12
〈u, u〉h + |ph|2,
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where in the second equality we have used (95). Now, applying the Poincaré inequality
(98) to p instead of u, we get

|ph|2 ≤ C2|δ+
x p|2h ≤ C2(C ′′)2〈u, u〉h,(102)

where in the last inequality we have used (100). Inserting this inequality in (101), we
obtain (99) with C ′ = CC ′′.

Remarks. 1. We know that |uxx|0,[0,1] is a norm on the Sobolev space H2
0 . We

may wonder if, at the discrete level, |δ+
x ux|h = |ph,x|0,[0,1] is a norm on S. Actually it

is a norm only if the number of points N is an even integer. We have that ph,x = 0
implies ph = 0. But the relation Pxux = δxu implies only δxu = 0, which gives u = 0
only if N is an even integer.

2. For other finite difference schemes for the biharmonic problem and their link
with the finite element method, we refer to the book by Li, Chen, and Wu [16].

3.4. Convergence of the Stephenson scheme. We derive now the following
convergence result

Proposition 3.1. Let U be the P 1
c,0 Lagrange interpolate of the exact solution

u(x) of (26) and ũ the discrete solution of (30). Then the following error estimate

holds in the mesh dependent norm 〈ṽ, ṽ〉1/2h ,

〈U − ũ, U − ũ〉1/2h ≤ Ch3/2
(
|f ′′|∞,[0,1] + |f ′|∞,[0,1]

)
,(103)

where the constant C is independent of h.

Proof. We estimate as usual the error by the sum of the approximation error and

of the consistency error. Here, we work with the discrete norm 〈., .〉1/2h , so that there
is no approximation error. We have

〈U − ũ, U − ũ〉1/2h = sup
ṽ∈S,ṽ 	=0

〈U − ũ, ṽ〉h
〈ṽ, ṽ〉1/2h

.(104)

For the numerator on the right-hand side of (104),

〈U − ũ, ṽ〉h = (δ4
x(U − ũ), ṽ)h = h

N−1∑
j=1

(δ4
xUj − fj)ṽj .(105)

Therefore, in view of Lemma 3.2,

|〈U − ũ, ṽ〉h| ≤ |δ4
xU − f |h|ṽ|h(106)

≤ Ch3/2|ṽ|h
(
|f ′′|∞,[0,1] + |f ′|∞,[0,1]

)
.

Using the fact that |ṽ|h ≤ C〈ṽ, ṽ〉1/2h (see (99), (100)), we find that

|〈U − ũ, ṽ〉h| ≤ Ch3/2〈ṽ, ṽ〉1/2h

(
|f ′′|∞,[0,1] + |f ′|∞,[0,1]

)
,(107)

which gives the result.
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4. The Stephenson scheme in two dimensions.

4.1. The compact biharmonic scheme of Stephenson. We consider in this
section the biharmonic problem in a square Ω = ]0, 1[2:{

Δ2u(x, y) = ∂4
xu(x, y) + ∂4

yu(x, y) + 2∂2
xyu(x, y) = f(x, y), (x, y) ∈ Ω,

u = ∂u
∂n = 0 on ∂Ω.

(108)

For any f ∈ L2(Ω), problem (108) has a unique solution u ∈ H2
0 (Ω). Its discrete

version, using the Stephenson scheme, is to find a solution ui,j ∈ L2
h,0 to the equation{

Δ2
hui,j = f(xi, yj), 1 ≤ i, j ≤ N − 1,

ui,j = ux,i,j = uy,i,j = 0 for {i, j} ∈ {0, N}.(109)

The Stephenson biharmonic operator Δ2
h is defined by

Δ2
hui,j = δ4

xui,j + δ4
yui,j + 2δ2

xδ
2
yui,j .(110)

For any u ∈ L2
h,0, the grid gradient (ux, uy) ∈ (L2

h,0)
2 is defined by{

Pxux,i,j = δxui,j , 1 ≤ i, j ≤ N − 1,
Pyuy,i,j = δyui,j , 1 ≤ i, j ≤ N − 1,

(111)

where Px, Py are the Simpson operators (see (31)),⎧⎪⎨⎪⎩
Px = Id +

1

6
h2δ2

x,

Py = Id +
1

6
h2δ2

y.
(112)

The one-dimensional operators δ4
xui,j , δ

4
yui,j are given as functions of u, ux, uy by

δ4
xui,j =

12

h2

[
(δxux)i,j − (δ2

xu)i,j
]
, δ4

yui,j =
12

h2

[
(δyuy)i,j − (δ2

yu)i,j
]
.(113)

