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HYPERBOLIC CONSERVATION LAWS ON MANIFOLDS: TOTAL

VARIATION ESTIMATES AND THE FINITE VOLUME METHOD∗

PAULO AMORIM† , MATANIA BEN-ARTZI‡ , AND PHILIPPE G. LeFLOCH†

Abstract. This paper investigates some properties of entropy solutions of hyperbolic conserva-
tion laws on a Riemannian manifold. First, we generalize the Total Variation Diminishing (TVD)
property to manifolds, by deriving conditions on the flux of the conservation law and a given vector
field ensuring that the total variation of the solution along the integral curves of the vector field is
non-increasing in time. Our results are next specialized to the important case of a flow on the 2-
sphere, and examples of flux are discussed. Second, we establish the convergence of the finite volume
methods based on numerical flux-functions satisfying monotonicity properties. Our proof requires
detailed estimates on the entropy dissipation, and extends to general manifolds an earlier proof by
Cockburn, Coquel, and LeFloch in the Euclidian case.
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1. Introduction. In this paper, following [1], we investigate some properties
of entropy solutions to the Cauchy problem for hyperbolic conservation laws on a
manifold :

(1.1) ∂tu + ∇g ·f(u, ·) = 0, u = u(t, x) ∈ R, t ≥ 0, x ∈ M.

Here, M is a d-dimensional, smooth manifold endowed with a Riemannian metric
g and, for each constant u ∈ R, the map x 7→ f(u, x) is a smooth vector field on
M , i.e. a section of the tangent bundle TM . The well-posedness theory for the
hyperbolic conservation law was recently established in Ben-Artzi and LeFloch [1].
As in Kruzkov’s theory [5] which applies to conservation laws in the Euclidian setting
M = Rd, one is interested in weak solutions of (1.1) in the sense of distributions that
are constrained by entropy inequalities. For instance, in the case that f is geometry
compatible [1], in the sense that

(1.2) ∇g ·f(u, ·) = 0 for every constant u,

the entropy inequalities read

(1.3) ∂tU(u) + ∇g ·F (u, ·) ≤ 0,

for every convex U : R → R, where the vector field x 7→ F (u, x) is

∂uF (u, x) := ∂uU(u) ∂uf(u, x), u ∈ R, x ∈ M.

Let us emphasize that the equation (1.1) is a geometric partial differential equa-
tion which naturally depends on the geometry of the manifold, only. In particular,
all estimates derived on solutions to (1.1) should take a form that is completely inde-
pendent of any particular system of local coordinates of M , although in practice, for
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the proofs it will often be convenient to introduce a particular chart to represent the
manifold. Throughout, the convention of implicit summation over repeated indices
will be used. In local coordinates x = (xj)1≤j≤d, we will use the short-hand notation
∂j := ∂/∂xj. Recall that the divergence operator arising in (1.1) takes the form

∇g ·f(u(t, x), x) :=
1√
|g(x)|

∂j

(√
|g(x)| f j(u(t, x), x)

)
,

where (gij) are the coordinates of the metric tensor g and |g| := det(gij). Here,
f j(u, x) are, for every u, the coordinates of the vector field f(u, ·) at the point x.

The present paper supplements the well-posedness results established in the com-
panion paper [1] and has two main objectives.

First, we investigate some properties of the total variation of solutions of (1.1) on
a manifold. Precisely, we generalize the Total Variation Diminishing (TVD) property
to manifolds, by deriving conditions on the flux f and a given vector field X ensuring
that the total variation of the solution along the integral curves of X is non-increasing
in time. Recall that TVD schemes for nonlinear hyperbolic problems play a central
role in scientific computation, for instance in gas dynamics. Our diminishing total
variation properties provide certain a priori estimates which, for instance, can be
tested numerically and may help in designing robust schemes that are consistent with
large-time asymptotics. Note that solutions of a conservation law on a manifold need
not have a total variation that is bounded uniformly in time. The geometric effets
may contribute to amplify the wave strengths, and the total variation of a solution
may blow-up in the large as t → ∞. We also investigate here in some detail the case
where the manifold is the sphere S2 embedded in R3. Examples of flux (as vector
fields in R3 tangent to the sphere) are discussed from both the intrinsic and embedded
standpoints.

Second, we consider the numerical approximation of the entropy solutions of (1.1)
and we establish the convergence of the finite volume scheme on manifolds when the
numerical flux-functions depend monotonically upon their arguments. Our result is an
extension to general manifolds of a theorem due to Cockburn, Coquel, and LeFloch [2]
(see also [3]) in the Euclidian case. While the convergence of the finite volume scheme
is easily established on a cartesian mesh, due to the invariance by translation of both
the equation and the mesh, the convergence proof for non-cartesian meshes is more
involved and, as was pointed out in [2], requires DiPerna’s concept of measure-valued
solutions [4]. To handle (1.1), we therefore rely on Ben-Artzi–LeFloch’s extension to
manifolds [1] of DiPerna’s theorem.

An outline of this paper is as follows. In Section 2, we derive conditions on the
flux and the vector field X ensuring that the function X(u) satisfies a conservation
law whenever u is a solution of (1.1). This leads us to a diminishing total variation
property for a class of flux and vector fields. In Section 3, we discuss the structure
and general properties of conservation laws on the sphere S2. In Section 4, we apply
the framework of Section 2 to the case of the sphere and derive total variation bounds.
Next, Sections 5 and 6 are devoted to the statement and to the proof of the convergence
of the finite volume scheme.

2. Total variation diminishing estimates on a general manifold. In the
present section, we derive conditions on the flux f of the conservation law (1.1) which
ensure that the total variation (at least along certain vector fields) of the entropy so-
lutions of (1.1) is non-increasing in time. We will first state the main results (Propo-
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sition 2.1 and Theorem 2.3) and then recall some elementary notions from differential
geometry, before giving the proofs of the results.

2.1. Statement of the estimate. Throughout, M is a smooth, d-dimensional,
Riemannian manifold (M, g), which has no boundary and need not be compact. The
following result provides us with a key identity on directional derivatives of solutions
of (1.1).

Proposition 2.1. Let u : R+ × M → R be a smooth solution of the con-
servation law (1.1) on M where, f = f(u, ·) is a (smooth) vector field depending
on the parameter u. Then, given any (smooth) vector field X on M the function
w := X(u) : R+ × M → R satisfies the (linear) hyperbolic equation

(2.1) ∂tw + ∇g ·
(
w fu(u, ·)

)
= −g

(
∇gu, (LXfu)(u, ·)

)
− X(∇g ·f)(u, ·),

where ∇g denotes the covariant derivative operator associated with g and (LXfu)(u, ·)
denotes the Lie bracket of the vectors fields X, fu, that is

LXfu(u, ·) :=
[
fu(u, ·), X

]
, u ∈ R.

The first term in the right-hand side of (2.1) depends on the gradient of the
unknown function u while the second term depends on the function itself. Observe
that our formula is non-trivial even when M is the Euclidian space Rd. In that case,
the equation (2.1) becomes

∂tw + ∇ · (wfu(u, x)) = −∇u · [X, fu](u, x) − X · ∇(∇ · f)(u, x),

where w = X · ∇u. When the flux is independent of x it is obvious that for any
constant vector field the right-hand side of (2.1) vanishes and we can recover the
total variation diminishing property for scalar conservation laws in Rd.

We denote by TV the total variation functional for functions defined on the
Riemannian manifold (M, g). We introduce here a generalization, which extends to
discontinuous functions the formula, valid for smooth u,

TVX(u) :=

∫

M

|X(u(t, x))| dvg ,

where dvg is the volume element on M .

Definition 2.2. 1. To any function u and vector field X defined on the manifold
M one associates the quantity

TVX(u) := sup
φ

∫

M

u∇g ·(φX) dvg,

where the supremum is taken over all smooth functions φ : M → R satisfying ‖φ‖L∞ ≤
1. When TVX(u) < ∞ the function u is said to have bounded total variation

along X.

2. A flux f = f(u, ·) on M is said to be geometry compatible [1] if

∇g ·f(u, ·) = 0, u ∈ R.
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It follows from Proposition 2.1 and the existence theory in [1] that :

Theorem 2.3. (Total variation estimates.) Let u be an entropy solution of the
conservation law (1.1) on the manifold M where f is a smooth flux.

1. The total variation of u along a vector field X satisfies

(2.2)
TVX(u(t)) ≤ TVX(u(0)) + sup

(0,t)×M

|(LXfu)(u, ·)|g

∫ t

0

TVX(u(τ)) dτ

+ ‖X(∇g ·f)(u, ·)‖L1((0,t)×M).

2. Hence, when f is divergence-free and the Lie bracket of fu and X vanishes,

LXfu(u, ·) = 0, u ∈ R,

then the solution has bounded total variation along X for all times t > 0, if this
property holds at the time t = 0, and moreover,

(2.3) TVX(u(t)) ≤ TVX(u(0)), t ≥ 0.

At this juncture, it is important to recall from [1] that entropy solutions of (1.1)
have bounded variation (in the standard sense) at every time t, if this is true at the
time t = 0. Actually, one has the general estimate

TV (u(t)) ≤ eC1 t TV (u(0)) + C2,

where C1, C2 depend on the metric g and on derivatives (up to second order) of the
flux f . In contrast, our result in Theorem 2.3 solely assumes that TVX(u(0)) is finite
and concludes that TVX(u(t)) is finite for all times. The property (2.3) should be
useful when designing approximation schemes for (1.1), and it is natural to require
(2.3) to hold at every time-step of the discretization.

Let us now recall some basic notions and notations that will be used throughout
this paper. The differential of a function u : M → R is the field of 1-forms defined by

du(X) := X(u),

for every vector field X . It is convenient to choose a basis of the tangent space
TxM at a point x ∈ M together with its dual basis associated with the cotangent
space T ⋆

xM , so that we can introduce coordinates for vectors and covectors relative to
these bases. As usual, to each vector (X i) ∈ TxM we associate its covector (gij X i)
by lowering indices using the metric (implicit summation on repeated indices being
used). Denoting (gij) the components of the inverse matrix associated with (gij),
then, to each covector (ηj) ∈ T ⋆

xM we can also associate the vector (gij ηj).
Recall also that the gradient of a (smooth) function u : M → R is the vector field

∇gu associated with the field of differential forms du. The divergence of a (smooth)
vector field f on M is the function ∇g ·f : M → R defined by

∫

M

u∇g ·f dv := −

∫

M

du(f) dvg

for all smooth u : M → R, where dvg is the volume element on M .
Consider now a coordinate chart (xi) together with the associated basis of vectors

(∂/∂xi) and covectors (dxi). The differential of a function u is given by

du =
∂u

∂xi
dxi.
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In view of the relations ∇i
gu := (∇gu)i = gij (du)j , we see that the components of

∇gu in the basis ∂/∂xi of TxM are

(∇gu)i = gij ∂u

∂xj
.

