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Abstract The Generalized Riemann Problem (GRP) for a nonlinear hyper-
bolic system of m balance laws (or alternatively “quasi-conservative” laws) in
one space dimension is now well-known and can be formulated as follows:
Given initial-data which are analytic on two sides of a discontinuity, determine
the time evolution of the solution at the discontinuity. In particular, the GRP
numerical scheme (second-order high resolution) is based on an analytical eval-
uation of the first time derivative. It turns out that this derivative depends only
on the first-order spatial derivatives, hence the initial data can be taken as
piecewise linear. The analytical solution is readily obtained for a single equa-
tion (m = 1) and, more generally, if the system is endowed with a complete
(coordinate) set of Riemann invariants. In this case it can be “diagonalized”
and reduced to the scalar case. However, most systems with m > 2 do not admit
such a set of Riemann invariants. This paper introduces a generalization of this
concept: weakly coupled systems (WCS). Such systems have only “partial set”
of Riemann invariants, but these sets are weakly coupled in a way which enables
a “diagonalized” treatment of the GRP. An important example of a WCS is the
Euler system of compressible, nonisentropic fluid flow (m = 3). The solution
of the GRP discussed here is based on a careful analysis of rarefaction waves.
A “propagation of singularities” argument is applied to appropriate Riemann
invariants across the rarefaction fan. It serves to “rotate” initial spatial slopes
into “time derivative”. In particular, the case of a “sonic point” is incorporated
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easily into the general treatment. A GRP scheme based on this solution is
derived, and several numerical examples are presented. Special attention is
given to the “acoustic approximation” of the analytical solution. It can be
viewed as a proper linearization (different from the approach of Roe) of the
nonlinear system. The resulting numerical scheme is the simplest (second-order,
high-resolution) generalization of the Godunov scheme.

Mathematics Subject Classification (2000) 65M06 · 35L67 · 35L65 · 76N15

1 Introduction

In this paper we consider the generalized Rieman problem (GRP) for hyper-
bolic balance laws

∂U
∂t

+ ∂F(U)
∂x

= S(x, U), (1.1)

where U = (u1, . . . , um)
� is an unknown function of x and t, F = (f1, . . . , fm)

�
is the associated flux, and S(x, U) is the source term resulting from geometrical
and physical effects. We develop the method of Riemann invariants in order
to solve the generalized Riemann problem and derive a GRP high resolution
scheme for the system. Our starting point in the present study is the associated
Riemann problem, i.e., the Riemann problem for the homogeneous counter-
part of (1.1), which is assumed to be solvable theoretically and numerically. We
show that the Riemann invariants, which always exist for strictly hyperbolic
systems of two equations (i.e., m = 2), play a pivotal role in the GRP solution
for a large family of hyperbolic systems, including the system of shallow water
equations, the compressible fluid flow (both isentropic and non-isentropic) and
so on.

The GRP scheme was originally designed for compressible fluid flows [1–4].
As the extension of the Godunov scheme [9], the GRP scheme assumes piece-
wise smooth initial data and evolves the solution of (1.1) by analytically solving
the generalized Riemann problem at each cell interface with second-order accu-
racy. Specifically, we denote by Cj = [xj−1/2, xj+1/2] (∆x = xj+1/2 − xj−1/2) the
computational cell numbered j, and by {tn}∞n=0 the sequence of discretized time
levels, ∆t = tn+1 − tn. Assume that the data at time t = tn is piecewise linear
with a slope σ n

j , i.e., on Cj we have

U(x, tn) = Un
j + σ n

j (x − xj), x ∈ (xj−1/2, xj+1/2). (1.2)

Then a Godunov-type scheme of second-order usually takes the form

Un+1
j = Un

j − ∆t
∆x

(
Fn+1/2

j+1/2 − Fn+1/2
j−1/2

)
+ ∆t

2

(
Sn+1/2

j+1/2 + Sn+1/2
j−1/2

)
, (1.3)

where we use the notations

Fn+1/2
j+1/2 = F

(
Un+1/2

j+1/2

)
, Sn+1/2

j+1/2 = S
(

xj+1/2, Un+1/2
j+1/2

)
, (1.4)
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and Un
j is the average of U(x, tn) over the cell Cj and Un+1/2

j+1/2 is the mid-point
value or the average of U(xj+1/2, t) over the time interval [tn, tn+1]. The source
term S(x, U) is currently discretized with an interface method, which is the
trapezoidal rule in space and the mid-point rule in time [4,11]. The central
issue is how to obtain the mid-point value Un+1/2

j+1/2 . The GRP scheme formally
approximates this value by the Taylor expansion (ignoring higher order terms),

Un+1/2
j+1/2

∼= Un
j+1/2 + ∆t

2

(
∂U
∂t

)n

j+1/2
, (1.5)

where

Un
j+1/2 = lim

t→tn+0
U(xj+1/2, t),

(
∂U
∂t

)n

j+1/2
= lim

t→tn+0

∂U
∂t
(xj+1/2, t). (1.6)

The value Un
j+1/2 is obtained by solving the associated Riemann problem for the

homogeneous hyperbolic conservation laws as used in the first-order Godunov
scheme [9]. We are left with the calculation of (∂U/∂t)nj+1/2, which is the main
ingredient in the GRP solution.

Let us take a look at a single equation case (U, F in (1.1) are scalar functions).
At each grid point (xj+1/2, tn), only a single wave emanates. Therefore we are
able to use the equation (1.1) to get

(
∂U
∂t

)n

j+1/2
= −F ′ (Un

j+1/2

)
·
(
∂U
∂x

)n

j+1/2
+ S

(
xj+1/2, Un

j+1/2

)
, (1.7)

where (∂U/∂x)nj+1/2 is upwind taken from the initial data at time t = tn. That
is, (∂U/∂x)nj+1/2 is taken from the left (resp. right) hand side of x = xj+1/2

if F ′(Un
j+1/2) > 0 [resp. F ′(Un

j+1/2) < 0]. It is clear that the limiting value
(∂U/∂t)nj+1/2 does not vanish due to the source term effect even if initially the
slopes σ n

j in (1.2) are identically zero. Therefore even in the first-order Godunov
scheme the time derivative (∂U/∂t)nj+1/2 should be properly treated.

In general (1.7) is not valid when (1.1) is a system, because there exists more
than one nonlinear wave issuing from the singularity point (xj+1/2, tn) and the
interface x = xj+1/2 is, generally speaking, located in an intermediate region. We
are therefore looking for the substitute of (1.7) in the system case. However,
if the system (1.1) is endowed with a coordinate system of Riemann invari-
ants [8,14], it can be diagolized and treated as the scalar case. An important
and direct consequence is that (1.1) can be transformed into a weakly coupled
form, analogous to the linear case mentioned above. Moreover in the asso-
ciated Riemann problem the Riemann invariants are constant throughout the
corresponding rarefaction wave, or in the linearly degenerate case they are con-
tinuous across the corresponding contact discontinuity. These properties have
the following implications:
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(i) Thinking of the initial data (1.2) with non-zero slopes as a perturbation
of piecewise constant Riemann initial data and the source term S(x, U)
as a perturbation of the homogeneous system of equations, the solution
of the generalized Riemann problem for (1.1) is a perturbation of the
solution of the associated Riemann problem mentioned above at least in
the neighborhood of the singularity point. Therefore the Riemann invar-
iants are regular locally across the corresponding (curved) rarefaction
wave (in the generalized Riemann problem) although the derivatives
of the solution of (1.1) usually explode there. Thus we can take a usual
calculus manipulation for the Riemann invariants.

(ii) Each Riemann invariant is transported with a single equation (see
Lemma 6). The transport equation enables us to resolve the rarefac-
tion wave in a quite simple way, analogous to the treatment of the
scalar equation. Certainly we need to overcome the technical coupling
difficulty by using characteristic coordinates. In this paper, we use the
Riemann invariants to resolve the rarefaction waves in the generalized
Riemann problem for (1.1) as a main ingredient in our GRP solution.

(iii) The fact that the Riemann invariants are continuous across the corre-
sponding contact discontinuity simplifies the resolution of contact dis-
continuities.

(iv) The existence of Riemann invariants is independent of the Eulerian
or Lagrangian formulation of physical models. Therefore, the resulting
schemes could be either Eulerian or Lagrangian. We avoid the passage
from the Lagrangian version to the Eulerian case, as was done in [1].

(v) In each rarefaction wave, the behavior of the corresponding Riemann
invariant is determined by a suitable (scalar) transport equation. As a
consequence, the sonic case, i.e., when the rarefaction wave spans the
cell interface, is automatically resolved, see Remarks 12 and 22. Recall
that the sonic case is the most delicate in the original GRP scheme [1]
or MUSCL-type schemes [10].

Therefore it is natural to use the Riemann invariants to solve the generalized
Riemann problem and derive the resulting GRP scheme. This idea has been
used in the context of shallow water equations and planar compressible fluid
flows [5,13]. As is well-known [8, Sect. 7.3], any strictly hyperbolic system of two
equations is endowed with a coordinate system of Riemann invariants. On the
other hand, such a coordinate system does not generally exist for systems of the
form (1.1) when m ≥ 3. However, many physical systems are weakly coupled
(in a sense to be made precise later, see Definition 21) and can be reduced into
a form that is amenable to the Riemann invariant approach. In particular, we
can use this approach to handle the system of compressible fluid duct flows in
Sect. 7.

Next we point out the difference between our approach and the original
GRP scheme [1]. The original GRP scheme was designed for the compressible
fluid flows with two related Lagrangian and Eulerian versions. The Eulerian
version is always based on the Lagrangian treatment. The transformation is
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quite delicate, particularly for sonic cases, because it becomes singular at the
sonic point. In contrast, our approach leads to a much simpler direct Eulerian
scheme. Another approach by the asymptotic analysis can be found in [7,15].
We mention here the paper [19] where the GRP is solved assuming the solution
is given when the initial data have a general analytic distribution on the two
sides of cell interface. We note, however, that our solution to the GRP uses only
the limiting values of slopes at the interface and thus it is amenable to any given
distributions of flow variables adjacent to the cell interface.

The resulting GRP scheme consists of only two steps: (i) the Riemann solver;
(ii) the calculation of (∂U/∂t)nj+1/2. The (exact or approximate) Riemann solver
is standard for many physical systems, see [18] and references therein. The lim-
iting value (∂U/∂t)nj+1/2 is obtained just by solving a linear algebraic system,
very close to the linear case of (1.1). This linear system can be obtained either
by the analytic GRP for (1.1), in which case we label the GRP method as a
G∞–scheme, or by using an acoustic approximation for the GRP, in which case
we label the GRP method as a G1-scheme. We note that the G1-scheme is,
in principle, the simplest second-order extension of the Godunov scheme, it
just adds about 2–5% computation. We mention also that there are a number
of intermediate schemes derived from the analytic resolution. In particular,
the G2-scheme is actually equivalent to the MUSCL-scheme, see Appendix D
in [1].

The structure of the paper is as follows. In Sect. 2, we give the description of
the setup of the GRP scheme and the steps for its implementation. In Sect. 3, we
discuss the role of Riemann invariants as evolving from classical notions in the
case of linear hyperbolic systems. Section 4 treats in detail the case of the sys-
tem consisting of two equations. This enables us to illustrate clearly the role of
Riemann invariants and characteristic coordinates. Then in Sect. 5 we introduce
the main topic of the present paper, i.e., the application of the Riemann invari-
ants to general weakly coupled systems (WCS). Section 6 is both theoretical and
practically important, it introduces an acoustic approximation as the linearized
version of nonlinear systems and show how to apply it in the numerical setting.
As mentioned above, it leads to a very simple second-order extension of the
Godunov scheme. Section 7 is devoted to the discussion of the GRP solution in
terms of the abstract method developed in the earlier sections. In particular, in
Sect. 7.3 we discuss the system of compressible (non-isentropic) duct flows
in the framework of a “weakly coupled system”. In Sect. 8 we give some
numerical examples.

2 The setup of GRP scheme

The GRP scheme for the numerical approximation of (1.1) assumes piecewise
linear initial data in computational cells and relies on analytical solutions of the
generalized Riemann problem at each cell interface. For convenience, we set
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the cell interface at x = 0 and the initial data as

U(x, 0) =
{

UL + U′
Lx, x < 0,

UR + U′
Rx, x > 0,

(2.1)

where UL, UR, U′
L and U′

R are constant vectors. We denote by U(x, t) the solu-
tion of (1.1) and (2.1). Correspondingly, the limiting values in (1.6) are denoted
by

U∗ = U(0, 0+),
(
∂U
∂t

)

∗
= ∂U

∂t
(0, 0+). (2.2)

The initial structure of the solution U(x, t) of (1.1) and (2.1) is determined by
the associated Riemann problem for

∂U
∂t

+ ∂F(U)
∂x

= 0, x ∈ R, t > 0, (2.3)

subject to the Riemann initial data

U(x, 0) =
{

UL, x < 0,
UR, x > 0.