For the convenience of the reader, we recall briefly how the operator Δ2
h has been

originally derived by Stephenson [19]. At each point (xi, yj) of the grid, 0 ≤ i, j ≤ N ,
are attached the three unknowns ui,j , ux,i,j , uy,i,j as well as a fourth-order polynomial
Pi,j , simply denoted P (x, y),

P (x, y) =
∑

xlym∈V

al,mxlym,(114)

where the monomial set V is

V = {1, x, y, x2, y2, xy, x3, x2y, xy2, y3, x4, x2y2, y4}, #V = 13.(115)

The 13 coefficients al,m are uniquely determined by the following collocation condi-
tions (see Figure 2):⎧⎪⎪⎨⎪⎪⎩

• 9 collocations for ul,m at points (xl, ym) for l ∈ {i− 1, i, i + 1},
m ∈ {j − 1, j, j + 1}.

• 2 collocations for ux,l,m at points (xi−1,j , yi,j), (xi+1,j , yi,j).
• 2 collocations for uy,l,m at points (xi,j , yi,j+1), (xi,j , yi,j−1).

(116)
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The collocation system gives a 13 × 13 linear system which can be solved explicitly.
The result is given by [19].

Lemma 4.1. Denoting by �, �, and �′ the finite difference operators⎧⎨⎩
�ui,j = ui−1,j + ui+1,j + ui,j+1 + ui,j−1,
�ui,j = ui+1,j+1 + ui+1,j−1 + ui−1,j−1 + ui−1,j+1,
�′ui,j = ux,i+1,j − ux,i−1,j + uy,i,j+1 − uy,i,j−1,

(117)

the 13 coefficients al,m of P (x, y) at point (xi, yj) uniquely determined by the 13
conditions (116) are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0,0 = ui,j ,

a1,0 =
3

2
δxui,j −

1

4
(ux,i+1,j + ux,i−1,j), a0,1 =

3

2
δyui,j −

1

4
(uy,i,j+1 + uy,i,j−1),

a2,0 = δ2
xui,j −

1

2
(δxux)i,j , a0,2 = δ2

yui,j −
1

2
(δyuy)i,j , a1,1 = δxyui,j ,

a3,0 =
1

6
(δ2

xux)i,j , a0,3 =
1

6
(δ2

yuy)i,j ,

a2,1 =
1

2
(δ2

xδyu)i,j , a1,2 =
1

2
(δ2

yδxu)i,j ,

a4,0 =
1

2h2

[
(δxux)i,j − δ2

xui,j

]
, a0,4 =

1

2h2

[
(δyuy)i,j − δ2

yui,j

]
,

a2,2 =
1

4
(δ2

xδ
2
yu)i,j .

(118)

The gradient of P (x, y) at (xi, yj) is (∂xP (xi, yj), ∂yP (xi, yj)) = (a1,0, a0,1).
Defining ux,i,j = Px(xi, yj), uy,i,j = Py(xi, yj), we obtain (111). Furthermore the
operators δ4

x, δ4
y are defined by{

δ4
xui,j = ∂4

xP (xi, yj) = 24a4,0,

δ4
yui,j = ∂4

yP (xi, yj) = 24a0,4,
(119)

which is (113). Finally the operator Δ2
hui,j is defined by Δ2

hui,j = Δ2P (xi, yj) =
24a4,0 +8a2,2 +24a0,4, which is (110). Furthermore, by expanding the finite difference
operators, we find the following expression for the biharmonic operator Δ2

h:

Δ2
hui,j =

1

h4

{
56ui,j − 16

[
ui+1,j + ui,j+1 + ui−1,j + ui,j−1

]
+ 2

[
ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1

]
+ 6h

[
(ux)i+1,j − (ux)i−1,j + (uy)i,j+1 − (uy)i,j−1

]}
.

For alternative schemes for (108), see [19, 1].

4.2. Consistency and convergence for the elliptic operator. The order of
consistency is deduced from the consistency in the one-dimensional case.
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Fig. 2. Stephenson’s scheme for Δ2u = f : The finite difference operator Δ2
hui,j at point (i, j)

is Δ2
hui,j = Δ2Q(xi, yj), where Q(x, y) ∈ P 3.5

(
[xi−1, xi+1] × [yj−1, yj+1]

)
is defined by the 13

collocated values on the picture.