If the support of a function u is included in the domain of definition of the coordinate
chart (xi), recalling that |g| denotes the determinant of the metric tensor we can write

∫

M

du(f) dvg =

∫

Rd

( ∂u

∂xi
f i

) √
|g|dx1 · · · dxd

= −

∫

Rd

u√
|g|

∂

∂xi

(
f i

√
|g|

)√
|g| dx1 · · ·dxd

= −

∫

M

u√
|g|

∂

∂xi

(
f i

√
|g|

)
dvg,

so that

(2.4) ∇g ·f :=
1√
|g|

∂

∂xi

(
f i

√
|g|

)
.

The expression of ∇g ·f follows also from computing the covariant derivatives of
the vector field, as follows. Given a local chart (xi) for M , the covariant derivative of
the vector field f is the (1, 1)-tensor field ∇kf j defined by

∇kf j := ∂kf j + Γj
klf

l,

where Γj
kl are the Christoffel symbols given by

Γj
kl :=

1

2

(
∂kgli + ∂lgki − ∂igkl

)
gij .

In particular, we have Γj
kj = 1

2gij∂kgij and, since ∂i|g| = |g|gkl∂igkl,

Γk
ik =

1

2|g|
∂i|g| = ∂i log

√
|g| =

1√
|g|

∂i

(√
|g|

)
.

The divergence of a vector field f is the trace of the covariant derivative, i.e.

∇g ·f := ∇kfk = ∂kfk + Γk
ikf i = ∂kfk +

1√
|g|

∂i

(√
|g|

)
f i

= ∂kfk +
1√
|g|

(
−

√
|g|∂kfk + ∂k

(√
|g|fk

))

=
1√
|g|

∂k

(√
|g|fk

)
,

which is (2.4).

2.2. First approach. The proof of Proposition 2.1 will follow from the following
two technical lemmas.

Lemma 2.4. For every smooth function u : M → R the following identities hold
(x ∈ M) :

(2.5) ∇g ·(f(u, x)) = du(fu(u, x)) + (∇g ·f)(u, x)
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(2.6) LX(Y (u, x)) = X(u)Yu(u, x)+(LXY )(u, x) for all vector fields Y = Y (u, x).

(2.7) X(h(u, x)) = X(u)hu(u, x) + X(h)(u, x) for all functions h.

Proof. In local coordinates we have

∇g ·(f(u, x)) =
1√
|g|

∂i

(√
|g|f i(u, x)

)

=
1√
|g|

∂i

(√
|g|f i

)
(u, x) + f i

u(u, x)∂iu

= (∇g ·f)(u, x) + du(fu(u, x)),

which proves (2.5). To prove (2.6) we note that

(
LX(Y (u, x))

)i
= [X, Y (u, x)]i = Xj∂j(Y

i(u, x)) − Y j(u, x)∂jX
i

=
(
Xj∂jY

i − Y j∂jX
i
)
(u, x) + XjY i

u(u, x)∂ju

= [X, Y ]i(u, x) + Xj∂juY i
u(u, x).

This shows (2.6). The proof of (2.7) is completely similar.

Lemma 2.5. For any (smooth) function u : M → R, vector field X, and flux
f = f(u, ·), the following identity holds :

(2.8)
X

(
∇g ·(f(u, x))

)

= ∇g ·
(
X(u)fu(u, x)

)
+ g

(
∇gu, (LXfu)(u, x)

)
+ X(∇g ·f)(u, x).

Proof. Using (2.5) and (2.7) we find

X
(
∇g · (f(u, x))

)
= X

(
(∇g ·f)(u, x)

)
+ X

(
g(∇gu, fu(u, x)

)

= X(∇g ·f)(u, x) + X(u)(∇g ·fu)(u, x) + X
(
g(∇gu, fu(u, x)

)
.

On the other hand,

∇g ·
�
X(u)fu(u, x)

�
= X(u)∇g ·(fu(u, x)) + g(∇g(X(u)), fu(u, x))

= X(u)(∇g ·fu)(u, x) + X(u)g(∇gu, fuu(u, x)) + g(∇g(X(u)), fu(u, x)),

using (2.5). Thus, we arrive at

X
�
∇g ·(f(u, x))

�
−∇g ·

�
X(u)fu(u, x)

�
= X(∇g ·f)(u, x) + X

�
g(∇gu, fu(u, x)

�
− X(u) g(∇gu, fuu(u, x)) − g(∇g(X(u)), fu(u, x)).

Expressing the Leibnitz rule for the Lie derivative we obtain

X
�
g(∇gu, fu(u, x))

�
= (LXg)

�
∇gu, fu(u, x)

�
+ g

�
LX∇gu, fu(u, x)

�
+ g

�
∇gu,LX(fu(u, x))

�
.

Therefore, we have

X
(
∇g ·(f(u, x))

)
−∇g ·

(
X(u)fu(u, x)

)
= X(∇g ·f)(u, x) + (LXg)

(
∇gu, fu(u, x)

)

+ g
(
LX∇gu −∇g(X(u)), fu(u, x)

)

+ g
(
∇gu,LX(fu(u, x)) − X(u)fuu(u, x))

)
.
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Using (2.6), the last term above equals g
(
∇gu, (LXfu)(u, x)

)
.

The proof of the lemma will be complete once we check that, for all vector fields
X, Z and functions u,

(2.9) g
(
LX∇gu −∇g(X(u)), Z

)
= −(LXg)(∇gu, Z).

To this end, in local coordinates we can write

(
LX∇gu −∇g(X(u))

)i
= Xj ∂j∇

iu −∇ju ∂jX
i −∇i(Xj ∂ju)

= Xj
(
∂j∇

iu −∇i∂ju
)
−∇ju ∂jX

i −∇iXj ∂ju.

For the first term above we have

Xj
(
∂j∇

iu −∇i∂ju
)

= Xj
(
∂j(g

ik)∂ku + gik(∂j∂ku − ∂k∂ju)
)

= X(gik)gkl∇
lu

= −X(gkl)g
ik∇lu.

For the remaining two terms, a tedious but straightforward computation gives

−∇ju ∂jX
i −∇iXj ∂ju = −∇ju gil

(
(LXg)jl − X(glj)

)
,

where the components of LXg are computed from the formula

X
(
g(Y, Z)

)
= (LXg)(Y, Z) + g(LXY, Z) + g(Y,LXZ).

Therefore, we find

(
LX∇gu −∇g(X(u))

)i
= −gki∇ju(LXg)jk,

and, finally,

g
(
LX∇gu −∇g(X(u)), Z

)
= −gimgki∇ju(LXg)jkZm

= −∇ju(LXg)jkZk

= −(LXg)(∇gu, Z),

which proves (2.9). This completes the proof of Lemma 2.5.

Proof of Proposition 2.1. Applying the vector field X to the conservation law
(1.1), we find

∂tX(u) + X
(
∇g ·(f(u, x))

)
= 0.

The first term is precisely ∂tw. Using Lemma 2.5 to evaluate the second term, we
find the desired identity (2.1). This completes the proof.

2.3. Second approach. We provide here a second approach to Proposition 2.1.
To any vector field X we associate the (local) one-parameter group of diffeomorphisms
ϕ : M → M (defined for all sufficiently small s) from the integral curves of the vector
field X ,

(2.10)
dϕi

s

ds
(x) = X i(ϕs(x)), ϕ0(x) = x.
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Given a function u : M → R we may consider the composite function u ◦ ϕs.

Lemma 2.6. Let X be a smooth vector field on M and (ϕs) its associated one-
parameter group of diffeomorphisms. Then, for any smooth function u : M → R it
holds

(2.11)
∇g ·

(
f(u ◦ ϕs, ·)

)

= ∇g ·
(
f(u, ·)

)
◦ ϕs − s

(
X(∇g ·f)(u, ·) + g

(
∇gu, (LXfu)(u, ·)

))
+ O(s2).

Proof. We will first check that for any vector field Y ,

(2.12) Y j(ϕs(x)) − ∂iϕ
j
sY

i(x) = sLXY j + O(s2).

First, it is obvious that

Y j ◦ ϕs = Y j + s Xk∂kY j + O(s2).

Second, observe that for all i, j

d

ds
∂iϕ

j
s = ∂i

d

ds
ϕj

s = ∂i(X
j ◦ ϕs) = (∂kXj) ◦ ϕs ∂iϕ

k
s .

Also, since ϕ0(x) = x, we have ∂iϕ
j
s|s=0

= δj
i and so d

ds
∂iϕ

j
s|s=0

= ∂iX
j . Therefore,

Taylor expanding yields us

∂iϕ
j
s = δj

i + s ∂iX
j + O(s2).

In consequence we find

Y j(ϕs(x)) − ∂iϕ
j
sY

i(x) = s X i∂iY
j − s Y i∂iX

j + O(s2)

= sLXY j + O(s2),

which is precisely (2.12).
Setting v := u ◦ ϕs, we start from (2.5) which, for the function v, reads

(2.13) ∇g ·
(
f(v, ·)

)
= (∇g ·f)(v, ·) + dv(fu(v, ·)).

Let us compute the last term of the above identity. In local coordinates, we can write

(dv)i = ∂iv = ∂i(u ◦ ϕs)

=
(
(∂ju) ◦ ϕs

)
∂iϕ

j
s,

and therefore

dv(fu(v, ·)) =
(
(∂ju) ◦ ϕs

)
∂iϕ

j
s f i

u(v, ·)

=
(
(∂ju) ◦ ϕs

) (
∂iϕ

j
s f i

u(v, ·) − f j
u(u, ·) ◦ ϕs

)
+

(
∂ju f j

u(u, ·)
)
◦ ϕs

=
(
(∂ju) ◦ ϕs

) (
∂iϕ

j
s f i

u(v, ·) − f j
u(u, ·) ◦ ϕs

)
+ du(fu(u, ·)) ◦ ϕs.

Taking (2.12) into account and noting that

(
(∂ju) ◦ ϕs

)
LXf j

u(v, ·) = ∂juLXf j
u(u, ·) + O(s)

= g(∇gu,LXfu(u, ·)) + O(s),
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we arrive at

dv(fu(v, ·))

= −s (∂ju) ◦ ϕs(LXf j
u)(v, ·) + du(fu(u, ·)) ◦ ϕs + O(s2).

= −s g
(
∇gu, (LXfu)(u, ·)

)
+ du(fu(u, ·)) ◦ ϕs + O(s2)

= −s g
(
∇gu, (LXfu)(u, ·)

)
+ ∇g ·(f(u, ·)) ◦ ϕs − (∇g ·f)(u, ·) ◦ ϕs + O(s2),

where we have also used (2.5) with the function u.
Returning now to (2.13), using the identity for dv(fu(v, ·)), and re-ordering the

terms, we find

∇g ·
(
f(v, ·)

)
= ∇g ·(f(u, ·)) ◦ ϕs + (∇g ·f)(v, ·) − (∇g ·f)(u, ·) ◦ ϕs

− s g
(
∇gu, (LXfu)(u, ·)

)
+ O(s2).