(2.4)

We call the solution of (2.3) and (2.4) the associated Riemann solution of (1.1)
and (2.1). Our GRP scheme is of the Godunov-type and based on the solvability
of (2.3) and (2.4).

Assumption The Riemann problem (2.3) and (2.4) is uniquely solvable, thus
enabling the Godunov scheme.

The Riemann solution of (2.3) and (2.4) is self similar and denoted by
RA(x/t; UL, UR). Then we have the following proposition [15].

Proposition 1 Let U(x, t) be the solution to the generalized Riemann problem
(1.1) and (2.1) and let RA(x/t, UL, UR) be the solution of the associated Riemann
problem (2.3) and (2.4). Then for every fixed direction λ = x/t,

lim
t→0+ U(λt, t) = RA(λ; UL, UR). (2.5)

This implies that the wave configuration for the generalized Riemann problem
(1.1) and (2.1) is the same as that for the associated Riemann problem (2.3) and
(2.4) near the origin (x, t) = (0, 0).

We illustrate this proposition schematically in Fig. 1. The limiting value U∗
in (2.2) (correspondingly Un

j+1/2 in (1.6)) is just the Riemann solution along the
line x = 0,

U∗ = RA(0; UL, UR). (2.6)
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Fig. 1 The setup of the GRP scheme

This is already known and used in the Godunov scheme [9]. They can be
obtained with the exact or approximate Riemann solver [18]. Therefore, in
order to get the GRP scheme, the main issue is only how to calculate (∂U/∂t)∗.
Once the limiting value (∂U/∂t)∗ is obtained, we implement the GRP scheme
by the following four steps.

Step 1 Given piecewise linear initial data of the type

Un(x) = Un
j + σ n

j (x − xj), x ∈ (xj−1/2, xj+1/2), (2.7)

we solve the Riemann problem for (2.3) to define the Riemann solution

Un
j+1/2 = RA

(
0; Un

j + ∆x
2
σ n

j , Un
j+1 − ∆x

2
σ n

j+1

)
. (2.8)

This is the same as the classical Godunov scheme [9].
Step 2 Determine (∂U/∂t)nj+1/2. This is the main theme in the present paper.

It turns out that this time derivative of solution vector is obtained by simply
solving a linear algebraic system of equations.
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Step 3 Approximate numerically the solution of (1.1) by using (1.3) and (1.5).
Step 4 Update the slope by the following procedure. Define

Un+1,−
j+1/2 = Un

j+1/2 +∆t
(
∂U
∂t

)n

j+1/2
,

σ
n+1,−
j = 1

∆x
(∆U)n+1,−

j = 1
∆x

(
Un+1,−

j+1/2 − Un+1,−
j−1/2

)
.

(2.9)

Then in order to suppress oscillations near discontinuities we modify σ n+1,−
j

by a monotonicity algorithm to get σ n+1
j , see [1,12,17], in the sense of slope

limiters. For the numerical examples in Sect. 8, we use the following limiter

σ n+1
j = minmod

⎛
⎝α

Un+1
j − Un+1

j−1

∆x
, σ n+1,−

j ,α
Un+1

j+1 − Un+1
j

∆x

⎞
⎠ , (2.10)

where the parameter α ∈ [0, 2).

Remark 2 (Stationary discontinuity) In the case of a stationary discontinuity
which is expressed by x = x(t), x′(0) = 0, the value U∗ in (2.2) is double-valued.
Denote U± = RA(0 ± 0; UL, UR). Then we have F(U−) = F(U+), which justi-
fies the fact that either of U± can be used in the Godunov scheme. In the GRP
scheme, we need further to detect the initial curvature of the discontinuity, i.e.,
the sign of x′′(0).

3 Heuristic explanation from a linear system

In this section we use a familiar linear system to explain the necessity to intro-
duce the Riemann invariants in upwind (the Godunov-type) schemes. The linear
example is

∂u
∂t

+ c
∂v
∂x

= 0,
∂v
∂t

+ c
∂u
∂x

= 0, (3.1)

where c > 0 is constant. This model describes two linear waves: One propagates
to the left with velocity −c and the other to the right with velocity c.

For the given initial data of type (2.1), where U = (u, v)�, the solution is dis-
continuous at the origin and the discontinuities propagate along characteristics.
Therefore we are not able to use (3.1) to simply get ∂u/∂t and ∂v/∂t, as in the
single equation case. However, if (3.1) is written in the following form

∂(u − v)
∂t

− c
∂(u − v)
∂x

= 0,
∂(u + v)
∂t

+ c
∂(u + v)
∂x

= 0, (3.2)

we see that the function u + v (resp. u − v) is smooth on the two sides of the
characteristic dx/dt = c (resp. dx/dt = −c). The functions u ± v correspond to
the Riemann invariants in nonlinear cases. Turning back to the system (3.1),
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we denote u′∗ = lim
t→0+(∂u/∂x)(0, t) (similarly for v′∗). Then we can proceed, as in

scalar cases, to get

u∗ + v∗ = uL + vL, u′∗ + v′∗ = u′
L + v′

L, u∗ − v∗ = uR − vR,

u′∗ − v′∗ = u′
R − v′

R. (3.3)

By using (3.2), we have

(
∂u
∂t

)

∗
+
(
∂v
∂t

)

∗
= −c(u′

L + v′
L),

(
∂u
∂t

)

∗
−
(
∂v
∂t

)

∗
= c(u′

R − v′
R). (3.4)

In order to get (∂u/∂t)∗ and (∂v/∂t)∗, we need to solve (3.4) and get

(
∂u
∂t

)

∗
= −c(u′

L + v′
L)

2
+ c(u′

R − v′
R)

2
,
(
∂v
∂t

)

∗
= −c(u′

L + v′
L)

2
− c(u′

R − v′
R)

2
.

(3.5)
This is essentially the solution of GRP for (3.1).

We summarize the above process in the following two steps:

(i) Find Riemann invariants and obtain their time derivatives. Thus the
system of linear equations (3.4) is derived.

(ii) Solve the resulting linear system of algebraic equations to yield the
limiting values (∂u/∂t)∗ and (∂v/∂t)∗.

In the nonlinear case of (1.1), we also perform these two steps. In particular, the
concept of Riemann invariants plays a pivotal role and corresponds to the quan-
tities u + v and u − v here. They are used to analytically resolve the rarefaction
waves in the generalized Riemann problem (1.1) and (2.1), which constitutes
the important feature of the resulting scheme. In addition, they are useful in
resolving contact discontinuities.

4 The resolution of generalized Riemann problem for the two-equation system

In this section we focus on the case of a strictly hyperbolic system of two equa-
tions. We note that the physical models of isentropic (compressible) flows and
shallow water equations are examples of such systems. Furthermore, we shall
later show that the main idea here carries over to a broader class of general
systems.

Thus, we assume that (1.1) consists of two equations and denote U = (u, v)�
and F = (f (u, v), g(u, v))�. The Jacobian matrix DF(U) = ∂F/∂U has two
distinct eigenvalues

λ(u, v) < µ(u, v), (4.1)

and further assume that λ and µ are genuinely nonlinear, and thus their asso-
ciated waves are either a rarefaction wave or a shock [8,16]. We consider the
typical wave pattern, as shown in Fig. 2. The result is stated in the following
theorem. The proof of Theorem is given in Sects. 4.1 and 4.2.
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Fig. 2 A typical wave pattern for the two-equation case

Theorem 3 Assume that the local wave pattern for the generalized Riemann
problem (1.1) is as depicted in Fig. 2, and the t-axis is inside the intermediate
(smooth) region. Then the limiting value (∂U/∂t)∗ can be obtained by solving
the following pair of linear algebraic equations,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aL

(
∂u
∂t

)

∗
+ bL

(
∂v
∂t

)

∗
= dL,

aR

(
∂u
∂t

)

∗
+ bR

(
∂v
∂t

)

∗
= dR,

(4.2)

where aL, bL and dL are given in Lemma 7 and aR, bR and dR are given in
Lemma 10.

4.1 The resolution of rarefaction waves for two-equation system

As in [8, Sect. 7.3] the system is endowed with a coordinate system of Riemann
invariants which we shall denote by φ and ψ . In terms of these new unknowns
(1.1) is reduced into the form

⎧⎪⎪⎨
⎪⎪⎩

∂φ

∂t
+ λ(φ,ψ)

∂φ

∂x
= k1(x,φ,ψ),

∂ψ

∂t
+ µ(φ,ψ)

∂ψ

∂x
= k2(x,φ,ψ),

(4.3)

where k1 and k2 are two functions resulting from the source term of (1.1) and
they are expressed in terms of the Riemann invariants φ, ψ . For uniformity, we
denote W = (φ,ψ)�, K = (k1, k2)

� and Λ = diag(λ,µ). Then (4.3) is rewritten
as

∂W
∂t

+Λ(W)
∂W
∂x

= K(x, W). (4.4)
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As pointed out earlier, the main feature of the GRP scheme is the resolu-
tion of rarefaction waves. In this context, it will turn out that the concept of
characteristic coordinates is quite useful.

4.1.1 Characteristic coordinates

The characteristic coordinates, as the integral curves of characteristic equations,
play an important role in the resolution of rarefaction waves and simplify the
calculation. Let Cλ : β(x, t) = const. be the integral curve of the differential
equation

dx
dt

= λ(φ,ψ), (4.5)

and Cµ : α(x, t) = const. be the integral curve of the differential equation

dx
dt

= µ(φ,ψ). (4.6)

Consider a domain in the (x, t)-plane where the coordinates (x, t) can be
obtained as functions of α and β. This transformation is denoted by

t = t(α,β), x = x(α,β). (4.7)

In terms of the characteristic coordinates (α,β), the system (4.3) can be rewrit-
ten in the form of the characteristic equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂x
∂α

= λ(φ,ψ)
∂t
∂α

,
∂φ

∂α
= ∂t
∂α

· k1(x(α,β),φ,ψ),

∂x
∂β

= µ(φ,ψ)
∂t
∂β

,
∂ψ

∂β
= ∂t
∂β

· k2(x(α,β),φ,ψ).

(4.8)

It follows, by differentiating the first pair of equations with respect to β, the
second with respect to α and subtracting, that t = t(α,β) satisfies,

(λ− µ)
∂2t
∂α∂β

+ ∂λ

∂β

∂t
∂α

− ∂µ

∂α

∂t
∂β

= 0. (4.9)

We differentiate the ψ-equation in (4.8) with respect to α and incorporate (4.9)
into the resulting equation to get that ψ = ψ(α,β) satisfies

∂2ψ

∂α∂β
= ∂2t
∂α∂β

· k2(x(α,β),φ,ψ)+ ∂t
∂β

∂k2

∂α

= − k2

λ− µ
· ∂λ
∂β

· ∂t
∂α

+ ∂t
∂β

(
k2

λ− µ

∂µ

∂α
+ ∂k2

∂α

)
.

(4.10)
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Fig. 3 Characteristic coordinates throughout a centered rarefaction wave

Similarly, we have the second-order equation for the Riemann invariant φ,

∂2φ

∂α∂β
= − k1

µ− λ
· ∂µ
∂α

· ∂t
∂β

+ ∂t
∂α

(
k1

µ− λ

∂λ

∂β
+ ∂k1

∂β

)
. (4.11)

Next we turn to the detailed analysis of the rarefaction wave for the gen-
eralized Riemann problem (1.1) and (2.1). In view of Proposition 1, when
approaching the origin (x, t) = (0, 0), the solution U(x, t) is determined by
the associated Riemann solution RA(x/t; UL, UR). We can therefore regard the
former as a perturbation of the latter. When investigating the (curved) centered
rarefaction wave for the generalized Riemann problem, we will use the same
domain of characteristic coordinates as the one determined by the associated
rarefaction wave.

4.1.2 The resolution of rarefaction waves

We start with the rarefaction wave for the associated Riemann problem (2.3)
and (2.4). We assume the structure as in Fig. 3b and the rarefaction wave is
denoted by RA

λ . Further, the t-axis is located in the smooth domain behind the
rarefaction wave RA

λ .
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Since ψ is constant across the rarefaction wave RA
λ , we express it by using

{
λ(φ,ψ) = x/t,
ψ = ψL,

(4.12)

where ψL is the value of ψ at the head characteristic of RA
λ , i.e., β = βL. This

rarefaction wave expands from βL up to β∗. In this case, Eq. (4.5) gives us simply
β = x/t. The characteristic coordinate α is found as follows. In view of (4.12),
one has λ(φ,ψL) = β, which can be inverted to yield, by using the property of
genuine nonlinearity of λ,

φ = φ(x/t;ψL) = φ(β;ψL). (4.13)

Then the characteristic curve Cµ
α0 : α(x, t) = α0 is the integral curve of the

equation
dx
dt

= µ(φ,ψ) = µ(φ(x/t;ψL),ψL), (4.14)

where the constant α0 is chosen to be the x-coordinate of the intersection point
of Cµ

α0 with the leading λ-characteristic curve Cλ
βL

. This determines (x, t) as
functions of (α,β).