Lemma 4.2. Let u be continuously differentiable up to sixth order in Ω and
suppose that it vanishes, along with its gradient on ∂Ω. Then the truncation grid
function e = Δ2

hu(xi, yj) − Δ2u(xi, yj) ∈ L2
h,0 satisfies

|e|h ≤ Ch3/2‖u‖6,∞,(120)

where ‖u‖6,∞ is

|u|6,∞ =
∑

0≤α1+α2≤6

|∂α1
x ∂α2

y u|∞,[0,1]2 .

Proof. We have

|Δ2
hu− Δ2u|h ≤ |δ4

xu− ∂4
xu|h + |δ4

yu− ∂4
yu|h + 2|δ2

xδ
2
yu− ∂2

x∂
2
yu|h.(121)

Using the consistency result (54) row by row and column by column we obtain

|δ4
xu− ∂4

xu|h ≤ Ch3/2
(
|∂6

xu|∞,[0,1]2 + |∂5
xu|∞,[0,1]2

)
,(122)

|δ4
yu− ∂4

yu|h ≤ Ch3/2
(
|∂6

yu|∞,[0,1]2 + |∂5
yu|∞,[0,1]2

)
.(123)
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The consistency for the mixed term is deduced from (45):

|δ2
xδ

2
yu− ∂2

x∂
2
yu|h ≤ Ch2

( ∑
α1+α2=6

|∂α1
x ∂α2

y u|∞,[0,1]2

)
.(124)

In order to carry out convergence analysis, we need to develop discrete ana-
logues of the basic differential estimates, as in the one-dimensional case of section 3.
We do this in the framework of a suitable “finite element” space, namely, the Q1

c

space of continuous functions in Ω satisfying the following condition: In every cell
Ki+1/2,j+1/2 = [xi, xi+1] × [yj , yj+1], they are linear (separately) in x, y. Otherwise
stated, it is (in every cell) in Span(1, x, y, xy). The subspace of interest to us is Q1

c,0,
consisting of functions (in Q1

c) vanishing on ∂Ω. It is clear how to match an element
uh ∈ Q1

c,0 to a given u ∈ L2
h,0: we simply take the function a0 + a1x + a2y + a3xy,

which interpolates the four values ui,j , ui+1,j , ui,j+1, ui+1,j+1. Since uh(x, y) is linear
in x (resp., in y) for every fixed value of y (resp., of x), we can in particular treat the
function u(xi, yj), for every fixed j, as a function of xi in l2h,0 and then associate with

it the functions ux in l2h,0 (see (30)) and uh, ph, their associated P 1
c,0 functions.

Note that these functions are determined for each fixed value of yj . In the same
way, we define the piecewise constant in [xj , xj+1] function uh,x(., yj). We define also
the analogous functions in the y direction. Finally, uh,xy is the piecewise (in cells)
constant function given by the coefficient a3 above. We now equip Q1

c,0 with two
scalar products. Each of them corresponds to an L2(0, 1) product in one direction
(i.e., the function is regarded as an element of P 1

c,0 in that direction), followed by an
l2h,0 product in the other direction. They are given by

⎧⎨⎩ (uh, vh)x = h
∑N−1

j=1 (uh(., yj), vh(., yj))L2(0,1),

(uh, vh)y = h
∑N−1

i=1 (uh(xi, .), vh(xi, .))L2(0,1).
(125)

The link between the grid scalar product (u, v)h on L2
h,0 and the two scalar products

(uh, vh)x, (uh, vh)y is given by (see (83))

(u, v)h = (uh, vh)x +
h2

6
(uh,x, vh,x)x,(126)

(u, v)h = (uh, vh)y +
h2

6
(uh,y, vh,y)

y.(127)

As in the one-dimensional case (see (33)), we introduce here a space S consisting of
triples (u, ux, uy) ∈ L2

h,0, where ux, uy are related to u by (111). For brevity, we shall
sometimes refer to the triple simply by u ∈ S. As in the one-dimensional case (see
Lemma 3.4), we have the following result.

Lemma 4.3. Let u ∈ S. Let ph, qh ∈ Q1
c,0 correspond to ux, uy, respectively.

Then they are the projections of uh,x, uh,y in the following sense:

(ph, vh)x = (uh,x, vh)x, (qh, vh)y = (uh,y, vh)y ∀vh ∈ Q1
c,0.(128)
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Proof. For each 1 ≤ j0 ≤ N − 1, it results from (86) that

(ph, vh)x = h

N−1∑
j=1

(ph(., yj), vh(., yj))L2(0,1)

= h

N−1∑
j=1

(uh,x(., yj), vh(., yj))L2(0,1)

= (uh,x, vh)x.