Finally, observing that

(∇g ·f)(v, x) − (∇g ·f)(v, ϕs(x)) = −s
d

ds
(∇g ·f)(v, ϕs(x))|s=0

+ O(s2)

= −s Xk ∂k(∇g ·f)(u, ·) + O(s2)

= −s X(∇g ·f)(u, ·) + O(s2)

concludes the derivation of (2.11).

Proof of Proposition 2.1. We provide here a second proof of this proposition. If
u is a smooth solution to (1.1) then, observing that ∂tv = (∂tu) ◦ ϕs, we can rewrite
(1.1) in the form

∂tv + ∇g ·
(
f(u, ·)

)
◦ ϕs = 0.

So, using (2.11) we get

(2.14) ∂tv + ∇g ·
(
f(v, ·)

)
= −s

(
X(∇g ·f)(v, ·) + g

(
∇gu, (LXfu)(v, ·)

))
+ O(s2).

Now, recalling the conservation law (1.1) and the equation (2.14), we obtain

(2.15)
∂t

(1

s
(v − u)

)
+ ∇g ·

(1

s
(f(v, ·) − f(u, ·))

)

= −X(∇g ·f)(v, ·) − g(∇gu, (LXfu)(v, ·)) + O(s),

in which

lim
s→0

1

s
(v − u) = X(u)

and

lim
s→0

1

s
(f(v, ·) − f(u, ·)) = lim

s→0

d

ds

(
f(v, ·)

)

= fu(u, ·)X i ∂iu = X(u) fu(u, ·).

So, letting s tend to zero in (2.15) yields the desired identity (2.1).
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3. Conservation laws on the sphere S2. Following [1] we include here a
discussion of basic properties of the conservation law (1.1) in the case (so important
in the geophysical applications) that the manifold M is the sphere S2. We discuss here
the choice and properties of the flux in (1.1) and we emphasize differences between
the intrinsic and the embedded representations of the sphere. Certain properties will
be closely related to the fact that the sphere S2 can be embedded isometrically in the
Euclidian space R3.

3.1. Spherical coordinates on S2. One convenient approach consists in para-
meterizing the smooth manifold S2 punctured at the North and South poles, by using
a single chart in spherical coordinates (ϕ, θ), where ϕ ∈ [0, 2π] denotes the longitude
and θ ∈ (0, π) the latitude. Set

Ω := T 1 × (0, π),

where T 1 = [0, 2π] with the identification of the points ϕ = 0 and 2π. By definition,
a smooth function defined on Ω is extendable to a smooth periodic function for all
ϕ ∈ R. Indeed, in all what follows, we always consider smooth functions defined on
S2 represented as functions of (ϕ, θ) outside the poles and extended to the poles by
continuity. We imbed S2 in R3 according to

x = x(ϕ, θ) =
(
cosϕ sin θ, sin ϕ sin θ, cos θ

)
.

The Riemannian metric tensor of the punctured sphere, when expressed in spherical
coordinates, reads

(
gij

)
=

(
sin2 θ 0

0 1

)
.

Recall that the inverse matrix of g = (gij) is denoted by (gij).
The components of the gradient ∇gu of a function u : S2 → R in the basis

(∂/∂ϕ, ∂/∂θ) of TxS2 are

(∇gu)ϕ =
1

sin2 θ

∂u

∂ϕ
, (∇gu)θ =

∂u

∂θ
.

According to (2.4), the divergence operator on the sphere is given by

(3.1) ∇g · f :=
1

sin θ

( ∂

∂ϕ

(
fϕ sin θ

)
+

∂

∂θ

(
fθ sin θ

))
,

for every smooth vector field f on S2, where fϕ and fθ are the coordinates of the
vector f in the basis

(
∂/∂ϕ, ∂/∂θ

)
. Similarly, the Laplace-Beltrami operator is defined

for all u : S2 → R by

(3.2) ∆gu := ∇g · (∇gu) =
1

sin θ

(
∂

∂ϕ

( ∂u

sin θ ∂ϕ

)
+

∂

∂θ

(∂u

∂θ
sin θ

))
.

We now turn to the following conservation law on the sphere :

(3.3) ∂tu + ∇g · f(u, ·) = 0, (t, x) ∈ R+ × S2,

where the flux f : R × S2 → TS2 is a smooth vector field. In view of (3.1), when
spherical coordinates are used the conservation law (3.3) takes the form

(3.4) ∂t(u sin θ) +
∂

∂ϕ
(fϕ(u, ϕ, θ) sin θ) +

∂

∂θ
(fθ(u, ϕ, θ) sin θ) = 0.
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A periodic boundary condition is imposed in the variable ϕ ∈ [0, 2π], that is,

(3.5) u(t, 0, θ) = u(t, 2π, θ), θ ∈ [0, π], t ≥ 0.

On the other hand, no boundary condition may be imposed along θ = 0 and θ = π.
Observe that the equation (3.4) is singular (sin θ = 0) precisely at the poles.

If u is a smooth solution of the equation (3.4), a natural question is whether u
satisfies some additional conservation laws. We have already noticed that the Total
Variation Diminishing property is available for solutions to conservation laws in Rd

when the flux-function is independent of the spatial variable. We have seen also that,
when writing the conservation law in local coordinates, the flux in general depends
explicitly on the space variables. It would be meaningless to require that the flux
is “independent of x”. A natural approach is to restrict attention to flux that are
divergence-free, which in spherical coordinates is expressed as

(3.6)
∂

∂ϕ

(
fϕ(u, ϕ, θ) sin θ

)
+

∂

∂θ

(
fθ(u, ϕ, θ) sin θ

)
= 0.

Recall that an entropy / entropy flux pair for the conservation law (3.1) is a pair (U, F )
in which the function U : R → R is arbitrary and F (u, x) =

∫ u
U ′(u) ∂

∂u
f(u, x) du.

For the sake of completeness we recall :

Proposition 3.1. (Intrinsic description.) Consider the conservation law (3.3)
on the sphere S2 with a divergence-free vector field f = f(u, x), and let (U, F ) =
(U(u), F (u, x)) be any entropy / entropy flux pair. Then, smooth solutions u = u(t, x)
of (3.3)-(3.5) satisfy the additional conservation law

(3.7) ∂tU(u) + ∇g ·F (u, ·) = 0.

In particular

(3.8)
d

dt

∫∫

Ω

U(u(t, ·)) dvg = 0, t ≥ 0.

Of course, for weak solutions, (3.7)-(3.8) will hold as inequalities, only. In spher-
ical coordinates, equation (3.7) reads

∂t(U(u) sin θ) +
∂

∂ϕ
(Fϕ(u, ϕ, θ) sin θ) +

∂

∂θ
(F θ(u, ϕ, θ) sin θ) = 0.

Proof. Following [1] we multiply (3.3) by U ′(u) and get

∂t(U(u)) + U ′(u)∇g ·
(
f(u(t, x), x)

)
= 0.

Using (2.5) with F instead of f , we find

∇g ·
(
F (u(t, x), x)

)
= (∇g ·F )(u, x) + du(Fu(u, x))

=

∫ u

0

U ′(v)(∇g ·fu)(v, x) dv + U ′(u)du(fu(u, x)).

Again by (2.5), since f is divergence-free, the first term above vanishes and

U ′(u)du(fu(u, x)) = U ′(u)∇g ·(f(u, x)),
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so that

∇g ·
(
F (u(t, x), x)

)
= U ′(u)∇g ·(f(u, x)),

which proves (3.7).
Furthermore, since S2 has no boundary, the integral of the divergence of any

vector field vanishes, thus yielding (3.8).
It is illustrative to also derive the equation (3.7) using spherical coordinates. To

simplify the notation we set

hi = f i sin θ, i = ϕ, θ; ∂α =
∂

∂α
, α = ϕ, θ.

We denote here by hi
u, hi

ϕ, hi
θ respectively the derivatives of hi with respect to the

first, the second, and the third variables. Then, the equation (3.7) becomes

∂t(u sin θ) + ∂ϕ

(
hϕ(u, ϕ, θ)

)
+ ∂θ

(
hθ(u, ϕ, θ)

)
= 0.

Multiplying it by U ′(u), we get

0 = ∂t(U(u) sin θ) + U ′(u)∂ϕ(hϕ) + U ′(u)∂θ(h
θ)

= ∂t(U(u) sin θ) + U ′(u)
(
hϕ

ϕ + hϕ
u∂ϕu

)
+ U ′(u)

(
hθ

θ + hθ
u∂θu

)
,

or equivalently, with H := F sin θ, so that H i
u = F i

u sin θ,

∂t(U(u) sin θ) + Hϕ
u ∂ϕu + Hθ

u∂θu + U ′(u)(hϕ
ϕ + hθ

θ)

= ∂t(U(u) sin θ) + ∂ϕHϕ + ∂θH
θ + Q = 0,

where

Q = U ′(u)(hϕ
ϕ + hθ

θ) − Hϕ
ϕ − Hθ

θ .

Suppose now that the condition (3.6) is satisfied, that is, hϕ
ϕ + hθ

θ = 0 for all u ∈ R.
Then, we have

Hϕ
ϕ + Hθ

θ =

∫ u

0

U ′(v)(hϕ
u,ϕ + hθ

u,θ) dv =

∫ u

0

U ′(v)(hϕ
ϕ + hθ

θ)u dv = 0,

and therefore Q = 0, which completes the derivation of (3.7) in spherical coordinates.

3.2. Embedded representation of S2. In the embedded approach, the sphere
S2 is regarded as a submanifold of the Euclidian space R3, via some isometric em-
bedding h : S2 → R3. The canonical Riemannian metric g on S2 is induced by the
canonical metric ĝ on the Euclidian space R3, by g = h⋆ĝ, where, by definition, the
pull-back h⋆ maps the 2-tensor field ĝ on R3 to the 2-tensor field g on S2, as follows:

(3.9) (h⋆ĝ)(ξ, η) := ĝ(h⋆ξ, h⋆η), ξ, η ∈ TS2.

The tangent vector h⋆ξ is the push-forward of ξ ∈ TS2 into R3:

(3.10) (h⋆ξ)(f) := ξ(f ◦ h) for every function f : R3 → R.

From now on we fix some local coordinates (xi)i=1,2 on S2 (for instance, the spher-
ical coordinates described above) as well as some orthonormal coordinates (x̂α)α=1,2,3

on R3. In particular, we have ĝαβ = δαβ (the Kronecker symbol).
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We have

(3.11) (h⋆ξ)
α =

∂x̂α

∂xi
ξi,

so that we may compute the expression of the metric tensor g in these local coordi-
nates:

gijξ
iηj = ĝαβ (h⋆ξ)

α (h⋆η)β

=
∂x̂α

∂xi

∂x̂α

∂xj
ξi ηj ,

where x̂α := ĝαβx̂β . From this, it follows that

(3.12) gij =
∂x̂α

∂xi

∂x̂α

∂xj
.