Denote the corresponding characteristic map to the (x, t)-plane by

t = tass(α,β), x = xass(α,β). (4.15)

All other variables including the eigenvalues λ, µ and Riemann invariants can
now be expressed as smooth functions of (α,β). We observe that the charac-
teristic map is singular at α = 0, where the segment between βL and β∗ is
mapped to the origin (x, t) = (0, 0). We note that tass(α = 0,β) ≡ 0 and thus
(∂tass/∂β)(0,β) = 0. Then in view of (4.9) we have

(λ− µ)
∂2tass

∂α∂β
(0,β) = −∂tass

∂α
(0,β) · ∂λ

∂β
(0,β). (4.16)

Since (∂λ/∂β)(0,β) = 1, by the definition of β-coordinate, we get

∂tass

∂α
(0,β) = ∂tass

∂α
(0,βL) exp

⎛
⎜⎝

β∫

βL

1
(µ− λ)(0, ξ)

dξ

⎞
⎟⎠ . (4.17)

By our choice of the α-coordinate as the x-value of the intersection point of Cµ
α

with the leading characteristic Cλ
βL

, we obtain (∂xass/∂α)(0,βL) = 1. Then we
use (4.8) to get

∂tass

∂α
(0,βL) = 1

βL

∂xass

∂α
(0,βL) = 1

βL
. (4.18)
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This together with (4.17) gives the explicit expressions for the derivatives of
tass(α,β), xass(α,β) at the singularity point (x, t) = (0, 0),

∂tass

∂α
(0,β) = 1

βL
exp

⎛
⎜⎝

β∫

βL

1
µ(0, ξ)− ξ

dξ

⎞
⎟⎠ ,

∂xass

∂α
(0,β)

= β

βL
exp

⎛
⎜⎝

β∫

βL

1
µ(0, ξ)− ξ

dξ

⎞
⎟⎠ . (4.19)

Remark 4 Inspecting (4.12), (4.13) and (4.17), we see that the ratio between
(∂tass/∂α)(0,β) and (∂tass/∂α)(0,βL) is function of β and is independent of the
α-coordinate. Therefore, we retain the degree of freedom in our choice of α,
which will simplify some calculation, see Sect. 7.

In the following we turn to deal with the generalized Riemann problem (1.1)
and (2.1), and consider the general (curved) rarefaction wave, see Fig. 3a. The
characteristic curves inside the curved rarefaction wave t = t(α,β), x = x(α,β)
are second-order approximations of tass(α,β) and xass(α,β) as α → 0. This fact
is stated in the following proposition and the proof (which we omit) follows the
same lines as in [4, Chap. 5].

Proposition 5 As α → 0, we have the following asymptotic expressions for
t(α,β), x(α,β),

t(α,β) = tass(α,β)+ O(α2), x(α,β) = xass(α,β)+ O(α2), (4.20)

where βL ≤ β ≤ β∗.

With this proposition, we have the following lemmas about the resolution of
the rarefaction wave.

Lemma 6 Letψα(0,β) = ∂ψ
∂α
(0,β) and denote k2,L = k2(0,φL,ψL) (see the RHS

of (4.3)). Then throughout the rarefaction wave associated with λ, we have

ψα(0,β) = ψα(0,βL)+
β∫

βL

− k2

λ− µ
(0, ξ) · ∂tass

∂α
(0, ξ)dξ , βL ≤ β ≤ β∗. (4.21)

The initial datum ψα(0,βL) is

ψα(0,βL) = ψ ′
L + 1

βL
(k2,L − µLψ

′
L), (4.22)

where ψ ′
L is determined by UL, U′

L as in (2.1).
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Proof Recall that
∂t(0,β)
∂β

= 0,
∂x(0,β)
∂β

= 0. (4.23)

The asymptotic behavior of solutions at the origin, see Proposition 5, shows

∂t
∂α
(0,β) = ∂tass

∂α
(0,β),

∂x
∂α
(0,β) = ∂xass

∂α
(0,β). (4.24)

Therefore, setting α = 0 in (4.10), we obtain

∂

∂β
(ψα(0,β)) = − k2

λ− µ
(0,β) · ∂tass

∂α
(0,β), β ∈ (βL,β∗), (4.25)

which yields (4.21) by integration.
The initial datumψα(0,βL) comes from the characteristic form (4.8) by using

the chain rule,

∂ψ

∂α
(0,βL) = ∂ψ

∂x
(0,βL)

∂x
∂α
(0,βL)+ ∂ψ

∂t
(0,βL)

∂t
∂α
(0,βL)

= ψ ′
L + ∂ψ

∂t
(0,βL) · 1

βL
,

(4.26)

where we use the fact that (∂x/∂α)(0,βL) = 1 and (∂t/∂α)(0,βL) = 1/βL. Then
we use the ψ-equation in (4.3) to get (4.22).

Lemma 7 Consider the rarefaction wave Rλ associated with λ. Then we have

aL

(
∂u
∂t

)

∗
+ bL

(
∂v
∂t

)

∗
= d∗

L, (4.27)

where (aL, bL) = (∇Uψ)∗, ∇Uψ = (∂ψ/∂u, ∂ψ/∂v) and

d∗
L = µ∗

µ∗ − λ∗
·
(
ψα(0,β∗) ·

(
∂tass

∂α

)−1

(0,β∗)− λ∗
µ∗

· k2(0,φ∗,ψ∗)
)

. (4.28)

Proof We use the result of Lemma 6 at β = β∗ and express the directional
derivative in terms of (x, t) derivatives. Using the equations for ψ in (4.8) and
(4.3), one obtains,

ψα(0,β∗) = ∂tass(0,β∗)
∂α

·
(
∂ψ

∂t
+ λ

∂ψ

∂x

)
(0,β∗)

= ∂tass(0,β∗)
∂α

[(
∂ψ

∂t

)

∗
+ λ∗
µ∗

(
−
(
∂ψ

∂t

)

∗
+ k2(0,φ∗,ψ∗)

)]
.

(4.29)
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It follows that,

(
∂ψ

∂t

)

∗
= µ∗
µ∗ − λ∗

·
[
ψα(0,β∗) ·

(
∂tass

∂α

)−1

(0,β∗)− λ∗
µ∗

· k2(0,φ∗,ψ∗)
]

,

(4.30)

where λ∗ = β∗. We note that ψ is regular across the characteristic Cλ
β∗ . Hence

the value of ψα(0,β∗) can be evaluated using the values of ∂ψ/∂t, ∂ψ/∂x in the
smooth domain behind the rarefaction wave Rλ. We write ψ in terms of U and
immediately arrive at (4.27).

Remark 8 Note that the term ψα(0,β∗) ·
(
∂tass
∂α

)−1
(0,β∗) is clearly independent

of the choice of α, cf. Remark 4.

Remark 9 One might wonder why we use ψ , rather than φ, in resolving RA
λ .

The reason is that on one hand, ψ is constant throughout RA
λ in the associated

Riemann solution, ψ is still regular even when the initial data has non-zero
slopes and the source term is present in the governing equation (4.3). On the
other hand, φα(0,β∗) = k1(0,φ∗,ψ∗) · (∂tass/∂α)(0,β∗) and we cannot express
(∂φ/∂t)∗ in terms of φα since there is no equivalent equation to Eq. (4.29).

4.2 The resolution of shocks for the two-equation system

We assume that the wave associated with the µ family is a shock moving to
the right and let the shock trajectory be x = x(t) with the speed σ(t) = x′(t),
separating two limiting states U, U. To fix the ideas, we assume that U is the
state ahead of the shock while U is the state behind it. This shock is described
by the Rankine–Hugoniot jump condition,

F(U)− F(U) = σ(U − U). (4.31)

Then we know [8, Sect. 8.2] that if a state U connects to U by the shock with
speed σ , (4.31) gives the Hugoniot locus of the form,

{
σ = σ(U, U),
U = U + τK(U, U),

(4.32)

where τ > 0 is a parameter describing the strength of the shock. In fact, the
system (4.32) corresponds to one of the two shock curves associated with λ, µ
(recall that λ, µ are two genuinely nonlinear eigenvalues for the system of two
equations in Sect. 4.1). Eliminating the parameter τ from (4.32) yields a single
equation connecting the state U = (u, v) to the state U = (u, v), given by

�(U; U) = 0. (4.33)
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This is indeed the equation for the Hugoniot curve in the state (u, v)-plane, and
it holds along the shock trajectory x = x(t) identically. Note that U, U are the
limiting states on both sides of x = x(t), U = U(x(t), t), U = U(x(t), t), where
we are now using U and U also for the full states behind and ahead of the shock,
respectively.

In terms of Riemann invariants W (see (4.4) for the notation W), we can
rewrite (4.33) in the form

Φ(W; W) = 0. (4.34)

We may therefore differentiate (4.34) in the direction of the shock x = x(t) and
get

∇WΦ

(
∂W
∂t

+ σ
∂W
∂x

)
= − ∇WΦ

(
∂W
∂t

+ σ
∂W
∂x

)
. (4.35)

We want to solve (4.35) for ∂W/∂t. We are assuming that the t-axis is located
in the intermediate region so that λ < 0 and µ > 0 (see Fig. 2). In the sonic
case where the t-axis is located in the rarefaction wave, we already have the full
solution, see Sect. 12 below. We use the diagonal form (4.4) to obtain,

∂W
∂x

= Λ(W)−1
(

−∂W
∂t

+ K(x, W)

)
,

∂W
∂t

= −Λ(W)
∂W
∂x

+ K(x, W).

(4.36)

Note that the limiting values of σ , W, W, ∂W/∂t and ∂W/∂x (see Eqs. (2.1),
(2.2) ) are

lim
t→0+ σ = σ0, lim

t→0+ W = W∗, lim
t→0+

∂W
∂t

=
(
∂W
∂t

)

∗
,

lim
t→0+ W = WR, lim

t→0+
∂W
∂x

= W′
R,

(4.37)

where the limits in (4.37) correspond to our assumption that σ0 > 0, so that the
shock moves into the domain x > 0, leaving the t-axis in the smooth domain
behind it. It is clear how to change the limits when σ0 < 0. Then we use (4.36),
(4.37) in (4.35) so as to obtain

∇WΦ(W∗; WR)(I − σ0Λ(W∗)−1)

(
∂W
∂t

)

∗
= −σ0∇WΦ(W∗; WR)Λ(W∗)−1K(0, W∗)

−∇WΦ(W∗; WR)
[
(σ0I −Λ(WR))W′

R + K(0, WR)
]

. (4.38)

We express ∂W/∂t in terms of ∂U/∂t (as in the end of the proof of Theorem 7),
in order to obtain the following lemma.
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Lemma 10 Consider the two equation system (1.1), subject to the initial data
(2.1). Assume that the wave pattern is as in Fig. 2, i.e., the wave associated with
the µ family is a shock moving to the right and that the t-axis is contained in the
smooth region behind it. Then the two components of (∂U/∂t)∗ (see (2.2)) satisfy
the following linear equation at the singularity (x, t) = (0, 0),

aR

(
∂u
∂t

)

∗
+ bR

(
∂v
∂t

)

∗
= dR, (4.39)

where the coefficients aR, bR and dR are given explicitly as

(aR, bR) = ∇WΦ(W∗; WR)(I − σ0Λ(W∗)−1)DW(U∗),
dR = − σ0∇WΦ(W∗; WR)Λ(W∗)−1K(0, W∗)

−∇WΦ(W∗; WR)
[
(σ0I −Λ(UR))W′

R + K(0, WR)
]

.

(4.40)

Remark 11 If the eigenvalue µ is linearly degenerate, the corresponding jump
discontinuity is a contact discontinuity. For this case, σ(W, W) = µ(W) = µ(W)

and in the limit

I − σ0Λ(W∗)−1 =
(
(λ∗ − µ∗)/λ∗ 0

0 0

)
, σ0I −Λ(WR) =

(
µR − λR 0

0 0

)
,

(4.41)
The first component of equation (4.38) gives a scalar equation

∂Φ(W∗; WR)

∂φ
· λ∗ − µ∗

λ∗
·
(
∂φ

∂t

)

∗

= −µ∗∇WΦ(W∗; WR)Λ(W∗)−1K(0, W∗)

− ∂Φ(W∗; WR)

∂φ
· (µR − λR) · (φ′

R + k1(0, WR)).

(4.42)

These arguments also apply to the acoustic case that will be discussed later on.
The idea will be used to consider weak shocks as characteristic curves, thus
treating the weak shocks as linearly degenerate discontinuities. Clearly we can
also obtain a linear equation in the same form as (4.39) with coefficients

(aR, bR) = ∂Φ(W∗; WR)

∂φ
· λ∗ − µ∗

λ∗
· (∇Uφ)∗,

dR = −µ∗∇WΦ(W∗; WR)Λ(W∗)−1K(0, W∗)

− ∂Φ(W∗; WR)

∂φ
· (µR − λR) · (φ′

R + k1(0, WR)).