Therefore, the function ph ∈ Q1
c,0 matching ux ∈ L2

h,0 is the unique solution of

(ph, vh)x = (uh,x, vh)x ∀vh ∈ Q1
c,0.(129)

The proof is the same for uh,y.
We summarize in the following proposition the basic properties of the discrete

operator Δ2
h. As in the one-dimensional case, that operator gives rise to a positive

definite bilinear form.
Proposition 4.1. (i) Let (u, ux, uy), (v, vx, vy)∈S, and let (uh, ph, qh), (vh, rh, zh)

be their matches, respectively, in Q1
c,0. Then the discrete biharmonic operator Δ2

h de-
fined by

Δ2
hui,j = δ4

xui,j + δ4
yui,j + 2δ2

xδ
2
yui,j , 1 ≤ i, j ≤ N − 1,(130)

induces a scalar product 〈u, v〉h = (Δ2
hu, v)h on S × S defined by

〈u, v〉h = (Δ2
hu, v)h =

12

h2
(uh,x − ph, vh,x − rh)x +

12

h2
(uh,y − qh, vh,y − zh)y

+ 2(uh,xy, vh,xy).(131)

In particular, the discrete operator Δ2
h is symmetric positive definite on S.

(ii) In terms of the basic finite difference operators, the product 〈u, v〉h is given
by

(Δ2
hu, v)h = (δ+

x ux, δ
+
x vx)h + (δ+

y uy, δ
+
y vy)h + 2(δ+

x δ
+
y u, δ

+
x δ

+
y v)h(132)

+
12

h2

(
δ+
x u− 1

2
(ux + ux,i+1,j), δ

+
x v −

1

2
(vx + vx,i+1,j)

)
h

+
12

h2

(
δ+
y v −

1

2
(uy + uy,i,j+1), δ

+
y v −

1

2
(vy + vy,i,j+1)

)
h

.

(iii) We have the two following coercivity properties of the norm 〈u, u〉h =
(Δ2

hu, u)h:

〈u, u〉h ≥ C
[
|δ+

x ux|2h + |δ+
y uy|2h + |δ+

x uy|2h + |δ+
y ux|2h

]
(133)

and

〈u, u〉1/2h ≥ C ′|u|h,(134)

where C, C ′ are constants independent of h.
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Proof. (i) By (130), we have

(Δ2
hu, v)h = (δ4

xu, v)h︸ ︷︷ ︸
(I)

+ (δ4
yu, v)h︸ ︷︷ ︸
(II)

+2 (δ2
xδ

2
yu, v)h︸ ︷︷ ︸
(III)

.(135)

We consider separately each term (I), (II), (III). For the term (I), we have

(δ4
xu, v)h = h

N∑
j=1

(
δ4
xu(·, yj), v(·, yj)

)
h

= h

N∑
j=1

{
12

h2
(uh,x(·, yj) − ph, vh,x(·, yj) − rh(·, yj)

}
=

12

h2
(uh,x − ph, vh,x − rh)x.

In the same way

(δ4
yu, v)h =

12

h2
(uh,y − qh, vh,y − zh)y.(136)

For (III), we just note that

(δ2
xδ

2
yu, v)h = (δ+

x δ
+
y u, δ

+
x δ

+
y u)h = (uh,xy, vh,xy).(137)

Consider now the positive-definiteness of (131). Suppose that (Δ2
hu, u) = 0. Then

ph(., yj) is constant and continuous and is zero at the end points; therefore ph = 0.

The same result holds for qh and uh. We conclude that 〈u, u〉1/2h = (Δ2
hu, u)

1/2
h is a

norm in S.
(ii) Translating (131) in term of finite difference operators, we obtain (132), as in

(89).
(iii) It results from (132) that

(Δ2
hu, u)h ≥ |δ+

x ux|2h + |δ+
y uy|2h + 2|δ+

x δ
+
y u|2h.(138)

For the mixed term δ+
x δ

+
y u, we will show next that

|δ+
x δ

+
y u|h ≥ 1

6
|δ+

x uy|h.(139)

Indeed

δ+
x δ

+
y ui,j =

δ+
y ui+1,j − δ+

y ui,j

h
.(140)