In other words, we have (gij) = J t J , where J =
(
∂x̂α/∂xj

)
is the Jacobian matrix of

the embedding h.
In what follows, all vectors are considered to be in R3, unless otherwise stated. A

vector tangent to the submanifold S2 of R3 is regarded as an element of R3 through
the identification

TxS2 ⊂ TxR3 ≃ R3.

Consider now the spherical coordinates introduced earlier. The outward unit vector
to S2 in R3 at the point x = (ϕ, θ) is given by

h(ϕ, θ) = n(x) :=
(
sin θ cosϕ, sin θ sin ϕ, cos θ

)
.

At any given point x = (ϕ, θ), a normalized basis of the tangent plane to S2 in R3

(now viewed as a two-dimensional subspace of R3) is given by the two vectors

t1(x) :=
1

sin θ

∂n

∂ϕ
=

(
− sinϕ, cosϕ, 0

)
,

t2(x) := −
∂n

∂θ
=

(
− cos θ cosϕ,− cos θ sin ϕ, sin θ

)
.

Given a vector ξ in TS2 with (intrinsic) spherical coordinates (ξϕ, ξθ), we associate
to it the vector ξ̃ ∈ R3 defined by (3.10). The components of ξ̃ in the basis (t1, t2,n)
of R3 are denoted by (ξ̃i)1≤i≤3. The vector ξ̃ is tangent to the sphere: using (3.11)
to compute its coordinates, we find

ξ̃ =
∂n

∂ϕ
ξϕ +

∂n

∂θ
ξθ = sin θ ξϕt1 − ξθt2,

so that in spherical coordinates the intrinsic and embedded coordinates of a tangent
vector are related by

(3.13) ξ̃1 = sin θ ξϕ, ξ̃2 = −ξθ, ξ̃3 = 0.

Observe that the normal vector is well-defined for all θ (and ϕ). However, the
North (θ = 0) and South (θ = π) poles are singularities for the tangent vectors in
spherical coordinates. Namely, the particular value of ϕ is irrelevant when θ = 0 or
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π; however, the tangent vectors to S2 do depend upon ϕ when θ = 0 or π, so that
a basis of the tangent space is not uniquely specified at the poles. This is consistent
with the well-known fact that any globally smooth, tangent vector field on the sphere
must vanish at least once.

In (embedded) spherical coordinates, the flux f : R × Ω → R3 has the general
form

f(u, ϕ, θ) =: f̃1(u, ϕ, θ) t1(ϕ, θ) + f̃2(u, ϕ, θ) t2(ϕ, θ).

Note that f is tangent to the sphere. In view of (3.1), (3.13), we have

f̃1 = sin θ fϕ, f̃2 = −fθ,

and the divergence operator takes the form

∇g ·f :=
1

sin θ

(∂f̃1

∂ϕ
−

∂

∂θ

(
f̃2 sin θ

))
.

In terms of the unknown function u = u(t, ϕ, θ), (3.3) is a conservation law with
non-constant coefficients posed in the rectangular domain (t, ϕ, θ) ∈ R+ × Ω:

(3.14) ∂t

(
u sin θ

)
+

∂

∂ϕ

(
f̃1(u, ϕ, θ)

)
−

∂

∂θ

(
f̃2(u, ϕ, θ) sin θ

)
= 0.

For the sake of clarity we will always state the final results in the intrinsic notation
fϕ, fθ, but in the course of the calculation it will be convenient to use the embedded
notation f̃1, f̃2, which has the advantage to be based on an orthonormal basis of R3.

Let us now define the tubular neighborhood T ⊂ R3 of S2 consisting of all spheres
with radius 1/2 < r < 3/2, so that S2 corresponds to r = 1. Then, any smooth
tangent vector field f(u, x), x ∈ S2, may be represented at each point of the sphere
by

(3.15) f(u, x) = n(x) × Φ
(
u,n(x)

)
,

where Φ(u, x), x ∈ T is a smooth vector field in T ⊂ R3. We can thus write Φ(u, x) =
Φ(u,n(x)).

Lemma 3.2. With the notation (3.15) the equation (3.14) takes the form

(3.16) ∂t

(
u sin θ

)
+

∂

∂ϕ

(
Φ(u,n(ϕ, θ)) ·

∂n

∂θ

)
−

∂

∂θ

(
Φ(u,n(ϕ, θ)) ·

∂n

∂ϕ

)
= 0,

Proof. Setting

A :=




sin θ cosϕ − sin ϕ − cos θ cosϕ
sin θ sin ϕ cosϕ − cos θ sin ϕ

cos θ 0 sin θ




we have

n = A




1
0
0


 , t1 = A




0
1
0


 , t2 = A




0
0
1


 ,
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and A−1 = At. Since det(A) = 1 the basis (t1, t2,n) is positively oriented and

n × t1 = t2, n × t2 = −t1.

Using coordinates, we have

Φ̃i(u,n(ϕ, θ)) := Φ(u,n(ϕ, θ)) · ti(ϕ, θ)

and

f(u, ϕ, θ) = n(ϕ, θ) ×
(
Φ̃1(u,n(ϕ, θ)) t1(ϕ, θ) + Φ̃2(u,n(ϕ, θ)) t2(ϕ, θ)

)

= Φ̃1(u,n(ϕ, θ)) t2(ϕ, θ) − Φ̃2(u,n(ϕ, θ)) t1(ϕ, θ),

so that f̃1 = −Φ̃2, f̃2 = Φ̃1. But

Φ̃1 =
1

sin θ

(
Φ ·

∂n

∂ϕ

)
, Φ̃2 = −

(
Φ ·

∂n

∂θ

)
,

and so

f̃1 =
(
Φ ·

∂n

∂θ

)
, f̃2 =

1

sin θ

(
Φ ·

∂n

∂ϕ

)
,

or equivalently using the intrinsic notation

fϕ =
1

sin θ

(
Φ ·

∂n

∂θ

)
, fθ = −

1

sin θ

(
Φ ·

∂n

∂ϕ

)
,

which, in view of (3.14), leads to (3.16).

Observe that, for smooth solutions, (3.16) takes the equivalent form

(3.17) ∂t

(
u sin θ

)
+ ∂uΦ(u,n(ϕ, θ)) ·

( ∂u

∂ϕ

∂n

∂θ
−

∂u

∂θ

∂n

∂ϕ

)
= 0.

We have the analogue of Proposition 3.1:

Proposition 3.3. (Embedded description.) Suppose that the vector field Φ
satisfies the divergence-free condition: for all u ∈ R and (ϕ, θ) ∈ Ω,

(3.18)
∂

∂ϕ

(
Φ(u,n(ϕ, θ)) ·

∂n

∂θ
(ϕ, θ)

)
−

∂

∂θ

(
Φ(u,n(ϕ, θ)) ·

∂n

∂ϕ
(ϕ, θ)

)
= 0

or, equivalently,

(3.19)
∂Φ

∂ϕ
(u) ·

∂n

∂θ
−

∂Φ

∂θ
(u) ·

∂n

∂ϕ
= 0.

Let U : R → R and Ψ : R × S2 → R3 be smooth maps such that

(3.20) Ψ(u,n(ϕ, θ)) =

∫ u

0

U ′(u)
∂

∂u
Φ(u,n(ϕ, θ)) du.

Then every smooth solution u of (3.16) satisfies

(3.21) ∂t

(
U(u) sin θ

)
+

∂

∂ϕ

(
Ψ(u,n(ϕ, θ)) ·

∂n

∂θ

)
−

∂

∂θ

(
Ψ(u,n(ϕ, θ)) ·

∂n

∂ϕ

)
= 0.
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Proof. Multiplying the equation (3.16) by U ′(u) we obtain

∂t

(
U(u) sin θ

)
− ∂uΨ(u,n(ϕ, θ)) · ∂θu

∂n

∂ϕ
+ ∂uΨ(u,n(ϕ, θ)) · ∂ϕu

∂n

∂θ
= 0,

thus

∂t

(
U(u) sin θ

)
− ∂θ

(
Ψ(u,n(ϕ, θ)) ·

∂n

∂ϕ

)
+ ∂ϕ

(
Ψ(u,n(ϕ, θ)) ·

∂n

∂θ

)
+ Q = 0,

where

Q := Ψθ ·
∂n

∂ϕ
− Ψϕ ·

∂n

∂θ

=

∫ u

U ′(v)Φuθ dv
∂n

∂ϕ
−

∫ u

U ′(v)Φuϕ dv
∂n

∂θ

=

∫ u

U ′(v)
(
Φθ ·

∂n

∂ϕ
− Φϕ ·

∂n

∂ϕ

)
u

dv = 0,

by the condition (3.19).

Remark 3.4. The constraint (3.18) can also be written in the form

(
DΦ ·

∂n

∂ϕ

)
·
∂n

∂θ
−

(
DΦ ·

∂n

∂θ

)
·
∂n

∂ϕ
= 0.

In particular, if the map Φ coincides with the gradient of some potential h, that is,
Φ = Dh for h : T → R, then the divergence-free condition (3.18) is automatically
satisfied.

4. Total variation diminishing estimates on the sphere S2. We are now
in a position to discuss the total variation of solutions to scalar conservation laws on
the sphere. We are going to investigate the conditions discovered in Theorem 2.3.
After comparing the intrinsic and embedded description it turned out that the second
approach led to simpler (but still not so straightforward) and more intuitive formulas.
In view of Section 3, a vector field tangent to the embedded sphere S2 can be expressed
as the cross product between the exterior normal n(x) and some other vector field
which can always be chosen to be tangent to the sphere. So, given arbitrary flux f
and vector field X let us introduce (smooth) maps Φ : R × T → R3 and Ψ : T → R3

(which are not unique) such that

(4.1)
f(u, ϕ, θ) = n(ϕ, θ) × Φ(u,n(ϕ, θ))

X(ϕ, θ) = n(ϕ, θ) × Ψ(n(ϕ, θ))

(where T ⊂ R3 is the tubular neighborhood of S2 defined in Section 3). It should be
kept in mind that all the vectors under consideration here belong to R3.

Having in mind the class of divergence-free flux, we introduce :

Definition 4.1. The flux f and vector field X are said to satisfy the gradient

condition if there exist functions a : R × R3 → R and b : R3 → R depending solely
on n = x/|x| and smooth in a neighborhood of the 2-sphere such that

(4.2) Φ(u, x) = Dxa(u, x/|x|), Ψ(x) = Dxb(x/|x|), x ∈ T.
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From the gradient condition we deduce that, for instance,

Φ = Dxa = Dna · Dx(x/|x|).

Clearly, Dx(x/|x|) · n vanishes identically, since it is the derivative of the map x/|x|
in the direction of the vector n. Therefore,

Φ · n = Ψ · n = 0,

that is, the vectors Φ and Ψ are tangent to S2. Observe also that as in Remark
3.6, the divergence-free condition is automatically satisfied for fields satisfying the
gradient condition.