(4.43)

Remark 12 (The sonic case) Special attention should be paid to the case where
the t-axis (the cell interface x = 0) is contained in the rarefaction wave, so that it
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is tangential to one of The characteristic curves. We refer to this case as a sonic
case. Then we have to modify the above approach. Indeed, it becomes much
simpler. We still use the notations in Sect. 4. Consider the rarefaction wave
associated with λ. We see that the equation (4.27) for ψ is still valid, where β∗
is replaced by β0 = 0. In addition, let Cλ

β0
be the characteristic curve tangent

to the t-axis, βL < β0 = 0 < β∗, so that we have λ(φ0,ψ0) = 0. Then we obtain
from (4.8), with β∗ = β0,

φα(0,β∗) = k1(0,φ∗,ψ∗) · (∂tass/∂α)(0,β∗) (4.44)

That is,

(∇Uφ)0

(
∂U
∂t

)

∗
= k1(0,φ0,ψ0). (4.45)

We therefore obtain in this case the following theorem.

Theorem 13 (Sonic case) Assume that the t-axis is located inside the rarefac-
tion wave associated with λ. Then we can calculate the limiting values of the
time derivatives (∂U/∂t)∗ by solving the following system of two linear algebraic
equations,

(∇Uψ)0

(
∂U
∂t

)

∗
= d0

L,

(∇Uφ)0

(
∂U
∂t

)

∗
= k1(0,φ0,ψ0),

(4.46)

where d0
L = d∗

L(0,β = 0), d∗
L is defined in (4.28). Note that λ∗ = 0 for the pres-

ent case. Then d0
L = ψα(0, 0) · (∂tass/∂α)

−1(0, 0) (see Eq. (4.19) with β = 0 for
(∂tass/∂α)(0,β)).

Remark 14 (Stationary shock) When the shock trajectory x = x(t) is tangent
to the t-axis, x′(0) = 0, we need to just the sign of x′′(0), as pointed out in
Remark 2. Denote U±(t) = U(x(t)± 0, t). Then we have

x′′(0)(U+ − U−) = ∂F(U+(0))
∂t

− ∂F(U−(0))
∂t

. (4.47)

This predicts which direction the shock x = x(t) moves toward.

5 The resolution of the generalized Riemann problem for weakly coupled
systems

In this section we extend the methodology in the previous sections in order to
investigate the general hyperbolic system with three or more equations (m ≥ 3).
As is well-known, the system (1.1) is in general not endowed with a coordinate
system of Riemann invariants and hence it cannot be reduced to a diagonal
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characteristic form analogous to (4.3) for the system of two equations. How-
ever, for many physical systems that are called weakly coupled systems(WCS) in
the present paper, we are still able to use the concept of Riemann invariants in
order to resolve rarefaction waves in the generalized Riemann problem. Such
systems include the compressible fluid flows, the example of electrophoresis,
etc. [8, page 130].

Also we can extend the method of Sect. 4.2 in order to resolve jump discon-
tinuities, shocks and contact discontinuities. Note that the concept of Riemann
invariants simplifies the resolution of contact discontinuities.

We assume the Jacobian matrix DF = ∂F/∂U has a complete set of right
eigenvectors ϒi(U)

DF(U)ϒi(U) = λiϒi(U), (5.1)

where λi, i = 1, . . . , m, are the eigenvalues of DF and ordered as

λ1 < λ2 < · · · < λm. (5.2)

In this section, we assume that the rarefaction wave associated with λi moves
to the left and the jump discontinuity associated with λi moves to the right.
We further suppose that the limiting values (∂U/∂x)l of spatial derivatives on
the left-hand side of the rarefaction wave, and the limiting values (∂U/∂x)r
on the right-hand side of the jump discontinuity, respectively, are known. The
modification needed in other cases will be obvious.

5.1 The resolution of rarefaction waves

Since the local structure of the solution of (1.1) and (2.1) is determined by
the associated Riemann solution of the corresponding homogeneous hyper-
bolic conservation laws, we first take a look at the homogeneous case (2.3). An
i-Riemann invariant of (2.3) is a smooth scalar function E such that

DE(U)ϒi(U) = 0, DE(U) =
(
∂E
∂u1

, . . . ,
∂E
∂um

)
. (5.3)

The system (2.3) is endowed with a coordinate system of Riemann invariants if
there exist functions w1, . . . , wm, such that for any i, j = 1, . . . , m with i �= j, wj
is an i-Riemann invariant of (2.3), and for every 1 ≤ i ≤ m, Dwi(U)ϒi(U) �= 0.
With these Riemann invariants, (2.3) is reduced into a diagonal system

∂wi

∂t
+ λi(W)

∂wi

∂x
= 0, W = (w1, . . . , wm)

�, i = 1, . . . , m. (5.4)

We refer to [8, Sect. 7.3] for details.
Fix the index i and assume that λi is genuinely nonlinear,

∇λi · ϒi = 1, i = 1, . . . , m. (5.5)
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Consider the corresponding rarefaction wave RA
i , which is a part of the solution

of the associated Riemann problem (2.3) subject to the initial data (2.4). We
represent it by UA(x, t) = V(x/t), i = 1, . . . , m, where

λi(V(ξ)) = ξ ,
dV
dξ

= ϒi(V(ξ)), ξ = x/t. (5.6)

Now we use the vector W of Riemann invariants as the state vector. In
particular, the functions depending on U can be expressed in terms of W with-
out changing their notations. The i-Riemann invariants, wj, j �= i, are con-
stant, wj ≡ Aj, across the rarefaction wave RA

i so that this rarefaction wave is
expressed by using

λi(A1, . . . , Ai−1, wi, Ai+1, . . . , Am) = x/t, wj = Aj, j �= i. (5.7)

The genuine nonlinearity of λi implies that the equations (5.7) can be inverted,

wi(x, t) = wi(x/t) = λ−1
i (x/t; A1, . . . , Ai−1, Ai+1, . . . , Am). (5.8)

All other eigenvalues λj can be found as explicit functions of x/t,

λj = λj(A1, . . . , Ai−1, wi(x/t), Ai+1, . . . , Am), j = 1, . . . , m, j �= i. (5.9)

We see that these properties are exactly the same as those for the two-equation
systems in Sect. 4. Hence we are able to treat the resolution of centered rare-
faction waves in the same way, thus providing a full solution RA

i (x/t; UL, UR).
Next we turn to the solution of the rarefaction wave Ri in the generalized

Riemann problem for the nonhomogeneous system (1.1). With the Riemann
invariants as the state vector, the system (1.1) can be transformed as

∂wi

∂t
+ λi(W)

∂wi

∂x
= Hi(x, W), i = 1, . . . , m, (5.10)

where Hi(x, W) = Dwi(U)·S(x, U) and U is expressed in terms of W. In order to
resolve the general rarefaction wave associated with λi, we fix the wi-equation
and combine a wj-equation to form a two-equation system,

∂wi

∂t
+ λi

∂wi

∂x
= Hi(x, W),

∂wj

∂t
+ λj

∂wj

∂x
= Hj(x, W),

(5.11)

for every j �= i, λj �= λi. This system is exactly the same as (4.3), wi (resp. wj) cor-
responds to φ (resp. ψ). We can therefore define two families of characteristic
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curves Ci : αi = const. and Cj : αj = const., respectively, by

dx
dt

= λi,
dx
dt

= λj, (5.12)

where αi (resp. αj) corresponds to β (resp. α) in Sect. 4.1, see Fig. 3. We use the
coordinate transforms Tij : (αi,αj) → (x, t) to represent the centered rarefaction
wave Ri and Tass

ij : (αi,αj) → (xass, tass) to represent the associated rarefaction

wave RA
i . In terms of these characteristic coordinates, we have characteristic

equations for (5.11),

∂x
∂αj

= λi
∂t
∂αj

,
∂wi

∂αj
= ∂t
∂αj

Hi(x, W),

∂x
∂αi

= λj
∂t
∂αi

,
∂wj

∂αi
= ∂t
∂αi

Hj(x, W).

(5.13)

We can then follow Lemma 6 and Eq. (4.19) in order to calculate (∂wj/∂αj)(αi, 0)
and (∂tass/∂αj)(αi, 0), as functions of αi at the singularity. In fact, the following
lemma is the key ingredient in our treatment of the GRP. As in the case of the
linear “geometrical optics” (see Sect. 3) it determines the propagation of the
transversal derivative of a Riemann invariant along the “degenerate” charac-
teristic αj = 0 (at the origin).

Lemma 15 Throughout the rarefaction wave Ri associated with λi connecting
the head and tail values VL and VR, see Fig. 4, we have

∂tass

∂αj
(αi, 0) = 1

αL
i

exp

⎛
⎜⎝

αi∫

αL
i

1
λj(ξ , 0)− ξ

dξ

⎞
⎟⎠ ,

∂wj

∂αj
(αi, 0) = ∂wj

∂αj
(αL

i , 0)+
αi∫

αL
i

− Hj

λi − λj
(ξ , 0) · ∂tass

∂αj
(ξ , 0)dξ , j �= i,

(5.14)

where αL
i ≤ αi ≤ αR

i , αL
i and αR

i are the speeds of the head and tail characteristics
of RA

i . The initial data is

∂wj

∂αj
(αL

i , 0) = w′
j(α

L
i , 0)+ 1

αL
i

(
Hj(0, W(αL

i , 0))− λj(α
L
i , 0)w′

j(α
L
i , 0)

)
, (5.15)

where w′
j = ∂wj/∂x.

Remark 16 Note that in (5.15) we have already made a choice for the charac-
teristic coordinate αj, the value αj is the x-coordinate of the intersection point
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of the characteristic curve with the head characteristic of Ri. Of course, other
convenient choices are also possible.

Following Lemma 15, we express

∂wj

∂αj
(αR

i , 0) =
(
∂wj

∂t
(αR

i , 0)+ λR
i
∂wj

∂x
(αR

i , 0)
)

· ∂tass

∂αj
(αR

i , 0)

=
(
λR

j − λR
i

λR
j

· ∂wj

∂t
(αR

i , 0)+ λR
i

λR
j

· Hj(0, W(αR
i , 0))

)
· ∂tass

∂αj
(αR

i , 0),

(5.16)
where we have used (5.11) and the smoothness of wj. Translating the result of
Lemma 15 to the (x, t)-coordinate at the tail characteristic αi = αR

i , we obtain
the following lemma.

Lemma 17 Assume that the rarefaction wave Ri associated with λi connects the
states VL and VR. Let αL

i and αR
i be the corresponding characteristic speeds at the

head and tail of RA
i , respectively. Let Dwj be as in (5.3) and denote by (∂U/∂t)R

the value evaluated at the tail characteristic αi = αR
i from the smooth region

behind Ri. Then one obtains,

(Dwj)R

(
∂U
∂t

)

R
= d j

LR, j �= i, (5.17)

where the constant term d j
LR is expressed as

d j
LR = λR

j

λR
j − λR

i

(
∂wj

∂αj
(αR

i , 0)
(
∂tass

∂αj

)−1

(αR
i , 0)− λR

i

λR
j

Hj(0, W(αR
i , 0))

)
, (5.18)

and λR
j = λj(α

R
i , 0) and λR

i = αR
i .

Proof Note that the limiting value of ∂wj/∂t is obtained by Eq. (5.16). Now we
use the chain rule for the values in the smooth region behind Ri to obtain (5.17).

Remark 18 (Degenerate rarefaction wave or acoustic wave). Note that in the
resolution of GRP, all waves must be accounted for. In particular, the ith wave
can just be a characteristic curve, which we regard as a degenerate rarefac-
tion wave or an acoustic wave αR

i = αL
i . All variables wj, j = 1, . . . , m, are

continuous, but in this case ∂wi/∂t, ∂wi/∂x may experience a jump.

We now proceed to the general derivation of the limiting values (1.6) for the
generalized Riemann problem (1.1) and (2.1). We first illustrate this by consid-
ering a special case. Assume that the associated Riemann problem (2.3) and
(2.4) has a solution of m rarefaction waves which separate m+1 constant states,
cf. Fig. 4. Let the t-axis be located inside the intermediate region between the
i-rarefaction wave and the (i+1)-rarefaction wave. Then we have the following
proposition.
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Fig. 4 Wave configuration for the generalized Riemann problem

Proposition 19 Assume that the Riemann solution of (1.1) and (2.1) only consists
of m rarefaction waves and that the t-axis is located inside the intermediate region
between the ith rarefaction wave and the (i+1)st rarefaction wave. Then (∂U/∂t)∗
can be obtained through the following system of linear algebraic equations,

m∑
k=1

ajk

(
∂uk

∂t

)

∗
= dj, j = 1, . . . , m, (5.19)

where the coefficients (aj1, . . . , ajm) = (Dwj)∗, and dj, j = 1, . . . , m, depends only
on the initial data (2.1) and the Riemann solution RA(·; UL, UR).