Using δ+
y ui,j = δyui,j + h

2 δ
2
yui,j and the definition of Py (see (112)), we deduce

δ+
x δ

+
y ui,j =

δyui+1,j − δyui,j

h
+

1

2

[
δ2
yui+1,j − δ2

yui,j

]
=

1

h

[
uy,i+1,j − uy,i,j

]
+

h

6

[
δ2
yuy,i+1,j − δ2

yuy,i,j

]
+

1

2

[
δ2
yui+1,j − δ2

yui,j

]
= δ+

x uy,i,j +
h2

6
δ2
yδ

+
x uy,i,j +

1

2
hδ2

yδ
+
x ui,j .
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In addition, using the definition of δ2
y we have

|δ2
yδ

+
x uy| ≤

4

h2
|δ+

x uy|h(141)

and

|δ2
yδ

+
x u|h ≤ 2

h
|δ+

y δ
+
x u|h.(142)

Therefore, we have

|δ+
x δ

+
y u|h ≥ |δ+

x uy|h − h2

6
|δ2

yδ
+
x uy|h − h

2
|δ2

yδ
+
x u|h

≥ |δ+
x uy|h − 2

3
|δ+

x uy|h − |δ+
x δ

+
y u|h,

which gives finally 2|δ+
x δ

+
y u|h ≥ 1

3 |δ+
x uy|h, or equivalently (139). We proceed in the

same way in proving the symmetric estimate

|δ+
x δ

+
y u|h ≥ 1

6
|δ+

y ux|h.(143)

Finally, the last coercivity inequality (134) is obtained starting from

|δ+
x u|2h = (|uh,x|x)2(144)

and following along the same lines as in the proof of (99) in Lemma 3.5.
We conclude this section with the following error estimate.
Proposition 4.2. Let U be the Q1

c,0 Lagrange interpolation of the exact solution
u(x) of (108) and ũ the discrete solution of (109). Then there exists a constant C
independent of h such that

〈U − ũ, U − ũ〉1/2h ≤ Ch3/2
∑

α1+α2≤6

|∂α1
x ∂α1

y u|∞,[0,1]2 .(145)

Proof. The proof follows along the same lines as the one of Proposition 3.1. We
use in particular (134).

5. A Stephenson-based compact scheme for the streamfunction formu-
lation of the Navier–Stokes equations. The pure streamfunction form of the
Navier–Stokes equation is

∂tΔψ = −∇⊥ψ · ∇(Δψ) + νΔ2ψ.(146)

The streamfunction was introduced already by Lagrange; see [15, Chap. IV]. For
simplicity, we deal only with the “no-slip” boundary condition, namely, the velocity
vanishes on the boundary. This implies that we seek the streamfunction ψ ∈ H2

h,0

(see [3] for a full discussion of the functional space for ψ). The notation is as follows.
We denote by ψi,j ∈ L2

h,0 a grid function and by ψx,i,j , ψy,i,j ∈ L2
h,0 the Stephenson

gradient defined by

Pxψx = δxψ, Pyψy = δyψ,(147)
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where the interpolation operators Px, Py are (see (112))

Pxψ|i,j =
1

6
ψi−1,j +

2

3
ψi,j +

1

6
ψi+1,j , Pyψ|i,j =

1

6
ψi,j−1 +

2

3
ψi,j +

1

6
ψi,j+1.(148)

The discrete gradient ∇hψ is defined as the pair of the discrete functions (ψx, ψy) and
the discrete velocity is defined as the discrete curl of the streamfunction in the sense

∇⊥
h ψi,j = Ui,j =

[
ui,j , vi,j

]
=
[
− ψy,i,j , ψx,i,j

]
.(149)

The discrete Laplacian is defined by the standard five-points formula

Δhψi,j = δ2
xψi,j + δ2

yψi,j .(150)

The discrete Stephenson biharmonic Δ2
h introduced in (109) is

Δ2
hui,j = δ4

xui,j + δ4
yui,j + 2δ2

xδ
2
yui,j , 1 ≤ i, j ≤ N − 1.(151)

Δ2
h is a nine point operator acting at every point (i, j) interior to the domain. The

semidiscrete scheme associated with (146) consists in finding ψ̃(t) ∈ L2
h,0, which sat-

isfies the evolution equation

∂tΔhψ̃ = −∇⊥
h ψ̃ · (Δh∇hψ̃) + νΔ2

hψ̃,(152)

with initial condition

ψ̃i,j(0) = (ψ0)(xi, yj).(153)

Note that in (152) and in what follows we use pointwise multiplication of functions in

L2
h,0, i.e., (u · v)i,j = ui,jvi,j . We denote by e(t) = ψ̃(t) − ψ(t) the difference between

the computed and exact solutions. The exact solution verifies

∂tΔhψ = −∇⊥
h ψ ·

[
Δh∇h(ψ)

]
+ νΔ2

hψ + F,(154)

where F is the truncation error of the scheme depending on the regularity of the exact
solution. We call U and Ũ the discrete velocities associated to ψ, ψ̃ by