Here is the main result of this section.

Theorem 4.2. Let f and X be a flux and a vector field defined on the sphere S2

respectively, satisfying the gradient condition (4.1)-(4.2) for some maps Φ, Ψ. Then,
the flux f is divergence-free and one has

(4.3) LXfu(u, ·) = 0 if and only if fu(u, ·) = C(u, ·)X, u ∈ R,

for some scalar-valued flux-function C = C(u, ·) satisfying X(C(u, ·)) = 0.
When (4.3) holds, and when (∇g ·f)(u, ·) = 0, the conservation law (3.14) decou-

ples into a one-parameter family of independent, one-dimensional conservation laws.

Hence, in the case of flux which are “gradients”, we are able to identify the class
of flux satisfying the condition of Section 2. For each u, the vectors fu(u, ·) and X are
parallel and C(u, ·) is constant along the integral curves of the vector field X . The
curved geometry of the sphere restrict the class of flux enjoying the TVD property.
This should be compared with the case of equations in the Euclidian space Rd where
no such condition is implied on the flux.

Throughout the rest of this section, a value u ∈ R is fixed and so we omit it.
Recall from Section 3 that the components (f̃1, f̃2) of f in the basis (t1, t2) of the
tangent plane to S2 at a point x(ϕ, θ) read :

f̃1 = −Φ(n) · nθ, f̃2 =
1

sin θ
Φ(n) · nϕ,

where we have used subscripts to indicate differentiation. Using the equation (3.13)
which connects these components with the intrinsic components (fϕ, fθ) of f , we find

fϕ =
1

sin θ
Φ(n) · nθ

fθ = −
1

sin θ
Φ(n) · nϕ.

A similar formula holds for X :

Xϕ =
1

sin θ
Ψ(n) · nθ

Xθ = −
1

sin θ
Ψ(n) · nϕ.

Observe now the following elementary identities:

(4.4)

nϕϕ = − sin2 θ n− sin θ cos θ nθ,

nϕθ =
cos θ

sin θ
nϕ

nθθ = −n.
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We are now in a position to reformulate the condition LXfu = 0.

Lemma 4.3. The condition LXfu = 0 is equivalent to the requirement that
Ψ = Ψ(n) satisfies the following system of partial differential equations with unknown
X :

(4.5)

(Φu · nθ)(Ψϕ · nθ) − (Φu · nϕ)(Ψθ · nθ)

= −(Ψ · nϕ)
(
(Φuθ · nθ) − (Φu · n)

)

− (Ψ · n)(Φu · nϕ) + (Ψ · nθ)(Φuϕ · nθ),

(Φu · nθ)(Ψϕ · nϕ) − (Φu · nϕ)(Ψθ · nϕ)

= (Ψ · nθ)
(
(Φuϕ · nϕ) − sin2 θ(Φu · n)

)

+ sin2 θ(Ψ · n)(Φu · nθ) − (Ψ · nϕ)(Φuθ · nϕ).

Proof. The condition on the first component, (LXfu)ϕ, of the vector LXfu reads

(Xϕ∂ϕ + Xθ∂θ)f
ϕ
u − (fϕ

u ∂ϕ + fθ
u∂θ)X

ϕ = 0,

that is

1

sin θ
(Ψ · nθ)∂ϕ(Φu · nθ) − (Ψ · nϕ)∂θ

( 1

sin θ
(Φu · nθ)

)

−
1

sin θ
(Φ · nθ)∂ϕ(Ψ · nθ) + (Φ · nϕ)∂θ

( 1

sin θ
(Ψ · nθ)

)
= 0.

This equation takes the form

(Ψ · nθ)(Φuϕ · nθ) − (Ψ · nϕ)(Φuϕ · nθ) +
cos θ

sin θ
(Ψ · nϕ)(Φu · nθ)

− (Φu · nθ)(Ψϕ · nθ) + (Φu · nϕ)(Ψθ · nθ) −
cos θ

sin θ
(Φu · nϕ)(Ψ · nθ)

+ (Ψ · nθ)(Φu · nϕθ) − (Ψ · nϕ)(Φu · nθθ)

− (Φu · nθ)(Ψ · nθϕ) + (Φu · nϕ)(Ψ · nθθ) = 0.

In view of (4.4), all terms above which contain the factor (cos θ/ sin θ) cancel out.
Using that nθθ = −n and re-arranging the terms leads to the first equation.

The second equation is obtained similarly, by developing

(LXfu)θ = (Xϕ∂ϕ + Xθ∂θ)f
θ
u − (fϕ

u ∂ϕ + fθ
u∂θ)X

θ

and using (4.4).

We now show:

Lemma 4.4. A point x ∈ S2 being fixed, there exist non-trivial flux f and vector
fields X satisfying the gradient condition, and possibly defined in a small neighborhood
of x only, such that LXfu = 0. These vector fields are characterized explicitly by the
condition

X × fu = C̃ n

for some scalar C̃ = C̃(u) (independent of x). Among these solutions, the only flux
f and vector field X that are globally defined and smooth on the whole sphere S2 are
given by

fu(u, ·) = C(u, ·)X,



HYPERBOLIC CONSERVATION LAWS ON MANIFOLDS 309

where C = C(, ·) is a (scalar-valued) function such that X(C(u, ·)) = 0.

Vector fields that are defined locally on S2 may still be useful to control the total
variation in a domain of dependence, but they do not provide information on the
large-time behavior of solutions.

Proof. First, let us show that for i = ϕ, θ we have ai = Φ · ni and bi = Ψ · ni

(subscripts indicate differentiation). A straightforward calculation shows that

Dxa = Dna · Dx

(
x

|x|

)
= Dna ·

(
Id − n ⊗ n

|x|

)
.

In particular, restricting the formula to the sphere we find Dxa = Dna · (Id−n⊗ n),
and therefore

ai = Dna · ni = Dna · (Id − n ⊗ n) + Dna · (n ⊗ n) · ni = Dxa · ni = Φ · ni,

because (n ⊗ n) · ni = 0. In consequence, we now simply write Da, Db. Recalling
that by assumption we have Da · n = Db · n = 0, we can rewrite (4.5) in terms of b:

(4.6)
auθ(∂ϕDb · nθ) − auϕ(∂θDb · nθ) = −bϕ(∂θDau · nθ) + bθ(∂ϕDau · nθ),

auθ(∂ϕDb · nϕ) − auϕ(∂θDb · nϕ) = bθ(∂ϕDau · nϕ) − bϕ(∂θDau · nϕ).

This is now a system in the scalar variable b. Furthermore, using (4.4) we find

auθθ = ∂θ(Dau · nθ) = ∂θDau · nθ − Dau · n = ∂θDau · nθ ,

auϕϕ = ∂ϕDau · nϕ + Dau · nϕϕ = ∂ϕDau · nϕ − sin θ cos θ auθ,

auθϕ = ∂ϕDau · nθ + Dau · nϕθ = ∂ϕDau · nθ +
cos θ

sin θ
Dau · nϕ = ∂ϕDau · nθ +

cos θ

sin θ
auϕ,

so that

∂θDau · nθ = auθθ,

∂ϕDau · nϕ = auϕϕ + sin θ cos θ auθ,

∂ϕDau · nθ = auθϕ −
cos θ

sin θ
auϕ.

Similarly, we obtain

∂θDb · nθ = bθθ

∂ϕDb · nϕ = bϕϕ + sin θ cos θ bθ

∂ϕDb · nθ = bθϕ −
cos θ

sin θ
bϕ

and, therefore, the first equation of the system (4.6) becomes

bϕ auθθ + bϕθ auθ − auϕ bθθ − bθ auϕθ =
cos θ

sin θ
(auθ bϕ − bθ auϕ).

This is equivalent to saying

(
auθ bϕ − bθ auϕ

)
θ

=
cos θ

sin θ

(
auθ bϕ − bθ auϕ

)
,
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which, after integration, leads to

auθ bϕ − bθ auϕ = sin θ eG(ϕ)

for some function G = G(ϕ).
As for the second equation in (4.6), we have

auθ bϕϕ + bϕ auθϕ − bθ auϕϕ − auϕ bϕθ + sin θ cos θ auθbθ − sin θ cos θ bθauθ

=
cos θ

sin θ

(
auϕ bϕ − bϕ auϕ

)
,

so that
(
auθ bϕ − bθ auϕ

)
ϕ

= 0

and auθ bϕ − bθ auϕ is a function of θ alone. Therefore, G = G(ϕ) is a constant and
we find

auθ bϕ − bθ auϕ = C sin θ

for some scalar C = C(u).
The condition above can be written in terms of the original components of fu and

X , yielding

fθ
uXϕ − fϕ

u Xθ =
C

sin θ

and, for the embedded components,

f̃2
uX̃1 − f̃1

uX̃2 = C.

Since X and fu are both tangent to the sphere, the last equation means that there
exists a constant C such that

X × fu = C n

for all x ∈ S2, so

|X × fu| = C, x ∈ S2.

This formula describes vector fields that satisfy the constraint but may not be globally
smooth.

Imposing now that X is smooth, we deduce that it must vanish at least once
on the sphere, as must the flux fu. By continuity, we necessarily have C = 0 so
that fu and X are colinear. This means that there exists a function C(u, x) such
that fu = C X for all x ∈ S2. Finally, substituting fu for C X in LXfu = 0 yields
X(C) = 0. This completes the proof of Lemma 4.4.

Proof of Theorem 4.2. The first claim of the theorem is an immediate consequence
of Lemma 4.4.

The equations are written along any integral curve of the vector field X . To see
this, fix a point x ∈ S2 and introduce a parametrization s 7→ ϕ(s) of the (unique,
integral) curve passing through x and such that the velocity vector d

ds
ϕ(s) equals the

vector X for every s. Then define the function

ũ(t, s) := u(t, ϕ(s)), t ≥ 0, s ∈ R.
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Note that since X(C) = 0 we have C(ũ(t, s), ϕ(s)) =: C̃(ũ) for all s. Therefore, using
(4.3) and (2.5), we deduce that

∂sC̃(ũ(t, s)) = C̃u(ũ(t, s))X(ϕ(s))(u) = du
(
C̃u(u(t, ϕ(s)))X(ϕ(s))

)

= ∇g ·
(
f(u(t, ϕ(s)), ϕ(s))

)
= −∂tu(t, ϕ(s)) = −∂tũ(t, s),

thus

∂tu(t, s) + ∂sC̃(u(t, s)) = 0.

Note that this is a one-dimensional conservation law in which the flux C̃ does not
explicitly depend on the spatial coordinate. By Theorem 2.3, these conservation laws
admit total variation bounds of the form (2.3), provided that f is divergence-free.