Proof We label by I0, I1, . . . , Im the regions corresponding to the constant state
regions in the associated Riemann problem from the left to the right, as in Fig. 4.
We start from the first rarefaction wave associated with λ1. By Lemma 17, we
can obtain the directional derivatives for wj, j = 2, . . . , m in the region I1 across
this first rarefaction wave. Successively, we can calculate the derivatives of wj,
j = k + 1, . . . , m across the λk-rarefaction wave, k ≤ i, up to the λi-rarefaction
wave. Consequently we obtain in the region Ii,

m∑
k=1

ajk

(
∂uk

∂t

)

∗
= dj, j = i + 1, . . . , m, (5.20)

from the left-hand side.
Similarly, we start from the region Im for the λmth rarefaction wave in the

right hand side to get the solution wj, j = 1, . . . , m − 1, in the region Im−1.
Successively, we obtain in the region Ii,

m∑
k=1

ajk

(
∂uk

∂t

)

∗
= dj, j = 1, . . . , i. (5.21)
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We combine (5.20) and (5.21) to obtain (5.19). Note that (aj1, . . . , ajm) = (Dwj)∗.
The system (5.19) is uniquely solvable.

Remark 20 The process of proof actually yields a constructive approach to the
calculation of the instantaneous values of time-derivatives along the t-axis.

As pointed out at the beginning of this section, the system (1.1) is in general
not endowed with a coordinate system of Riemann invariants. However, we
can still use the concept of the Riemann invariants, as a main ingredient, in the
treatment of rarefaction waves for a weakly coupled system, which we define
next.

We denote by Li(U) the left eigenvector associated with λi and by L(U) the
left eigenmatrix whose ith row vector is Li(U). Then we multiply (1.1) from the
left by L(U) to get

L(U)
∂U
∂t

+Λ(U)L(U) · ∂U
∂x

= L(U)S(x, U), (5.22)

where Λ(U) is a diagonal matrix with diagonal entries λi. Set

W = L(U)U. (5.23)

Then (5.22) can be written as

∂W
∂t

+Λ(U)
∂W
∂x

= �

(
∂U
∂t

,
∂U
∂x

)
+ S(x, U), (5.24)

where

�

(
∂U
∂t

,
∂U
∂x

)
=
[
∂L(U)
∂t

+Λ(U)
∂L(U)
∂x

]
U, S(U) = L(U) · S(x, U).

(5.25)
In general,� does not vanish. However, suppose that we can split the vector

of unknowns W into two parts, W = (Wa, Wb)�, so that the system (5.24) can
be decoupled into two subsystems

(Sa) :
∂Wa

∂t
+Λa(U)

∂Wa

∂x
= �a

(
∂U
∂t

,
∂U
∂x

)
+ S

a
(x, U),

(Sb) :
∂Wb

∂t
+Λb(U)

∂Wb

∂x
= �b

(
∂U
∂t

,
∂U
∂x

)
+ S

b
(x, U),

(5.26)

which satisfy

(i) �b = 0.
(ii) �a does not depend on the derivatives of Wa.
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(iii) Λa(U) and Λb(U) are diagonal matrices, and

Λ(U) =
(
Λa(U) 0

0 Λb(U)

)
. (5.27)

Thus we can first resolve the rarefaction waves corresponding to the subsystem
(Sb) for Wb and then resolve the system (Sa) for Wa, using the same method-
ology as in the last subsection. This is the family of weakly coupled systems we
define below.

Definition 21 We say that the system (1.1) is weakly coupled if there is a coordi-
nate system of quasi-Riemann invariants W(U) = (Wa(U), Wb(U))� such that
(1.1) can be reduced to the quasi-diagonal form,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Wa

∂t
+Λa(W)

∂Wa

∂x
= �a

(
W,

∂Wb

∂x

)
+ Ka(x, W),

∂Wb

∂t
+Λb(W)

∂Wb

∂x
= Kb(x, W),

(5.28)

whereΛa andΛb are diagonal matrices and their entries are the eigenvalues of
DF.

For convenience, we denote

Λ(W) =
(
Λa(W) 0

0 Λb(W)

)
, � =

(
�a

0

)
, K =

(
Ka

Kb

)
, (5.29)

and (5.28) is written as

∂W
∂t

+Λ(W)
∂W
∂x

= �

(
W,

∂Wb

∂x

)
+ K(x, W). (5.30)

As we shall show later the system of compressible fluid flow is an important
example of a weakly coupled system. Also, all systems that can be transformed
into a form involving upper triangular coefficient matrix are weakly coupled.
Indeed, in this case the above splitting is into m scalar equations, where the solu-
tion procedure resembles the Gaussian elimination. As a result, our problem
boils down to solving the diagonal system (5.10).

Remark 22 (Sonic case) As in Sect. 12, we need to deal with the sonic case that
the t-axis is tangential to the i-characteristic at the origin (x, t) = (0, 0+) for
some i. It is clear that Lemma 17 still holds, where αR

i is replaced by αi = 0. In
addition, we use the wi-equation in (5.10), by noting the fact that λi(W0) = 0,
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W0 = W(αi = 0,αj = 0), to get

(
∂wi

∂t

)∣∣∣∣
(αi,αj)=(0,0)

= Hi(0, W0). (5.31)

It follows that

(Dwi)0

(
∂U
∂t

)

∗
= Hi(0, W0). (5.32)

We summarize these facts in the following theorem (cf. Theorem 13).

Theorem 23 Assume that the t-axis is located in the rarefaction wave associated
with the eigenvalue λi. Then (∂U/∂t)∗ is determined by a system of m linear
equations; the m − 1 equations are given in (5.17) with αR

i = 0, and the other one
is given by (5.32).

5.2 The resolution of jump discontinuities

We use the same approach as in Sect. 4.2 in order to resolve the jump dis-
continuity (shock or contact discontinuity) for general systems. Let the jump
location be given by x = x(t) with speed σ(t) = x′(t). This jump discontinuity is
described by the Rankine–Hugoniot jump condition,

F(U)− F(U) = σ(U − U), (5.33)

where U and U are the limiting states on two sides, respectively. Let us fix the
state U. Then (5.33) is the system of the size m but with m + 1 unknowns U and
σ . As a standard approach [8], we write (5.33) as

[
A(U, U)− σ I

]
(U − U) = 0, (5.34)

where we are using the Roe matrix

A(U, U) =
1∫

0

DF(τU + (1 − τ)U)dτ . (5.35)

Solving (5.34) yields, {
σ = σi(U, U),
U = U + η�i(U, U),

(5.36)

for a parameter η ∈ R, where the ith jump discontinuity speed σi is the eigen-
value of A(U, U), and �i is the associated eigenvector, i = 1, . . . , m.

For a fixed i-jump discontinuity, we eliminate η in (5.36) to get m − 1 equa-
tions,

�
j
i (U, U) = 0, j = 1, . . . , m − 1. (5.37)
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Indeed, this is the system determining the ith Hugoniot locus in the U space. We
differentiate these equations in the direction of the jump discontinuity x = x(t),
x′(t) = σi(U, U), to get

∇U�
j
i (U, U) ·

(
∂U
∂t

+ σi
∂U
∂x

)
= −∇U�

j
i (U, U) ·

(
∂U
∂t

+ σi
∂U
∂x

)
. (5.38)

Denote the limiting values of σi, U, U, ∂U/∂t and ∂U/∂x as t tends to zero by

lim
t→0+ σi = σ 0

i , lim
t→0+ U = Ul, lim

t→0+ U = Ur,

lim
t→0+

∂U
∂t

=
(
∂U
∂t

)

l
, lim

t→0+
∂U
∂x

= U′
r. (5.39)

We suppose that the jump discontinuity moves to the right so that σi(Ul, Ur) > 0.
Our goal is to seek (∂U/∂t)l. Using (1.1) for smooth solutions, we replace the
time derivative ∂U/∂t by the spatial derivative ∂U/∂x and replace the spatial
derivative ∂U/∂x by the time derivative ∂U/∂t,

∂U
∂t

= −DF(U)
∂U
∂x

+ S(x, U),

∂U
∂x

= DF(U)−1
[
−∂U
∂t

+ S(x, U)
]

,

(5.40)

where we assume that DF(Ul) is invertible. The case that DF(Ul) is singular
is discussed below in the context of quasi-Riemann invariants. Inserting these
relations in (5.38) and taking the time limit we get, for j = 1, . . . , m − 1,

∇U�
j
i (Ul, Ur)[I − σ 0

i DF(Ul)
−1]

(
∂U
∂t

)

l

= −σ 0
i ∇U�

j
i (Ul, Ur)DF(Ul)

−1S(0, Ul)

−∇U�
j
i (Ul, Ur)

[
(σ 0

i I − DF(Ur))U′
r + S(0, Ur)

]
.

(5.41)

Note that this is a system of m−1 linearly independent algebraic equations with
m unknowns (∂U/∂t)l. This leads to the following lemma for the resolution of
the i-shock.

Lemma 24 Let the jump discontinuity x = x(t) be associated with the eigenvalue
λi, the related limiting states are denoted in (5.39). Then at the singularity point
(x, t) = (0, 0) we have

m∑
q=1

aj
iq

(
∂uq

∂t

)

l
= dj

i, j = 1, . . . , m − 1, (5.42)
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where all coefficients a j
iq and d j

i are given explicitly by,

(a j
i1, . . . , a j

im) = ∇U�
j
i (Ul, Ur)[I − σ 0

i DF(Ul)
−1]

d j
i = −σ 0

i ∇U�
j
i (Ul, Ur)DF−1(Ul)S(0, Ul) (5.43)

−∇U�
j
i (Ul, Ur)

[
(σ 0

i I − DF(Ur))U′
r + S(0, Ur)

]
.

Now we turn to the case of a weakly coupled system (5.30), as in Definition
21, and work with the quasi-Riemann invariants W = (w1, . . . , wm). Then (5.37)
can be written as

Φ
j
i (W; W) = 0, j = 1, . . . , m − 1. (5.44)

We use the same approach as above to differentiate (5.44) in the direction of
the jump discontinuity x = x(t), express ∂W/∂x by ∂W/∂t and ∂W/∂t by ∂W/∂x
using (5.30),

∇WΦ
j
i ·
(
∂W
∂t

+ σi
∂W
∂x

)
= −∇WΦ

j
i ·
(
∂W
∂t

+ σi
∂W
∂x

)
,

∂W
∂x

= Λ(W)−1 ·
[
−∂W
∂t

+�

(
W,

∂Wb

∂t

)
+ K(x, W)

]
,

∂W
∂t

= −Λ(W) · ∂W
∂x

+�

(
W,

∂W
b

∂x

)
+ K(x, W),

(5.45)

where �(W, ∂Wb/∂t) = �(W,Λb(W)−1 · (− ∂Wb

∂t + Kb(x, W))), and non-zero
eigenvalues are assumed. Indeed, once some eigenvalue λk (k �= i) is zero in
the limit t → 0+, we have from (5.30),

∂wk

∂t
= �k

(
W,

∂Wb

∂x

)
+ Kk(x, W), k �= i. (5.46)

Then the limiting value of ∂wk/∂t is known, and we just need to consider the
reduced (5.45) in terms of the other variables wj, j �= k. For the simplicity in pre-
sentation, we therefore assume that all eigenvalues are not zero. Incorporating
the last two identities of (5.45) into the first one, we have,

∇WΦ
j
i

[
(I − σiΛ(W)−1)

∂W
∂t

+ σiΛ(W)−1 ·�
(

W,
∂Wb

∂t

)]

= −∇WΦ
j
i · σi ·Λ(W)−1 · K(x, W)

−∇WΦ
j
i

[
(σiI −Λ(W))

∂W
∂x

+ K(x, W)+�(W, ∂Wb/∂x)

]
.

(5.47)
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By taking the limit t → 0+, we obtain (in analogy to (5.41)),

∇WΦ
j
i (Wl, Wr)

[
(I − σ 0

i Λ(Wl)
−1)

(
∂W
∂t

)

l
+ σ 0

i Λ(Wl)
−1 ·�

(
Wl,

(
∂Wb

∂t

)

l

)]

= −∇WΦ
j
i (Wl, Wr) · σ 0

i ·Λ(Wl)
−1 · K(0, Wl)

−∇WΦ
j
i (Wl, Wr)

[
(σ 0

i I −Λ(Wr))W′
r + K(0, Wr)+�(Wr, (Wb

r )
′)
]

.
(5.48)

This is a system of m − 1 algebraic equations with m unknowns (∂wk/∂t)l,
k = 1, . . . , m. Note that the ith term of the matrix I − σ 0

i Λ(Wl)
−1 may be zero.

Therefore we let (∂wi/∂t)l be a free undetermined parameter, and we obtain
a system of m − 1 equations for the limiting values (∂wk/∂t)l, k �= i, which is
given by the following lemma.