U = (−ψy, ψx), Ũ = (−ψ̃y, ψ̃x).(155)

Recall that in (155), the x and y subscripts stand for the discrete derivatives defined
in (147). In particular, ψx, ψy are not the values of the exact derivatives of ψ. The
error e(t) evolves according to

∂tΔhe− νΔ2
he = −

[
Ũ · Δh(ψ̃x, ψ̃y) − U · Δh(ψx, ψy)

]
− F.(156)

The right-hand side of (156) is decomposed into four terms:[
(Ũ · Δh(ψ̃x, ψ̃y) − U · Δh(ψx, ψy)

]
+ F = (Ũ − U) · Δh

[
(ψ̃ − ψ)x, (ψ̃ − ψ)y

]
+ (Ũ − U) · Δh

[
(ψx, ψy

]
+U · Δh

[
(ψ̃ − ψ)x, (ψ̃ − ψ)y

]
+ F.
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Taking the h scalar product with e(t), we obtain

(∂tΔheh − νΔ2
he, e)h = −

(
(Ũ − U) · Δh

[
(ψ̃ − ψ)x, (ψ̃ − ψ)y

]
, e

)
h

(157)

−
(
(Ũ − U) · Δh(ψx, ψy), e

)
h

−
(
U · Δh

[
(ψ̃ − ψ)x, ψ̃ − ψ)y

]
, e

)
h

−
(
F, e

)
h
.

We denote the four terms of the right-hand side by J1, J2, J3, J4:

J1 =
(
(Ũ − U) · Δh(ψ̃ − ψ)x, (ψ̃ − ψ)y, e

)
h
,

J2 =
(
(Ũ − U) · Δh(ψx, ψy), e

)
h
,

J3 =
(
U · Δh(ψ̃ − ψ)x, (ψ̃ − ψ)y, e

)
h
,

J4 = (F, e)h.

We estimate separately the four terms J1, J2, J3, J4.

Term J1. The term J1 is

J1 =
(
(Ũ − U) · Δh(ex, ey), e

)
h
.(158)

We have

Ũ − U =
[
− (ψ̃ − ψ)y, (ψ̃ − ψ)x

]
= (−ey, ex),(159)

where the subscripts x and y are the Stephenson derivation operators. Therefore

J1 =
(
(Ũ − U) · Δh(ex, ey), e

)
h

=
(
− ey(δ

2
xex + δ2

yex) + ex(δ2
xey + δ2

yey), e
)
h

=
(
− ey(δ

2
xex + δ2

yex), e
)
h

+
(
ex(δ2

xey + δ2
yey), e

)
h

= −
(
δ2
xex, eey

)
h
−
(
δ2
yex, eey

)
h

+
(
δ2
xey, eex

)
h

+
(
δ2
yey, eex

)
h

=
(
δ+
x ex, δ

+
x (eey)

)
h

+
(
δ+
y ex, δ

+
y (eey)

)
h

−
(
δ+
x ey, δ

+
x (eex)

)
h
−
(
δ+
y ey, δ

+
y (eex)

)
h
.

In order to formulate a discrete Leibniz rule for w, z ∈ L2
h,0 we use the “shift operators”

(Sxw)i,j = wi+1,j , (Syz)i,j = zi,j+1. In terms of these operators we have

δ+
x (wz) = (Sxw)i,jδ

+
x z + zδ+

x w,(160)

which is quite easy to verify. Using (160), we expand J1 in the sum of eight terms:

J1 =
(
δ+
x ex, (Sxey)i,jδ

+
x e

)
h

+
(
δ+
x ex, eδ

+
x ey

)
h

+
(
δ+
y ex, (Syey)i,jδ

+
y e

)
h

+
(
δ+
y ex, eδ

+
y ey

)
h

−
(
δ+
x ey, (Sxex)i,jδ

+
x e

)
h
−
(
δ+
x ey, eδ

+
x ex

)
h

−
(
δ+
y ey, (Syex)i,jδ

+
y e

)
h
−
(
δ+
y ey, eδ

+
y ex

)
h
.
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There is a cancellation of terms 2 and 6 on one hand, and 4 and 8 on the other hand,
so that

J1 =
(
δ+
x ex, (Sxey)δ

+
x e

)
h

+
(
δ+
y ex, (Syey)δ

+
y e

)
h

+
(
δ+
x ey, (Sxex)δ+

x e
)
h

+
(
δ+
y ey, (Syex)δ+

y e
)
h
.