5. Finite volume method. The rest of this paper is devoted to establishing
the convergence of the finite volume method on a d-dimensional Riemannian manifold
(M, g). We will construct approximate solutions to the Cauchy problem associated
with the conservation law (1.1) and the initial condition (u0 ∈ L1(M) ∩ L∞(M))

(5.1) u(0, x) = u0(x), x ∈ M,

using a finite volume method based on monotone numerical flux-functions, and we will
establish that such approximations converge strongly to the unique entropy solution
of the problem. We need not assume that the flux f is divergence free (see (1.2)), and
on the map ∇g ·f we require the following growth condition

(5.2) |∇g ·f(u, x)| ≤ C1 + C2|u|, (u, x) ∈ R × M,

for some constants C1, C2 > 0.
Let us introduce a triangulation T h of M , that is, a set of curved polyhedra

K ⊂ M whose vertices are joined by geodesic lines. We assume that M =
⋃

K∈T h K

and that for every distinct elements K1, K2 ∈ T h, the set K1∩K2 is either a common
face of K1, K2 or else a submanifold with dimension at most (d− 2). To each element
K we associate the set ∂K of its faces e, and we denote by Ke the unique element
distinct from K sharing the face e with K. The outward unit normal to an element
K at some point x ∈ e is denoted by ne,K(x) ∈ TxM . Finally, |K| and |e| denote
the d- and (d − 1)-dimensional Hausdorff measures of K and e, respectively, and
pK =

∑
e∈∂K |e| is the measure of the boundary of K. When N is a submanifold of

M , we denote by dvN the volume element on N induced by the metric g.
We impose that

(5.3) h := sup
x,y∈K

K∈T h

dg(x, y) → 0,

where dg(·, ·) is the distance function associated to the metric g. In particular, el-
ements may become flat in the limit as h tends to zero. Interestingly enough, this
condition on h is slightly more general than the corresponding condition in [2], where
the exterior diameter of the elements was considered. We denote the time increment
of the discretization by τ = τ(h), and set tn := τn for n = 0, 1, . . .. We also assume
that, as h tends to zero,

(5.4) τ → 0, h2/τ → 0.
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To each element K and each edge e ∈ ∂K we associate a family of locally Lip-
schitz continuous, numerical flux-functions fe,K : R × R → R satisfying the following
properties.

• Consistency property :

(5.5) fe,K(u, u) =
1

|e|

∫

e

g
(
f(u, x),ne,K(x)

)
dve, u ∈ R.

• Conservation property :

(5.6) fe,K(u, v) = −fe,Ke
(v, u), u, v ∈ R.

• Monotonicity property :

(5.7)
∂

∂u
fe,K ≥ 0,

∂

∂v
fe,K ≤ 0.

Note that, in the Euclidian case and when the flux depends only on the conser-
vative variable, the consistency condition (5.5) reads fe,K(u, u) = f(u) · ne,K , which
is the usual consistency condition (cf. [2]). For the sake of stability we impose the
following CFL condition, for every element K ∈ T :

τpK

|K|
max

K∈T h,e∈∂K
sup

u,v∈R,u6=v

∣∣∣fe,K(u, v) − fe,K(v, v)

u − v

∣∣∣ < 1,

τpK

|K|
Lip(f) < 1,

(5.8)

where

Lip(f) := sup
x∈M
u∈R

∣∣∣ df

du
(u, x)

∣∣∣
g

and | · |g represents the norm induced on each tangent space TxM by the metric g.
As in the Euclidian case, the finite volume method can be motivated by formally

averaging the conservation law (1.1) over an element K and using Stokes’ theorem:

0 =
d

dt

1

|K|

∫

K

u dvM +
1

|K|

∫

K

∇g ·f(u, x) dvM

=
d

dt

1

|K|

∫

K

u dvM +
1

|K|

∫

∂K

g
(
f(u, x),n(x)

)
dv∂K

=
d

dt

1

|K|

∫

K

u dvM +
1

|K|

∑

e∈∂K

∫

e

g
(
f(u, x),ne,K(x)

)
dve.

We then introduce the approximation

un
K ≈

1

|K|

∫

K

u dvM , fe,K(un
K , un

Ke
) ≈

1

|e|

∫

e

g
(
f(u, x),ne,K(x)

)
dve

and discretize the time derivative with a two-point scheme.
Based on the above the finite volume approximations are defined by

(5.9) un+1
K := un

K −
∑

e∈∂K

τ |e|

|K|
fe,K(un

K , un
Ke

).
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The initial condition (5.1) gives us

(5.10) u0
K :=

1

|K|

∫

K

u0(x) dvM .

Finally we define the function uh : R+ × M → R by

(5.11) uh(t, x) = un
K , x ∈ K, tn ≤ t ≤ tn+1.

We can now state our main convergence result.

Theorem 5.1. Consider the Cauchy problem (1.1)-(5.1) associated with a
conservation law on the Riemannian manifold (M, g) and some initial data u0 ∈
L1(M) ∩ L∞(M). Suppose that the flux satisfies the growth condition (5.2). Let
T h be a triangulation and τ = τ(h) be a time increment satisfying the conditions
(5.3)-(5.4), and let fe,K be a family of numerical flux-functions satisfying the consis-
tency, conservation, and monotonicity conditions (5.5)–(5.8). Let uh : R+ × M → R

be the sequence of approximate solutions constructed by the finite volume method
(5.9)–(5.11). Then, for all T > 0, the sequence uh is uniformly bounded in
L∞([0, T ), L1(M) ∩ L∞(M)) and converges almost everywhere towards the unique
entropy solution u ∈ L∞(R+, L1(M) ∩ L∞(M)) of the Cauchy problem (1.1)-(5.1).

The proof of this theorem is the subject of the next section.

Remark 5.2. Without loss of generality, we may assume that Lip(f) > 0. In-
deed, in the trivial case Lip(f) = 0, f does not depend on u and the conservation
law (1.1) has the explicit solution u(t, x) = u0(x)− t∇g ·f(x). Thus, for any triangu-
lation, if we set fe,K := 1

|e|

∫
e
g(f(x),n(x)) dve, we immediately find from (5.9) that

un
K = u0

K − nτ∇g ·f(x) for all K. This gives uh(t, x) = uh(0, x) − t∇g ·f(x), and so
limh→0 uh(t, x) = u0(x) − t∇g ·f(x), which is the exact solution.

6. Proof of convergence. This section contains the proof of Theorem 5.1.
We follow the strategy of proof proposed by Cockburn, Coquel, and LeFloch in the
Euclidian case [2]. As we will see, the derivation of the required estimates for a
conservation law on a manifold is significantly more involved.

6.1. Discrete maximum principle, entropy dissipation and entropy in-

equalities. We begin with the discrete maximum principle and the L1 contraction
principle.

Lemma 6.1. The finite volume approximations satisfy

(6.1) max
K∈T h

|un
K | ≤

(
max

K∈T h

|u0
K | + C1tn

)
eC2tn ,

and, given another approximation sequence vh (defined in the obvious way from a
different initial data v0 ∈ L1(M) ∩ L∞(M)),

(6.2) ‖uh(t + τ) − vh(t + τ)‖L1(M) ≤ ‖uh(t) − vh(t)‖L1(M).

Proof. Let us first point out the following discrete version of Gronwall’s inequality:
if wn is a non-negative sequence satisfying w0 ≤ a and

(6.3) wn ≤ a + b

n−1∑

j=1

wj , n ≥ 1,
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for some non-negative constants a, b, then it follows that

(6.4) wn ≤ a ebn.

Namely, let us define φn by φ0 = a and

φn := a + b

n−1∑

j=1

φj .

We have φn−φn−1 = bφn−1, or φn = (1+b)φn−1. By induction we get φn = a(1+b)n,
and the desired estimate now follows from 1 + b ≤ eb and wn ≤ φn.

Let us turn to the proof of (6.1). Using (5.9) and the consistency condition (5.5),
we easily write
(6.5)

un+1
K =

(
1 +

τ

|K|

∑

e∈∂K

fe,K(un
K , un

Ke
) − fe,K(un

K , un
K)

un
Ke

− un
K

|e|

)
un

K

−
τ

|K|

∑

e∈∂K

fe,K(un
K , un

Ke
) − fe,K(un

K , un
K)

un
Ke

− un
K

|e|un
Ke

−
τ

|K|

∫

K

∇g ·f(un
K , x) dvM .

The monotonicity condition (5.7) implies

−
τ

|K|

∑

e∈∂K

fe,K(un
K , un

Ke
) − fe,K(un

K , un
K)

un
Ke

− un
K

≥ 0,

so that, using the CFL condition (5.8),

−
τ |e|

|K|

∑

e∈∂K

fe,K(un
K , un

Ke
) − fe,K(un

K , un
K)

un
Ke

− un
K

≤
τ pK

|K|
Lip(f) ≤ 1.

Thus, we see that un+1
K is a convex combination of un

K and (un
Ke

)e∈∂K , up to a
divergence term in (6.5). Therefore, we can write

un+1
K ≤ max(un

K , max
e∈∂K

un
Ke

) −
τ

|K|

∫

K

∇g ·f(un
K , x) dvM ,

un+1
K ≥ min(un

K , min
e∈∂K

un
Ke

) −
τ

|K|

∫

K

∇g ·f(un
K , x) dvM ,

and, by induction,

|un
K | ≤ max

K∈T h

|u0
K | +

n−1∑

j=0

τ max
K∈T h

1

|K|

∫

K

|∇g ·f(uj
K , x)| dvM

≤ max
K∈T h

|u0
K | +

n−1∑

j=0

τ max
K∈T h

(
C1 + C2|u

j
K |

)

≤ max
K∈T h

|u0
K | + nτC1 +

n−1∑

j=0

τC2 max
K∈T h

|uj
K |

for all n > 0. Using Gronwall’s inequality (6.3)-(6.4) we arrive at the desired inequality
(6.1).
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We now turn to the proof of the L1 contraction property (6.2). It will follow
immediately once we check that

(6.6)
∑

K∈T h

|un+1
K − vn+1

K ||K| ≤
∑

K∈T h

|un
K − vn

K ||K|.

Introduce the discrete solution operator H ,

un+1 ≡ (un+1
K )K∈T h = (HK(un))K∈T h =: H(un).

Using the CFL and monotonicity conditions (5.8) and (5.7), it is easy to check that
H is a monotone operator:

(
un

K ≤ vn
K , K ∈ T h

)
⇒

(
HK(un

K) ≤ HK(vn
K), K ∈ T h

)
.

Setting a∧ b = max(a, b) and a∨ b = min(a, b), we have HK(un
K ∨ vn

K) = un+1
K ∨ vn+1

K

and HK(un
K ∧ vn

K) = un+1
K ∧ vn+1

K . Next, using the definition (5.9) we find

un+1
K ∨ vn+1

K − un+1
K ∧ vn+1

K = un
K ∨ vn

K − un
K ∧ vn

K

−
∑

e∈∂K

τ |e|

|K|

(
fe,K(un

K ∨ vn
K , (un

K ∨ vn
K)e) − fe,K(un

K ∧ vn
K , (un

K ∧ vn
K)e)

)
.