Lemma 25 Consider the weakly coupled system (5.30). Let the jump disconti-
nuity x = x(t) be associated with λi, σ 0

i = x′(0) > 0. Then at the singularity point
(x, t) = (0, 0), we have the following connections between the vector (∂W/∂t)l of
time derivatives on the left hand side of the jump discontinuity and the spatial
derivatives W′

r := (∂W/∂x)r on the right hand side,

m∑
q=1

∂Φ
j
i

∂wq
· λq(Wl)− σ 0

i

λq(Wl)
·
(
∂wq

∂t

)

l

+
m∑

q=1

∂Φ
j
i (Wl, Wr)

∂wq
· 1
λq(Wl)

·�q

(
Wl,

(
∂Wb

∂t

)

l

)
= d j

i , (5.49)

where j = 1, . . . , m − 1, and d j
i are given explicitly by,

d j
i = −

m∑
q=1

∂Φ
j
i (Wl, Wr)

∂wq
· σ 0

i

λq(Wl)
· Kq(0, Wl)

−
m∑

q=1

∂Φ
j
i (Wl, Wr)

∂wq
·
[
(σ 0

i − λq(Wr))W′
r + Kq(0, Wr)+�q(Wr, (Wb

r )
′)
]

.

(5.50)
The system (5.49) is an algebraic system for (∂wk/∂t)l, k �= i, with the value
(∂wi/∂t)l being an independent parameter.

Remark 26 Lemmas 24 and 25 show that we can either use the primitive vari-
ables U or the quasi-Riemann invariants W for weakly coupled systems in
resolving jump discontinuities. The choice of either approach depends on the
practical convenience.
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Remark 27 (Weak jump) As in Remark 18, in the limit that the strength of
the i-th shock becomes zero (Wl = Wr), the shock trajectory x = x(t) degen-
erates to a characteristic curve and λi(Wl) = σ 0

i = λi(Wr). The term contain-
ing (∂wi/∂t)l is kicked out in (5.49). Finally we get (∂wj/∂t)l = (∂wj/∂t)r and
(∂wj/∂x)l = (∂wj/∂x)r, j �= i. However, (∂wi/∂t)l �= (∂wi/∂t)r.

5.3 Remarks on the resolution of contact discontinuities

In the last subsection we have resolved the jump discontinuities, including
contact discontinuities associated with linearly degenerate eigenvalues. How-
ever, when the system (1.1) is endowed with a coordinate system of Riemann
invariants, as written in (5.10), the situation becomes much simpler for contact
discontinuities.

Assume that the eigenvalue λi is linearly degenerate and the corresponding
contact discontinuity is x = x(t). By the definition of Riemann invariants, see
(5.3), we see that the Riemann invariant wj, associated with λi, is continuous
across the contact discontinuity x = x(t), x′(t) = σi(U, U) = λi(U) = λi(U),

wj(U) = wj(U), j �= i. (5.51)

Using the same approach as in the last subsection, we differentiate wj in the
direction of x = x(t) to yield

∂wj(U)

∂t
+ λi(U)

∂wj(U)

∂x
= ∂wj(U)

∂t
+ λi(U)

∂wj(U)

∂x
. (5.52)

Using (5.10), we have

∂wj(U)

∂x
= 1
λj(U)

[
−∂wj(U)

∂t
+ Hj(x, W(U))

]
,

∂wj(U)

∂t
= −λj(U)

∂wj(U)

∂x
+ Hj(x, W(U)).

(5.53)

Note that if λj(U) = 0, (∂wj/∂t)l = H(0, Wl), and we do not need the above
manipulation. Thus we assume that λj(Ul) �= 0 so that we use (5.53) in (5.52)
and take the time limit to obtain (see (5.39) for notations),

(
∂wj

∂t

)

l
:= λl

j

λl
j − λl

i

[
(λr

i − λr
j )(wj)

′
r + Hj(0, Wr)− λl

i

λl
j

Hj(0, Wl)

]
, (5.54)

where λl
j = λj(Ul), (wj)

′
r = (∂wj/∂x)r, etc. Thus we obtain the time derivative

(∂wj/∂t)l provided that (wj)
′
r and the associated Riemann solution are known.

Then the time derivative (∂U/∂t)l follows. We summarize the above to give the
following result.
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Lemma 28 Let the contact discontinuity x = x(t) be associated with λi and sep-
arate two limiting states Wl and Wr. Then we have

Dwj(Ul) ·
(
∂U
∂t

)

l
= drl

j , j �= i, (5.55)

where the quantity drl
j is expressed explicitly as

drl
j = λl

j

λl
j − λl

i

[
(λr

i − λr
j )(wj)

′
r + Hj(0, Wr)− λl

i

λl
j

Hj(0, Wl)

]
. (5.56)

5.4 The time derivative of solutions at the singularity

In this final subsection we wrap up the calculation of the GRP solution (∂U/∂t)∗,
see (2.2). We assume that the rarefaction waves, shocks and contact disconti-
nuities can be resolved with the approach in Sects. 5.1–5.3, and that the local
wave pattern at the origin, determined by the associated Riemann solution of
(2.3) and (2.4), consists of m waves. If the t-axis is located on one side of all
waves, the value of (∂U/∂t)∗ can be obtained upwind. Therefore, we assume
that the t-axis is located inside the intermediate region between the ith wave
and (i + 1)st wave. The strategy of the computation of (∂U/∂t)∗ is analogous
to Proposition 19, but at present, the treatment depends on the type of the jth
wave (j = 1, . . . , m); a rarefaction wave, a shock or a contact discontinuity. As
has been pointed out, the local wave pattern is determined by the associated
Riemann solution RA(x/t; UL, UR), see Proposition 1.

Theorem 29 Consider the generalized Riemann problem for the weakly coupled
system (5.28). Then the solution (∂U/∂t)∗ can be obtained by solving a system of
linear algebraic equations

m∑
k=1

ajk

(
∂uk

∂t

)

∗
= dj, j = 1, . . .m. (5.57)

The coefficients ajk and dj are determined constructively from the initial data
(2.1) and the associated Riemann solution RA(0; UL, UR).

Proof The basic idea of the proof, and, indeed, the cornerstone of the GRP
methodology, is identical to that of Proposition 19, where all m waves were
assumed to be rarefaction wave. In fact, the initial slopes (2.1) are “rotated”
through the various waves emanating from the origin so as to yield the desired
( ∂U
∂t )∗. We first observe that the results of Sect. 5.1 (rarefaction waves) and

Sects. 5.2–5.3 (jump discontinuities) can be summarized as follows. Given the
limiting values (at (x, t) = (0, 0)) of the temporal and spatial derivatives of the
unknowns (expressed either by U or the quasi-Riemann invariants W) on one
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Fig. 5 An example for a two-wave degenerate pattern for four-equation system: A shock of first
family wave moves to the left and a rarefaction wave of fourth family moves to the right

side of the discontinuity, we find (m − 1) equations for the (limiting values of
the) temporal derivatives on the other side (the spatial derivatives are then
obtained from the system (1.1)). In other words,“crossing” a single wave we
are left with one free parameter in a system of m equations for the derivatives
(on the side labelled as “unknown”). Suppose now that the t-axis is located
between the ith and (i + 1)st waves. Counting from the left (x < 0) we get for
( ∂U
∂t )∗ a system of m equations, with i free parameters. Similarly, approaching

from the right (x > 0) we cross (m − i) waves, and thus get another system of m
equations, containing (m − i) free parameters. Eliminating the total of m free
parameters from the two systems of m equations we obtain precisely the system
claimed in the theorem.

Note that in the sonic case, where the t-axis is “imbedded” in a rarefaction
wave, the proof is simpler and the full system is determined by the data on one
side.

To illustrate our procedure, we examine a few examples in the case of a sys-
tem of four equations (m = 4). The use of quasi-Riemann invariants enables us
to simplify the general procedure above (with free parameters) as follows. First
we consider a degenerate example of two waves, as in Fig. 5: A shock associated
with λ1 moves to the left and a rarefaction wave associated with λ4 moves to the
right, the dashed curves represent the acoustic waves associated with λ3 and λ4,
respectively. Applying Lemma 17, we get the limiting values of the derivatives
for w1, w2 and w3 in the region I4 by resolving the four-rarefaction wave. Note
(Remarks 18 and 27) that out of these derivatives only the derivatives of w1 and
w2 are continuous across the three-acoustic wave. Hence we get the limiting
values (∂w1/∂t)∗ and (∂w2/∂t)∗ in the region I3. On the other hand, across the
one-shock we have three equations for the limiting values of four unknowns
∂wi/∂t, i = 1, 2, 3, 4, in the region I2, see Lemma 25. Since the derivatives of
w1, w3 and w4 are continuous across the two-acoustic wave and (∂w1/∂t)∗ is
already known, we can solve the three equations for the limiting values of the
unknowns ∂wi/∂t, i = 2, 3, 4, in the region I2. Then these limiting values for
i = 3, 4 are equal to (∂w3/∂t)∗ and (∂w4/∂t)∗ in the region I3, respectively.
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Fig. 6 An example for a two-wave degenerate pattern for four-equation system: two shocks of first
and fourth families move to the left and right, respectively

The second example consists of two shocks, as in Fig. 6. In this case the four-
rarefaction wave of the previous example is replaced by a four-shock. We use
Lemma 25 (see (5.49)) to obtain three equations for the limiting values of the
four unknowns ∂wi/∂t in the region I2 by resolving the one-shock, and another
set of three equations for the limiting values of the four unknowns ∂wi/∂t in the
region I4 by resolving the four-shock, i = 1, 2, 3, 4. Since ∂wi/∂t, i = 1, 3, 4, are
continuous across the two-acoustic wave and ∂wi/∂t, i = 1, 2, 4, are continuous
across the three-acoustic wave, we finally obtain six equations with the four
unknowns (∂wi/∂t)∗, i = 1, 2, 3, 4, in the region I3 and the other two unknown
limiting values ∂w2/∂t in the region I2 and ∂w3/∂t in the region I4.

We assume for the third example, as in Fig. 7, that the local wave configu-
ration consists of four waves: Two rarefaction waves propagate to the right, a
rarefaction wave and a shock move to the left, the t-axis is located in the inter-
mediate region I3. With the results in Sect. 5.1, we can get the limiting values
of ∂w1/∂t, ∂w2/∂t and ∂w3/∂t in the region I4 by resolving the four-rarefaction
wave. Then the limiting values of ∂w1/∂x, ∂w2/∂x and ∂w3/∂x are obtained by
using (5.10). We continue to resolve the three-rarefaction wave to get the lim-
iting value (∂w1/∂t)∗ and (∂w2/∂t)∗ in the intermediate region I3. Analogously,
we can resolve the one-rarefaction wave from the left-hand side to get the lim-
iting values of ∂w2/∂t, ∂w3/∂t and ∂w4/∂t (resp. the limiting values of ∂w2/∂x,
∂w3/∂x and ∂w4/∂x again by using (5.10)) in the region I2. Then we proceed
to resolve the two-shock to obtain (∂w3/∂t)∗ and (∂w4/∂t)∗ in the intermediate
region I3. Recall (Lemma 25) that there are three equations connecting the lim-
iting values of derivatives of wi, i = 1, 2, 3, 4. Note that the limiting values of the
derivatives for w2, w3 and w4 in the region I2 are determined by the treatment
of the one-rarefaction wave, leaving there the limiting value of ∂w1/∂t as a free
parameter. Using the (already known) limiting values (∂w1/∂t)∗ and (∂w2/∂t)∗
in the region I3, we have three equations for three unknowns; the limiting value
of ∂w1/∂t in the region I2 as well as (∂w3/∂t)∗ and (∂w4/∂t)∗ in the region I3.
Solving these we get (∂w3/∂t)∗ and (∂w4/∂t)∗ in I3.
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Fig. 7 An example for a full four-wave pattern for four-equation system: two rarefaction waves
move to the right, and a rarefaction wave and a shock move to the left

Once we solve the resulting system of linear equations to get (∂wi/∂t)∗,
i = 1, 2, 3, 4, we immediately obtain (∂U/∂t)∗ in the intermediate region I3.

6 The acoustic approximation and the G1-scheme

The acoustic approximation makes sense if the jump at the singularity point
(x, t) = (0, 0) is sufficiently small. Assume that the initial variables U(x, 0)
in (2.1) are continuous at x = 0 while their slopes are not; UL = UR and
U′

L �= U′
R. Then the Riemann solution to the associated Riemann problem is

constant RA(x/t; UL, UR) ≡ UL = UR. Therefore the initial wave pattern does
not contain a jump discontinuity (shock) or a centered rarefaction wave. The
“waves” emanating from the origin (x, t) = (0, 0) are acoustic, and therefore
their speeds are λi(UL) = λi(UR), i = 1, . . . , m.