We now observe that if θ ∈ L2
h,0, then |θ|∞,h ≤ 1

h |θ|h. We can therefore estimate J1

as follows:

|J1| =
∣∣((Ũ − U) · Δh(ex, ey), e

)
h

∣∣
≤ ε

[
|δ+

x ex|2h + |δ+
y ex|2h + |δ+

x ey|2h + |δ+
y ey|2h

]
+

1

4ε

[
|(ex, ey)|2∞,h

(
|δ+

x e|2h + |δ+
y e|2h

)]
≤ ε

[
|δ+

x ex|2h + |δ+
y ex|2h + |δ+

x ey|2h + |δ+
y ey|2h

]
+

C

εh2

[
|δ+

x e|2h + |δ+
y e|2h

]2
,

where in the last step we have used (51) to estimate |ex|∞,h ≤ C|δ+
x e|∞,h and

|ey|∞,h ≤ C|δ+
y e|∞,h with a constant independent of h. The factor ε > 0 will be

specified later.

Term J2. The term J2 is estimated by (C is a generic constant)

|J2| = |
(
(Ũ − U) · Δh(ψx, ψy), e

)
h
| ≤ C

[
|Ũ − U |2h + |e|2h

]
.(161)

We have used that Δh(ψx, ψy) is the discrete operator Δh composed by the Stephen-
son gradient applied to the exact solution, and is bounded if the exact solution is
sufficiently regular. In addition, using the fact that Ũ −U =

[
− (ψ̃y −ψy), ψ̃x −ψx

]
,

we have

|Ũ − U |2h = |ex|2h + |ey|2h.(162)

Furthermore, we have, in view of (60), (78),

|ex|h ≤ C|δ+
x e|h, |ey|h ≤ C|δ+

y e|h,(163)

and, due to the Poincaré inequality (21), we deduce

|J2| ≤ C
[
|δ+

x e|2h + |δ+
y e|2h

]
.(164)

Term J3. We have

J3 =
[
U · Δh(ex, ey), e

]
h

= (uδ2
xex, e)h︸ ︷︷ ︸
J3,1

+ (uδ2
yex, e)h︸ ︷︷ ︸
J3,2

+ (vδ2
xey, e)h︸ ︷︷ ︸
J3,3

+ (vδ2
yey, e)h︸ ︷︷ ︸
J3,4

.

We have

J3,1 = (uδ2
xex, e)h = (δ2

xex, ue)h = −
[
δ+
x ex, δ

+
x (ue)

]
h
.(165)

Using (160), the term J3,1 is estimated by

|J3,1| = |
[
δ+
x ex, δ

+
x (ue)

]
h
≤ |δ+

x ex|h|δ+
x (ue)|h

≤ |δ+
x ex|h

[
|(Sxu)i,jδ

+
x e|h + |eδ+

x u|h
]

≤ |δ+
x ex|h

[
|u|∞,h|δ+

x e|h + |δ+
x u|∞,h|e|h

]
.
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Therefore, using the Poincaré inequality (21), the term J3,1 is estimated by

|J3,1| ≤ max
[
|u|∞,h, |δ+

x u|∞,h

][
ε|δ+

x ex|2h +
1

4ε
(|δ+

x e|h + |e|h)2
]

≤ max(|u|∞,h, |δ+
x u|∞,h)

[
ε|δ+

x ex|2h +
C

ε
(|δ+

x e|2h + |δ+
y e|2h)

]
.

Using the same principle in the y direction, we obtain for the term J3,2

|J3,2| = |(uδ2
yex, e)h| ≤ max(|u|∞,h, |δ+

y u|∞,h)

[
ε|δ+

y ex|2h +
C

ε
(|δ+

x e|2h + |δ+
y e|2h)

]
.

(166)

Therefore, with m(u) = max
[
|u|∞,h, |δ+

x u|∞,h, |δ+
y u|∞,h

]
, the estimate for the term

J3,1 + J3,2 is

|J3,1 + J3,2| ≤ |J3,1| + |J3,2| ≤ m(u)

[
ε
{
|δ+

x ex|2h + |δ+
y ex|2h

}
+

C

ε

{
|δ+

x e|2h + |δ+
y e|2h

}]
.

(167)

Treating the term J3,3 + J3,4 in the same way, we obtain

|J3,3 + J3,4| ≤ |J3,3| + |J3,4| ≤ m(v)

[
ε{|δ+

x ey|2h + |δ+
y ey|2h} +

C

ε
{|δ+

x e|2h + |δ+
y e|2h}

]
.