Observe now that

(un
K ∨ vn

K)e ≤ un
Ke

∨ vn
Ke

and (un
K ∧ vn

K)e ≥ un
Ke

∧ vn
Ke

.

This, together with ∂fe,K/∂v ≤ 0, implies that

fe,K(un
K ∨ vn

K , (un
K ∨ vn

K)e) − fe,K(un
K ∧ vn

K , (un
K ∧ vn

K)e)

≥ fe,K(un
K ∨ vn

K , un
Ke

∨ vn
Ke

) − fe,K(un
K ∧ vn

K , un
Ke

∧ vn
Ke

),

so that

un+1
K ∨ vn+1

K − un+1
K ∧ vn+1

K ≤ un
K ∨ vn

K − un
K ∧ vn

K

−
∑

e∈∂K

τ |e|

|K|

(
fe,K(un

K ∨ vn
K , un

Ke
∨ vn

Ke
) − fe,K(un

K ∧ vn
K , un

Ke
∧ vn

Ke
)
)
.

The inequality (6.6) now follows by multiplying by |K| and summing in K ∈ T h, since
the conservation property (5.6) allows us to cancel all of the numerical flux terms.
The proof of Lemma 6.1 is complete.

The discrete entropy inequalities will be formulated in terms of the following
convex decomposition of un

K . For each K, e, define (cf. [2], formula (3.6))

(6.7) ũn+1
K,e := un

K −
τpK

|K|

(
fe,K(un

K , un
Ke

) − fe,K(un
K , un

K)
)

and set

(6.8) un+1
K,e := ũn+1

K,e −
τ

|K|

∫

K

∇g ·f(un
K , x) dvM .

In view of (5.9) and the consistency property (5.5), we have

(6.9) un+1
K =

1

pK

∑

e∈∂K

|e|un+1
K,e .
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The following lemma establishes the existence of numerical flux terms and a first
entropy inequality relating ũn+1

K,e and un
K . We omit the proof and refer to [2] and the

references therein.

Lemma 6.2. Let (U, F ) = (U(u), F (u, x)) be a convex entropy pair. Then there
exists a family of numerical flux functions Fe,K : R2 → R satisfying the following
conditions:

• Fe,K is consistent with the entropy flux F :

Fe,K(u, u) =
1

|e|

∫

e

g
(
F (u, x),ne,K(x)

)
dve, u ∈ R.

• Conservation property :

Fe,K(u, v) = −Fe,Ke
(v, u), u, v ∈ R.

• Discrete entropy inequality:

(6.10) U(ũn+1
K,e ) − U(un

K) +
τpK

|K|

(
Fe,K(un

K , un
Ke

) − Fe,K(un
K , un

K)
)
≤ 0.

We can now write the discrete entropy inequality in terms of un+1
K,e and un

K

(see (6.10)) :

U(un+1
K,e ) − U(un

K) +
τpK

|K|

(
Fe,K(un

K , un
Ke

) − Fe,K(un
K , un

K)
)
≤ Rn+1

K,e ,

Rn+1
K,e := U(un+1

K,e ) − U(ũn+1
K,e ).

(6.11)

The following entropy dissipation estimate is the key to the proof of convergence,
as was observed in the Euclidian case by Cockburn, Coquel, and LeFloch [2].

Proposition 6.3. Let U : R → R be a strictly convex, smooth function. Then,
for all n we have

(6.12)

∑

K∈T h

U(un+1
K )|K| +

α

2

∑

K∈T h

e∈∂K

|e||K|

pK

∣∣un+1
K,e − un+1

K

∣∣2

≤
∑

K∈T h

e∈∂K

U(un
K)|K| +

∑

K∈T h

e∈∂K

τ |e|Fe,K(un
K , un

K) +
∑

K∈T h

e∈∂K

|e||K|

pK

Rn+1
K,e ,

where α denotes the modulus of convexity of U .

Proof. First, we observe that from an elementary lemma on convex functions
(Lemma 3.5 of [2]) and (6.9) one easily obtains

(6.13)
∑

K∈T h

|K|U(un+1
K ) +

α

2

∑

K∈T h

e∈∂K

|e||K|

pK

∣∣un+1
K,e − un+1

K

∣∣2 ≤
∑

K∈T h

e∈∂K

|e||K|

pK

U(un+1
K,e ).

Next, we sum up the inequality (6.11) with respect to all K and e, and divide by pK

to obtain
(6.14)X
K∈T h

e∈∂K

|e||K|

pK

U(un+1
K,e ) −

X
K∈T h

U(un
K)|K| −

X
K∈T h

e∈∂K

τ |e|Fe,K(un
K , u

n
K) −

X
K∈T h

e∈∂K

|e||K|

pK

R
n+1
K,e ≤ 0.
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Note that, again, all of the flux terms Fe,K(un
K , un

Ke
) cancel out due to conservation.

Combining (6.14) with (6.13) gives (6.12). The proof of Proposition 6.3 is complete.

As a consequence of the entropy dissipation estimate (6.12), one can deduce the
following bound:

(6.15)

N∑

n=1

∑

K∈T h

e∈∂K

|e||K|

pK

∣∣un
K,e − un

K

∣∣2 ≤ ‖u0‖
2
L2(M) + C(T ),

where C(T ) is a constant depending only on T and N is an integer such that T −Nτ <
τ . For instance, it suffices to take U(u) = u2/2 in (6.12).

We now derive a local entropy inequality which does not involve the numerical
flux and is a consequence of the inequality (6.11). The proof is completely similar to
that of Lemma 3.6 in [2] and we omit it. This inequality will then allow us to prove
a global discrete entropy inequality.

Lemma 6.4. Let (U, F ) be a convex entropy pair. Then for all elements K and
all faces e ∈ ∂K, we have

(6.16)

|K|

pK

U(un+1
K,e ) −

|K|

pK

U(un
K) +

|Ke|

pKe

U(un+1
Ke,e) −

|Ke|

pKe

U(un
Ke

)

+
τ

|e|

∫

e

g
(
F (un

Ke
, x) − F (un

K , x),ne,K(x)
)
dve ≤

|K|

pK

Rn+1
K,e +

|Ke|

pKe

Rn+1
Ke,e,

where Rn+1
K,e is defined in (6.11).

Proposition 6.5. Let (U, F ) be a convex entropy pair and let φ = φ(t, x) ∈
Cc

(
[0, T )× M

)
be a test function. For each element K and each face e of K, set

(6.17) φn
e =

1

τ |e|

∫ tn+1

tn

∫

e

φ(t, x) dvedt, φ̂n
K =

∑

e∈∂K

|e|

pK

φn
e ,

(6.18) ∂̂tφK

n
=

1

τ
(φ̂n

K − φ̂n−1
K ).

Then, un
K satisfies the following inequality:

(6.19)

−
N∑

n=0

∑

K∈T h

∫ tn+1

tn

∫

K

(
U(un

K)∂̂tφK

n
+ g

(
F (un

K , x),∇gφ(t, x)
))

dvMdt

+
∑

K∈T h

∫

K

U(u0
K)φ̂0

K dvM ≤ Eh + Qh + Rh,

where the error terms Eh, Qh and Rh are given by

(6.20) Eh =

N∑

n=0

∑

K∈T h

e∈∂K

|e||K|

pK

U(un+1
K,e )(φ̂n

K − φn
e ),
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(6.21)

Qh :=

N∑

n=0

∑

K∈T h

Qn
K ,

Qn
K :=

∑

e∈∂K

τ

∫

e

g
(
F (un

K , x),ne,K(x)
)
dve φn

e

−

∫ tn+1

tn

∫

K

g
(
F (un

K , x),∇gφ(t, x)
)
dvKdt,

Rh =

N∑

n=0

∑

K∈T h

e∈∂K

|K||e|

pK

φn
e Rn+1

K,e

Rn+1
K,e = U(un+1

K,e ) − U(ũn+1
K,e ).

(6.22)

Proof. Multiply the inequality (6.16) by φn
e |e| and sum over all K ∈ T h, e ∈ ∂K.

Note that the first four terms in (6.16), as well as the last, give the same result whether
they involve K or Ke (since the sum is taken over the same set of elements). We thus
obtain

2
X

K∈T h

e∈∂K

|K||e|

pK

�
U(un+1

K,e ) − U(un
K)
�
φ

n
e

+
X

K∈T h

e∈∂K

τ |e|φn
e

� 1

|e|

Z
e

g
�
F (un

Ke
, x) − F (un

K , x),ne,K(x)
�
dve

�
≤ 2

X
K∈T h

e∈∂K

|K||e|

pK

R
n+1
K,e φ

n
e .

Also, due to the conservation and consistency properties of Fe,K we have

∑

K∈T h

e∈∂K

1

|e|

∫

e

g
(
F (un

K , x),ne,K(x)
)
dve = −

∑

K∈T h

e∈∂K

1

|e|

∫

e

g
(
F (un

Ke
, x),ne,K(x)

)
dve,

which implies

(6.23)

∑

K∈T h

e∈∂K

|K||e|

pK

(
U(un+1

K,e ) − U(un
K)

)
φn

e

−
∑

K∈T h

e∈∂K

τ |e|φn
e

1

|e|

∫

e

g
(
F (un

K , x),ne,K(x)
)
dve ≤

∑

K∈T h

e∈∂K

|K||e|

pK

Rn+1
K,e φn

e .

Observe now that, setting Qn
K as in (6.21), we deduce from the definition of φn

e

(see (6.17)) that

(6.24)

∑

K∈T h

e∈∂K

τ |e|φn
e

1

|e|

∫

e

g
(
F (un

K , x),ne,K(x)
)
dve

=
∑

K∈T h

∫ tn+1

tn

∫

K

g
(
F (un

K , x),∇φ(t, x)
)
dvMdt +

∑

K∈T h

Qn
K .
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From the convexity of U and Jensen’s inequality, we see that

(6.25)
∑

K∈T h

|K|U(un+1
K )φ̂n

K ≤
∑

K∈T h

e∈∂K

|K||e|

pK

U(un+1
K,e )φ̂n

K .

Thus, from (6.23), (6.24) and (6.25) and after summation in n, we obtain

NX
n=0

X
K∈T h

|K|
�
U(un+1

K ) − U(un
K)
�
φ̂

n
K −

NX
n=0

X
K∈T h

Z tn+1

tn

Z
K

g
�
F (un

K , x),∇φ(t, x)
�
dvMdt

≤ E
h +

NX
n=0

X
K∈T h

Q
n
K +

NX
n=0

X
K∈T h

e∈∂K

|K||e|

pK
φ

n
e R

n+1
K,e ,

with Eh given by (6.20). Summing by parts in the first term, one obtains the desired
entropy inequality (6.19). The proof of Proposition 6.5 is complete.