Denote U∗ = UL = UR. Then we can linearize (1.1) around U = U∗ to get

∂U
∂t

+ DF(U∗)
∂U
∂x

= S(x, U∗). (6.1)

With this linear system of equations, we can use the customary methods, as in
Sect. 3, to get the derivative (∂U/∂t)∗: Diagonalize the system (6.1), calculate
the derivatives upwind and return to the primitive variables (∂U/∂t)∗.

In our GRP scheme, the initial data (2.1) has a jump discontinuity, and we can
solve the generalized Riemann problem (1.1) and (2.1) analytically to calculate
the time derivative of solution, as has been summarized in Sect. 5.4. This leads
to the scheme which we label as the G∞ scheme.

In practice, when UL−UR is sufficiently small, we can simplify this process by
resorting to the acoustic case. Setting the Riemann solution U∗ = RA(0; UL, UR)

as the background solution, we linearize the system (1.1) to get the linear system
(6.1). Diagonalize the system to arrive at

∂W
∂t

+Λ(W∗)
∂W
∂x

= L(W∗)S(x, W∗) =: H(x, W∗), (6.2)
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where W = L(U∗)U, L = (L1, . . . , Lm)
�, Li is the left (row) eigenvector asso-

ciated with λi, andΛ is a diagonal matrix with entries λi(U∗). Therefore we can
calculate the time derivative of W, as in the scalar case,

(
∂W
∂t

)

∗
= lim

t→0+
∂W
∂t
(0, t) = −

[ |Λ| +Λ

2
W′

L + |Λ| −Λ

2
W′

R

]
+ H(x, W∗),

(6.3)
where |Λ| = diag(|λ1|, . . . , |λm|). This is an O(∆t) approximation of the time
derivatives appearing in (1.5). Returning to the original variables U we get

(
∂U
∂t

)

∗
= L−1(U∗)

(
∂W
∂t

)

∗
. (6.4)

The resulting scheme is labelled as the G1-scheme. In the original GRP scheme
[4], there are the corresponding E1 (Eulerian) scheme and L1 (Lagrangian)
scheme. Observe that when U′

L = U′
R = 0, the scheme degenerates to the

Godunov scheme. Thus the G1-scheme is the simplest possible extension of the
Godunov scheme. Once the Godunov scheme is implemented, the implemen-
tation of the G1-scheme adds a negligible amount of computational effort.

7 Several examples in applications

In this section we use the methodology developed above in order to treat several
well-known physical examples. Our first two examples, the system of isentropic
compressible fluid flow and the system of rotating shallow water equations, are
endowed with coordinate systems of Riemann invariants so that they can be
treated by the method of Sect. 4. The third example, the system of nonisentropic
compressible fluid flow in a duct of variable cross-section, does not possess a full
coordinate system of Riemann invariants although there exist Riemann invar-
iants for each characteristic field. However, this system falls into the category
of weakly coupled systems, as defined in Definition 21.

7.1 Isentropic compressible fluid flow

The system of one-dimensional isentropic flow in gas dynamics is given by

∂ρ

∂t
+ ∂(ρu)

∂x
= 0,

∂(ρu)
∂t

+ ∂(ρu2 + p(ρ))
∂x

= 0, (7.1)

where ρ ≥ 0 is the density, u is the velocity, and p(ρ) = aργ is the pressure,
a > 0 and γ > 1 are given constants. The system (7.1) has two eigenvalues

λ− = u − c, λ+ = u + c, (7.2)
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where c is the speed of sound, given by c2 = aγργ−1. The two Riemann invari-
ants are taken as

φ = u − 2c
γ − 1

, ψ = u + 2c
γ − 1

, (7.3)

where φ is associated with λ+, and ψ is associated with λ−. In terms of these
Riemann invariants, the system (7.1) is reduced to a diagonal system (see (4.3))

∂φ

∂t
+ λ−

∂φ

∂x
= 0,

∂ψ

∂t
+ λ+

∂ψ

∂x
= 0. (7.4)

We consider a typical local wave pattern consisting of a rarefaction wave
moving to the left and a shock moving to the right, and assume that the t-axis is
located inside the intermediate region, as in Fig. 1. However, note that there is
no contact discontinuity in the present case. In order to resolve the rarefaction
wave, we need to set up the associated characteristic coordinates (α,β). Taking
(α,β) as in Sect. 4, we obtain the following explicit expressions,

tass(α,β) = α

(ψL − β)
1

2µ2

, xass(α,β) = αβ

(ψL − β)
1

2µ2

, µ2 = γ − 1
γ + 1

. (7.5)

In [5], we use the same characteristic coordinates. This is because the associated
rarefaction wave is isentropic.

The Hugoniot loci for shocks are given by

σ = ρu − ρu
ρ − ρ

, u = u ±
(

1
ρρ

· (p(ρ)− p(ρ))(ρ − ρ)

) 1
2

:= u ±Φ(ρ, ρ),

(7.6)
where σ(t) = x′(t) is the shock speed, (ρ, u) and (ρ, u) are the preshock and
postshock states, respectively.

The following proposition is a straightforward application of Theorems 3
and 13.

Proposition 30 Consider the system (7.1) subject to the piecewise initial data
(2.1). Assume a typical wave pattern consisting of a rarefaction wave propagat-
ing to the left and a shock moving to the right. Then the limiting values (∂ρ/∂t)∗
and (∂u/∂t)∗ (see (2.2)) are determined by a pair of linear equations,

aL

(
∂u
∂t

)

∗
+ bL

(
∂ρ

∂t

)

∗
= dL,

aR

(
∂u
∂t

)

∗
+ bR

(
∂ρ

∂t

)

∗
= dR.

(7.7)

The coefficients aL, bL, dL, aR, bR, dR are given explicitly in the following two
cases.
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(i) Non-sonic case When the t-axis is located inside the intermediate region
between the rarefaction wave and the shock, we have the non-sonic case,

aL = 1, bL = c∗
ρ∗

, dL = −(u∗ + c∗)
(

c∗
cL

) 1
2µ2 −1 (

u′
L + cL

ρL
ρ′

L

)
,

aR =1 − σ0u∗
u2∗ − c2∗

− ∂Φ

∂ρ
· σ0ρ∗

u2∗ − c2∗
, bR = σ0

u2∗ − c2∗
· c2∗
ρ∗

− ∂Φ
∂ρ

·
(

1 − σ0u∗
u2∗ − c2∗

)
,

dR = 3(σ0 − uR)
2 + c2

R

2(σ0 − uR)
· u′

R − (σ0 − uR)
2 + 3c2

R

2ρR
ρ′

R, (7.8)

and

σ0 = ρ∗u∗ − ρRuR

ρ∗ − ρR
,

∂Φ

∂ρ
= (σ0 − u∗)2 + c2∗

2ρ∗(σ0 − u∗)
. (7.9)

(ii) Sonic case When the t-axis (the cell interface) is located inside the rarefac-
tion wave associated with λ−, we have the sonic case. The coefficients aL, bL and
dL are given in (7.8) in which (ρ∗, u∗, c∗) is replaced by (ρ0, u0, c0) there (such
that c0 − u0 = 0, cf. Sect. 12), and aR, bR, dR are given by

aR = 1.0, bR = − c0

ρ0
, dR = 0.0. (7.10)

7.2 Rotating shallow water equations with Coriolis force

We consider the shallow water motion on the rotating plane without depen-
dence on one of the coordinates (say, y). This system was investigated in [6]
and references therein. We use this system to illustrate the performance of our
GRP scheme. The governing system can be written in the following form,

∂h
∂t

+ ∂(hu)
∂x

= 0,

∂(hu)
∂t

+ ∂(hu2 + gh2/2)
∂x

= fhv,

∂(hv)
∂t

+ ∂(huv)
∂x

= −fhu,

(7.11)

where h is the height of water, u, v are two components of the velocity, f is the
(constant) Coriolis force coefficient, g is the gravitational constant. Note that
the first two equations (with f = 0) are actually the one-dimensional shallow
water model [13] and they are equivalent to the one-dimensional isentropic
system (7.1), where h is regarded as ρ and γ = 2. A difference from (7.1) is the
weak coupling with the other velocity component v through the source terms,
while v is transported with the velocity u. Another difference is that there is a
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contact discontinuity associated with the eigenvalue u, across which h and u are
continuous, and v has a jump.

The system (7.11) has the Riemann invariants v, and

φ = u − 2c, ψ = u + 2c, (7.12)

where c = √
gh. The pairs (v,ψ), (v,φ) and (φ,ψ) are, respectively, associated

with the eigenvalues λ− = u − c, λ+ = u + c and u. They comprise a coordinate
system of Riemann invariants of the system (7.11). In terms of φ, ψ and v, we
reduce (7.11) to the characteristic (diagonal) form,

∂φ

∂t
+ λ−

∂φ

∂x
= fv,

∂ψ

∂t
+ λ+

∂ψ

∂x
= fv,

∂v
∂t

+ u
∂v
∂x

= −fu. (7.13)

Since the genuinely nonlinear eigenvalues u − c and u + c are the same as
those for (7.1), we can use the same characteristic coordinates as in (7.5) when
γ = 2. That is, throughout the rarefaction wave associated with u − c, the
characteristic coordinates (α,β) are expressed as

tass(α,β) = α

(ψL − β)
3
2

, xass(α,β) = αβ

(ψL − β)
3
2

. (7.14)

In analogy with Proposition 30, we immediately have the limiting values
(∂h/∂t)∗ and (∂u/∂t)∗. However, there is a small difference due to the pres-
ence of source terms in the current case. Also, we have the third wave (contact
discontinuity) associated with u. As we see in the following propositions, this
additional wave imposes no difficulty in the resolution of rarefaction waves and
shocks.

Proposition 31 Assume the configuration as shown in Fig. 1. Then we obtain the
time derivatives (∂h/∂t)∗ and (∂u/∂t)∗ by solving the same system of form (7.7)
with ρ replaced by h and γ = 2. The coefficients aL, bL, aR and bR are given in
(7.8), while dL and dR are given as follows.

(i) For the non-sonic case, we have

dL = −(u∗ + c∗) ·
(

c∗
cL

) 1
2
(

u′
L + cL

ρL
ρ′

L

)
+ fvL,

dR = 3(σ0 − uR)
2 + c2

R

2(σ0 − uR)
· u′

R − (σ0 − uR)
2 + 3c2

R

2ρR
ρ′

R

+fvR

[
1 − σ0

u2∗ − c2∗
· σ

2
0 − u2∗ + c2∗
2(σ0 − u∗)

]
.

(7.15)
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(ii) For the sonic case, dL is given in (7.15), and dR is given as

dR = fvL. (7.16)

Next we treat the variable v. Note that for the associated Riemann problem,
v = vL across the rarefaction wave, and v = vR across the shock. For the case
of the GRP (i.e., the initial data for v is piecewise linear), we have the following
result for (∂v/∂t)∗.

Proposition 32 Assume the configuration in Fig. 1. Then we have:

(i) if u∗ > 0, the value (∂v/∂t)∗ is obtained from the rarefaction wave (left
hand) side,

(
∂v
∂t

)

∗
= −Fr∗

(
c∗
cL

)3

cLv′
L

+fFr∗

[
−uL + 3c∗

(
1 −

(
c∗
cL

)2
)

−2cL

(
1 −

(
c∗
cL

)3
)

+ (u∗ − c∗)
]

,

(7.17)

where the Froude number Fr∗ = u∗/c∗;
(ii) if u∗ < 0, the value (∂v/∂t)∗ is calculated from the shock (right hand)

side, (
∂v
∂t

)

∗
= u∗(σ0 − uR)

u∗ − σ0

[
v′

R + f
]

, (7.18)

where σ0 is the initial speed of the shock wave.

Proof When u∗ > 0, we see that v is continuous to the left of the contact dis-
continuity dx

dt = u. We can use the same method as in Lemmas 6 and 7: Using
the characteristic coordinates (α,β) and taking v as a Riemann invariant, we
first calculate ∂v/∂α(0,β) and then return to express the derivatives of v with
respect to x and t, yielding (7.17).