(168)

The estimate for the term J3 is finally, with M(u, v) = max(m(u),m(v)),

|J3| ≤ M(u, v)

[
ε
{
|δ+

x ex|2h + |δ+
y ex|2h + |δ+

x ey|2h + |δ+
y ey|2h

}
+

2C

ε

{
|δ+

x e|2h + |δ+
y e|2h

}]
.

(169)

Term J4. The term J4 is the truncation error and is of order 3/2 (in the | · |h
norm) in view of Lemmas 3.1 and 4.2. For any time T > 0, the term J4 is estimated
by

|J4| ≤ C(T )|e|hh3/2 ≤ C(T )
[
|δ+

x e|2h + |δ+
y e|2h + h3

]
,(170)

where C(T ) is a constant depending only on T > 0 and on the regularity of the exact
solution ψ(t) on [0, T ].

Turning back to (157), we have, on [0, T0],(
∂

∂t
Δhe, e

)
h

− ν(Δ2
he, e)h = −1

2

d

dt
{|δ+

x e|2h + |δ+
y e|2h} − ν(Δ2

he, e)h

= −J1 − J2 − J3 − J4,

or

1

2

d

dt
{|δ+

x e|2h + |δ+
y e|2h} = J1 + J2 + J3 + J4 − ν(Δ2

he, e)h

≤ |J1| + |J2| + |J3| + |J4| − ν(Δ2
he, e)h

≤ |J1| + |J2| + |J3| + |J4|
−Cν

[
|δ+

x ex|2h + |δ+
y ey|2h + |δ+

x ey|2h + |δ+
y ex|2h

]
,
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where in the last inequality we have used the coercivity property (133). Collecting the
terms of the form |δ+

x ex|2h+ |δ+
y ey|2h+ |δ+

x ey|2h+ |δ+
y ex|2h, which appear in the estimates

for J1, J2, J3, J4, and selecting ε > 0 sufficiently small, we find that these terms are
absorbed in the right-hand side of the last inequality. We are therefore left with the
estimate

d

dt

{
|δ+

x e|2h + |δ+
y e|2h

}
≤ C

[
|δ+

x e|2h + |δ+
y e|2h

][
1 +

1

h2
(|δ+

x e|2h + |δ+
y e|2h)

]
+ C ′h3,(171)

where C,C ′ depend on the exact solution ψ and on the viscosity coefficient ν but not
on h.

In order to prove convergence of the approximate solution ψ̃ to the exact solution
ψ using (171), we proceed as follows. We use the fact that at t = 0 the error e = 0 to
prove an estimate for |δ+

x e|h + |δ+
y e|h up to any given time T > 0.

Theorem 5.1. Let T > 0. Then there exist constants C, h0 > 0, depending
possibly on T, ν, and the exact solution ψ, such that, for all 0 ≤ t ≤ T ,

|δ+
x e|2h + |δ+

y e|2h ≤ Ch3, 0 < h ≤ h0.(172)

Using Corollary 2.1, we obtain a 3/2 convergence rate in the discrete L2 norm.
Proof. Fix some K > 0. Observe that at t = 0 we have e = 0; hence also

δ+
x e = δ+

y e = 0 (at t = 0). Thus, taking h > 0, there exists a time τ > 0 (in general
depending on h) such that

sup
0≤t≤τ

{
|δ+

x e|h + |δ+
y e|h

}
≤ Kh.(173)

Inserting (173) in (171) we have for t ≤ τ

d

dt

[
|δ+

x e|2h + |δ+
y e|2h

]
≤ C(1 + K2)

[
|δ+

x e|2h + |δ+
y e|2h

]
+ C ′h3, 0 < h ≤ h0;(174)

hence by Gronwall’s inequality (174) gives

|δ+
x e|2h + |δ+

y e|2h ≤ C1e
C(1+K2)th3, t ≤ τ,(175)

with a suitable constant C1 > 0. Observe that in (175) τ depends on h, and define
τ0 = τ0(h) by

τ0 = sup{t > 0 such that |δ+
x e|h + |δ+

y e|h ≤ Kh}.(176)

We have τ0 ≥ τ and, as in (175), we obtain

|δ+
x e|2h + |δ+

y e|2h ≤ C1e
C(1+K2)th3, t ≤ τ0.(177)

We can now select h0 so small that

C1e
C(1+K2)Th0 < K2.(178)

Now the definition of τ0 and (177)–(178) imply that, for any 0 < h ≤ h0, we have
τ0(h) ≥ T and, in particular, for such h, the estimate (175) holds true for all t ≤ T .
This concludes the proof of the theorem.
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