6.2. Measure-valued solutions and convergence analysis. We now prove
the strong convergence of the approximate solutions uh given by the finite volume
method towards the entropy solution to the Cauchy problem under consideration. To
this end, we need to rely on the framework of measure-valued solutions to conservation
laws developed in [4] in the Euclidian case and extended to manifolds by Ben-Artzi
and LeFloch [1]. The key question is to justify the passage to the limit as h → 0 in
the inequality (6.19) and use the entropy dissipation estimate (6.15) to control the
error terms.

It is well-known that to the sequence uh (which is uniformly bounded in
L∞([0, T )×M) for every T > 0) we can associate a subsequence and a Young measure
ν : [0, T )×M → Prob(R), which is a family of probability measures in R parametrized
by (t, x) ∈ [0, T ) × M . The Young measure allows us to determine all weak-∗ limits
of composite functions a(uh), for arbitrary real continuous functions a, according to
the following property :

(6.26) a(uh)
∗
⇀ 〈ν, a〉 when h → 0

where we use the notation

〈ν, a〉 :=

∫

R

a(λ) dν(λ).

In view of the above property, the passage to the limit in the left hand side of
(6.19) is (almost) immediate. The key uniqueness theorem [4, 1] tells us that once
we know that ν is a measure-valued solution to the conservation law, we can prove
that the support of each probability measure νt,x actually reduces to a single point
u(t, x), if the same is true for t = 0, that is, νt,x is the Dirac measure δu(t,x). It is
then standard to deduce that the convergence in (6.26) is actually strong, and that,
in particular, uh converges strongly to u which in turn is the unique entropy solution
of the Cauchy problem under consideration.

Lemma 6.6. Let ν : [0, T ) × M → Prob(R) be a Young measure associated with
the sequence uh. Then, for every convex entropy / entropy-flux pair (U, F ) and for
every non-negative, smooth function φ : [0, T ) × M → R+ with compact support, one
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has
(6.27)

−

Z T

0

Z
M

〈νt,x, U(·)〉∂tφ(t, x) + g
�
〈νt,x, F (·, x)〉,∇φ(t, x)

�
dvMdt +

Z
M

U(u0(x))φ(0, x) dvM

≤

Z T

0

Z
M

〈νt,x,∇g ·F (·, x)〉φ(t, x)dvMdt −

Z T

0

Z
M

〈νt,x, U
′(·)∇g ·f(·, x)〉φ(t, x) dvMdt.

Proof. First, we claim that the discretizations (6.17), (6.18) satisfy the following
estimates, whose proofs are elementary:

sup
t∈[tn,tn+1]

x∈K

∣∣∂tφ(t, x) − ∂̂tφk

n∣∣ ≤ (τ + hK)‖φ‖C2([tn,tn+1]×K),

and, for each face e,

|φn
e − φ̂n

K | ≤ (τ + hK)‖φ‖C1([tn,tn+1]×K).

In view of these estimates and (6.26), the left hand side of (6.19) converges to the
left-hand side of (6.27).

We now consider the error terms on the right-hand side of (6.19). First, note
that Eh equals the corresponding one in [2], so we refer the reader to that paper for
a proof that Eh converges to zero. Note that the use of estimate (6.15) is essential in
that proof.

Next, let us prove that

(6.28) lim
h→0

Rh = −

∫ T

0

∫

M

〈νt,x, U ′(·)∇g ·f(·, x)〉φ(t, x) dvM dt.

Recall that Rh is given by (6.22). Introducing the averages

φn
K :=

1

|K|τ

∫ tn+1

tn

∫

K

φ(t, x) dvM dt,

we claim that it suffices to prove that

(6.29) lim
h→0

(
Rh +

∑

n

∑

K∈T h

U ′(un
K)τ

∫

K

∇g ·f(un
K , x) dvM φn

K

)
= 0.

Indeed, we have

−
∑

n

∑

K∈T h

U ′(un
K)τ

∫

K

∇g ·f(un
K , x) dvM φn

K

= −
∑

n

∑

K∈T h

U ′(un
K)

∫ tn+1

tn

∫

K

∇g ·f(un
K , x)φ(t, x) dvM dt

−
∑

n

∑

K∈T h

U ′(un
K)

(∫ tn+1

tn

∫

K

∇g ·f(un
K , x) dvM

1

|K|

∫

K

φ(t, x) dvMdt

−

∫ tn+1

tn

∫

K

∇g ·f(un
K , x)φ(t, x) dvM dt

)
,
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so that taking the limit as h → 0 we find, for the first term,

lim
h→0

−

∫ T

0

∫

M

U ′(uh)∇g ·f(uh, x)φ(t, x) dvM dt

= −

∫ T

0

∫

M

〈νt,x, U ′(·)∇g ·f(·, x)〉φ(t, x) dvM dt,

while the second term easily converges to zero.

We now prove (6.29). First, observe that from the definition of φn
K , it is easy to

see that we may as well consider the term Rh with φn
K instead of φn

e . We thus have

Rh +

N∑

n=0

∑

K∈T h

e∈∂K

|K||e|

pK

U ′(un
K)

τ

|K|

∫

K

∇g ·f(un
K , x) dvM φn

K

= Rh +
N∑

n=0

∑

K∈T h

e∈∂K

|K||e|

pK

U ′(un+1
K )

τ

|K|

∫

K

∇g ·f(un+1
K , x) dvM φn+1

K

+
∑

K∈T h

e∈∂K

|K||e|

pK

U ′(u0
K)

τ

|K|

∫

K

∇g ·f(u0
K , x) dvM φ0

K

=

N∑

n=0

∑

K∈T h

e∈∂K

|K||e|

pK

φn
K

(
U(un+1

K,e ) − U(ũn+1
K,e ) + U ′(un+1

K )
τ

|K|

∫

K

∇g ·f(un+1
K , x) dvM

)

+

N∑

n=0

∑

K∈T h

e∈∂K

|K||e|

pK

U ′(un+1
K )

τ

|K|

∫

K

∇g ·f(un+1
K , x) dvM (φn+1

K − φn
K)

−
∑

K∈T h

U ′(u0
K)τ

∫

K

∇g ·f(u0
K , x) dvMφ0

K = A + B + C.

Note that all sums in n may be written from 0 to N because of the compact support
of φ.

Consider the first term, A. From the bound (5.2) on the divergence of f and from
the maximum principle (6.1) we conclude that

τ

|K|

∫

K

∇g ·f(un+1
K , x) dvM = O(τ).

Thus, Taylor developing U around the point ũn+1
K,e , and using (6.8), the definition of

un+1
K,e , we find

|A| ≤
∑

n

∑

K∈T h

e∈∂K

|K||e|

pK

∣∣∣U ′(un+1
K,e )O(τ) + O(τ2) − U ′(un+1

K )O(τ)
∣∣∣φn

K

≤ O(τ) sup U ′′
∑

n

∑

K∈T h

e∈∂K

|K||e|

pK

|un+1
K,e − un+1

K |φn
K .
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Next, using the estimate (6.15) and the Cauchy-Schwartz inequality, we find that the
term inside the sum above is bounded, so that A = O(τ).

Consider now the second term, B. The function φ is regular, so that φn+1
K −φn

K =
O(τ). Therefore, we have

|B| ≤
∑

n

∑

K∈T h

|K|O(τ2) = O(τ).

Finally, using again the bound (5.2), we see that the last term C tends to zero with
τ . This concludes the proof of (6.28).

Next, consider the term Qh =
∑

n,K Qn
K given by (6.21). Using Green’s formula,

we can write

Q
n
K =

X
e∈∂K

1

|e|

Z
e

g
�
F (un

K , x),ne,K(x)
�
dve

Z tn+1

tn

Z
e

φ(t, x) dvedt

−

Z tn+1

tn

Z
∂K

g
�
F (un

K , x)φ(t, x),n(x)
�
dv∂Kdt +

Z tn+1

tn

Z
K

∇g ·F (un
K , x)φ(t, x) dvMdt.

We wish to obtain

(6.30) lim
h→0

Qh =

∫ T

0

∫

M

〈νt,x,∇g ·F (·, x)〉φ(t, x) dvM dt,

so that according to the above equality we must prove that

(6.31)

lim
h→0

∑

n

∑

K∈T h

e∈∂K

( 1

|e|

∫

e

g
(
F (un

K , x),ne,K(x)
)
dve

∫ tn+1

tn

∫

e

φ(t, x) dvedt

−

∫ tn+1

tn

∫

e

g
(
F (un

K , x)φ(t, x),ne,K (x)
)
dv∂Kdt

)
= 0.

Let xe be any point on the edge e. Note that

∑

n

∑

K∈T h

e∈∂K

∫ tn+1

tn

∫

e

g
(
F (un

K , x),ne,K(x)
) ( 1

|e|

∫

e

φ(t, x) dve − φ(t, x)
)
dvedt

=
∑

n

∑

K∈T h

e∈∂K

∫ tn+1

tn

∫

e

(
g
(
F (un

K , x),ne,K(x)
)
− g

(
F (un

K , xe),ne,K(xe)
))

·

·
( 1

|e|

∫

e

φ(t, x) dve − φ(t, x)
)
dvedt,

so that taking absolute values and in view of the regularity of F and φ, we can bound
the last term by

CT
∑

K∈T h

pKh2.

using the CFL condition (5.8), we can finally write

∣∣∣Qh −

∫ T

0

∫

M

∇g ·F (uh, x)φ(t, x) dvM dt
∣∣∣ ≤ CT

Lip(f)

∑

K∈T h

pKh2

≤ C
∑

K∈T h

|K|

τ
h2 =

h2

τ
C|M |,
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so that taking the limit as h → 0 and using (5.4) yields

Qh →

∫ T

0

∫

M

〈νt,x,∇g ·F (·, x)〉φ(t, x) dvM dt,

which is (6.30). This completes the proof of Lemma 6.6.

Remark 6.7. From the proof of the previous lemma, we see that if the divergence-
free condition (1.2) is satisfied, then the error term Qh converges to zero with h and
Rh vanishes altogether. In that case, we obtain, instead of (6.27), the usual weak
formulation

−

∫ T

0

∫

M

〈νt,x, U(·)〉∂tφ(t, x) + g
(
〈νt,x, F (·, x)〉,∇φ(t, x)

)
dvMdt

+

∫

M

U(u0(x))φ(0, x) dvM ≤ 0.

Proof of Theorem 5.1. According to the inequality (6.27), we have for all convex
entropy pairs (U, F ),

∂t〈ν, U(·)〉 + ∇g ·(〈ν, F (·, x)〉) ≤ 〈ν, (∇g ·F )(·, x)〉 − 〈ν, U ′(·)(∇g ·f)(·, x)〉

in the sense of distributions in [0, T ) × M . Since, for t = 0, the Young measure ν is
the Dirac mass δu0

(because u0 is a bounded function), we know from [1] that there
exists a unique function u ∈ L∞([0, T ) × M) such that the measure ν remains the
Dirac mass δu for all time 0 ≤ t ≤ T . Moreover, this implies that the approximations
uh converge strongly to u on compact sets at least. This concludes the proof.
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