When u∗ < 0, we use the continuity property of v across the shock and
differentiate along the shock trajectory x = x(t) to get

∂v(x(t)− 0, t)
∂t

+ σ(t)
∂v(x(t)− 0, t)

∂x
= ∂v(x(t)+ 0, t)

∂t
+ σ(t)

∂v(x(t)+ 0, t)
∂x

,

(7.19)
where σ(t) is the shock speed. Using the equation for v in (7.13), substituting
the spatial derivative of v in the postshock side by the time derivative and the
time derivative in the preshock side by the spatial derivative, we then take the
limit to obtain (7.18).
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7.3 A variable area duct flow

We now consider the variable area duct flow governed by the system [4, Chap. 4]

∂(A(x)ρ)
∂t

+ ∂(A(x)ρu)
∂x

= 0,

∂(A(x)ρu)
∂t

+ ∂(A(x)ρu2)

∂x
+ A(x)

∂p
∂x

= 0,

∂(A(x)ρE)
∂t

+ ∂(A(x)u(ρE + p))
∂x

= 0,

(7.20)

where the variables ρ, u, p and E are the density, velocity, pressure and the total
specific energy. The total specific energy consists of two parts E = u2

2 + e, e is
the internal specific energy. The function A(x) is the area of the duct. When
A(x) ≡ 1, the system (7.20) represents the planar compressible Euler equations.
Let T be the temperature. Then the entropy S can be defined, as usual, by the
second law of thermodynamics,

TdS = de − p
ρ2 dρ. (7.21)

In terms of ρ, u and S, the system (7.20) can be written, for smooth flows, as,

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u
∂x

= −A′(x)
A(x)

ρu,

∂u
∂t

+ u
∂u
∂x

+ 1
ρ

∂p
∂x

= 0,

∂S
∂t

+ u
∂S
∂x

= 0,

(7.22)

where p is regarded as a function of ρ and S. We discuss the case of polytropic
gases, for which the internal energy e = p

(γ−1)ρ . Then in terms of ρ, u and p, the
third equation of (7.22) can be replaced by,

∂p
∂t

+ u
∂p
∂x

+ ρc2 ∂u
∂x

= −A′(x)
A(x)

ρc2u. (7.23)

Here c is the local speed of sound, given by c2 = γp
ρ

. Note that (7.22) is just
valid for smooth flows. For non-smooth flows, we need to use the conservative
form (7.20) with the conserved variables (ρ, ρu, ρE).

The system (7.20), or equivalently (7.22), possesses three eigenvalues

λ− = u − c, λ0 = u, λ+ = u + c. (7.24)
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We introduce two variables φ, ψ [5],

φ = u −
ρ∫

c(ω, S)
ω

dω, ψ = u +
ρ∫

c(ω, S)
ω

dω. (7.25)

The functions φ, ψ can be expressed in terms of total differentials, see [5, Eqs.
(2.6), (2.10) and (2.15)]

dφ = du − 1
ρc

dp − T
c

dS, dψ = du + 1
ρc

dp + T
c

dS. (7.26)

For the entropy S, we have

TdS = dp
(γ − 1)ρ

− c2

(γ − 1)ρ
dρ. (7.27)

The three pairs (ψ , S), (u, p) and (φ, S) are the Riemann invariants associated
with λ−, λ0 and λ+, respectively. However, there is no full coordinate system of
Riemann invariants so that (7.20) cannot be reduced to a diagonal form. At this
point, the system (7.20) is substantially different from the system of isentropic
flow (7.1) and the system of shallow water equations (7.11). However, it falls
into the category of weakly coupled systems, as defined in Definition 21. Indeed,
we take φ, ψ and S as the (quasi)-Riemann invariants to write (7.22) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
+ (u − c)

∂φ

∂x
= B1,

∂ψ

∂t
+ (u + c)

∂ψ

∂x
= B2,

∂S
∂t

+ u
∂S
∂x

= 0.

(7.28)

where B1 = T ∂S
∂x + A′(x)

A(x) cu, B2 = T ∂S
∂x − A′(x)

A(x) cu. For the present system, Wa =
(φ,ψ)� and Wb = S, corresponding to Definition 21.

We use this weakly coupled form to resolve the generalized Riemann prob-
lem for (7.20) subject to piecewise linear initial data of the form (2.1). Assume
that the configuration is as shown in Fig. 1; a rarefaction wave associated with
u − c moves to the left, a shock associated with u + c moves to the right, and the
t-axis is located inside the intermediate region. Denote by p∗, u∗ the limiting
values of p, u at the contact discontinuity as t → 0+. Similarly, denote by ρ∗1,
c∗1 and ρ∗2, c∗2 the limiting values of ρ, c on the left-hand and right-hand sides
of the contact discontinuity, respectively. Then we resolve the rarefaction wave,
the shock and the contact discontinuity, separately.

First we resolve the rarefaction wave associated with u − c from the left.
According to the general treatment of weakly coupled system in Sect. 5, this
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is done by first treating Wb and solving for Wa. In our case, it means that
we are using the Riemann invariants φ, ψ with appropriate dependence on
S. Due to the special form of the system, the dependence of S is very simple.
For this purpose, we need to establish the system of characteristic coordinates
(x, t) → (α,β), where α and β are defined in terms of the eigenvalues u + c,
u − c, respectively. See Fig. 1 and the section of Fig. 3. The associated charac-
teristic coordinates tass(α,β), xass(α,β) are given in (7.5). In the limit α → 0,
u(0,β) − c(0,β) = β so that c = µ2(ψL − β) and u = (µ2 − 1)(ψL − β) + ψL,
where µ2 = γ−1

γ+1 , ψL = ψ(ρL, uL, pL). Equations (7.4) are replaced by the first
two equations of (7.28). According to Lemma 17, we obtain ∂ψ/∂t and ∂S/∂t,
as stated in the following proposition.

Proposition 33 Assume that the rarefaction wave associated with u − c moves to
the left, as in Fig. 1. Consider the Riemann invariants S, ψ and their time deriva-
tives ∂S/∂t, ∂ψ/∂t as continuous functions of α, β, in the rectangle −α0 ≤ α ≤ 0,
βL ≤ β ≤ β∗ for some α0 > 0. Then we have,

T
∂S
∂t
(0,β) = −(β + cLθ)θ

2γ
γ−1 TLS′

L, θ = c(0,β)/cL,

∂ψ

∂t
(0,β) = H1 + A′(0)

2A(0)
H2,

(7.29)

where TLS′
L is defined by (7.27), and H1, H2 are given by,

H1 = −β + cLθ

cL
θ
γ+1
γ−1 TLS′

L + β + 2cLθ

cL
θ

3−γ
2(γ−1)

[
2γ

3γ − 1
TLS′

L − cLψ
′
L

]
,

H2 = β(β + cLθ)− (β + 2cLθ)

[
uLθ

3−γ
2(γ−1) + H2

]
,

H2 =

⎧⎪⎪⎨
⎪⎪⎩

−2(γ + 1)cLθ

(γ − 1)(3γ − 5)

(
1 − θ

5−3γ
2(γ−1)

)
− (γ+1)ψL

γ − 3

[
1−θ 3−γ

2(γ−1)

]
, if γ �=3, 5/3,

2cL(θ − 1)− ψL ln θ , if γ = 3,
2
[
cLθ ln θ + ψL (1 − θ)

]
, if γ = 5/3.

(7.30)

Proof According to the general treatment of Sect. 5, we need to consider the
evolution of the time derivatives of two pairs of Riemann invariants (φ, S) and
(φ,ψ).

(i) The computation of T∂S/∂t we use the first and third equations of (7.28)
to form a system of two equations,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂φ

∂t
+ (u − c)

∂φ

∂x
= B1,

∂S
∂t

+ (u + c)
∂S
∂x

= c
∂S
∂x

.

(7.31)
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Then, in terms of α and β, we have (since ∂x/∂α = (u − c)∂t/∂α and ∂x/∂β =
(u + c)∂t/∂β),

∂S
∂β

= ∂t
∂β

·
[
∂S
∂t

+ (u + c)
∂S
∂x

]
= ∂t
∂β

· c
∂S
∂x

,

∂S
∂α

= ∂t
∂α

[
∂S
∂t

+ (u − c)
∂S
∂x

]
= − ∂t

∂α
· c
∂S
∂x

.

(7.32)

We note, as in (4.16), that

∂2t
∂α∂β

(0,β) = 1
2c(0,β)

∂t
∂α
(0,β), (7.33)

where we have used the fact that λ−(0,β) = β, λ−(0,β)− λ+(0,β) = −2c(0,β)
and (∂t/∂β)(0,β) = 0. Thus, differentiating the first equation of (7.32) with
respect to α and noting ∂t

∂β
(0,β) ≡ 0, we get

∂

∂β

(
∂S
∂α
(0,β)

)
= 1

2
∂t
∂α
(0,β) · ∂S

∂x
(0,β) = − 1

2c(0,β)
∂S
∂α
(0,β). (7.34)

Integrating from βL to β yields,

∂S
∂α
(0,β) = ∂S

∂α
(0,βL) exp

⎛
⎜⎝−

β∫

βL

1
2c(0, η)

dη

⎞
⎟⎠ = ∂S

∂α
(0,βL) · θ

1
2µ2 . (7.35)

Similarly, we get from (7.33)

∂t
∂α
(0,β) = ∂t

∂α
(0,βL)θ

− 1
2µ2 . (7.36)

In particular, from the second equation of (7.32) and(7.36), we have

c(0,β)
∂S
∂x
(0,β) = − ∂S

∂α
(0,β) ·

(
∂t
∂α

)−1

(0,β) = cLS′
Lθ

1
µ2 . (7.37)

Hence using the entropy equation in (7.28), we return to the (x, t)-coordinate
system to get T ∂S

∂t ,

T(0,β)
∂S
∂t
(0,β) = −u(0,β)T(0,β)

∂S
∂x
(0,β), (7.38)

which gives T ∂S
∂t in (7.29) by using (7.37) and noting T/TL = c2/c2

L.
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(ii) The computation of ∂ψ/∂t We now consider the first two equations in
(7.28), i.e., the system of two equations,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂φ

∂t
+ (u − c)

∂φ

∂x
= B1,

∂ψ

∂t
+ (u + c)

∂ψ

∂x
= B2.

(7.39)

As in (7.32), we note

∂ψ

∂t
+ (u − c)

∂ψ

∂x
=
(
∂t
∂α

)−1
∂ψ

∂α
. (7.40)

Regard the source terms as functions of (α,β). In the limit (α → 0), they are
known from the first part of the proof, see Eq. (7.37). In terms of the gen-
eral treatment of weakly coupled systems in Sect. 5, this is at the stage where
Wb (= {S}) is fully resolved, and we can turn to the diagonal system for Wa

(= {φ,ψ}). Following the same reasoning as the one leading up to Eq. (7.34),
we get

∂

∂β

(
∂ψ

∂α
(0,β)

)
= 1

2c(0,β)
· ∂t
∂α
(0,β) · B2(0,β). (7.41)

The integration from βL to β yields,

∂ψ

∂α
(0,β) = ∂ψ

∂α
(0,βL)+

β∫

βL

1
2c(0, η)

· ∂t
∂α
(0, η) · B2(0, η)dη. (7.42)

The initial data for ∂ψ/∂α is given by

∂ψ

∂α
(0,βL) = ∂t

∂α
(0,βL)

[
TLS′

L − A′(0)
A(0)

cLuL − 2cLψ
′
L

]
, (7.43)

where we note the following relation by using (7.39) and (7.40),

∂ψ

∂α
= ∂t
∂α

·
[
∂ψ

∂t
+ (u − c)

∂ψ

∂x

]
= ∂t
∂α

·
[

B2 − 2c
∂ψ

∂x

]
. (7.44)

Once we obtain (∂ψ/∂α)(0,β) from (7.42), we get

2c(0,β)
∂ψ

∂x
(0,β) = B2(0,β)−

(
∂t
∂α

)−1

(0,β)
∂ψ

∂α
(0,β). (7.45)
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we insert this into (7.40) to get

∂ψ

∂t
(0,β) = −u − c

2c
B2(0,β)+ u + c

2c

(
∂t
∂α

)−1
∂ψ

∂α
(0,β). (7.46)

Then using B2(0,β) = T(0,β)∂S
∂x (0,β)−A′(0)

A(0) c(0,β)u(0,β) and the value ∂ψ
∂α
(0,β)

in (7.42), we obtain the second equation in (7.29).

Proposition 34 (Resolution of rarefaction waves) Assume that the rarefaction
wave associated with u − c moves to the left. Use the characteristic coordinates
(α,β) as above and consider the limiting values ∂u

∂t (0,β) and ∂p
∂t (0,β), βL ≤ β ≤

β∗. Then we have

ãL(0,β)
∂u
∂t
(0,β)+ b̃L(0,β)

∂p
∂t
(0,β) = d̃L(β), (7.47)

where the coefficients ãL, b̃L and d̃L can be expressed explicitly as follows. With
θ = c(0,β)/cL,

ãL(0,β) = 1, b̃L(0,β) = 1
ρ(0,β)c(0,β)

, (7.48)

and

d̃L(β) = β + 2θcL

cL
· θ 3−γ

2(γ−1)

(
2γ

3γ − 1
TLS′

L − cLψ
′
L

)
+ A′(0)

2A(0)
H2, (7.49)

where H2 is given in (7.30).

Proof We use (7.26) to get

∂u
∂t

+ 1
ρc
∂p
∂t

= ∂ψ

∂t
− T

c
∂S
∂t

. (7.50)

The right-hand side can be evaluated at (0,β) using the two equations in (7.29)
to yield (7.47) as well.

As in Sect. 5.2, we can use the Riemann invariants W for the resolution
of jump discontinuities. However, as in the first part of Sect. 5.2, it is more
convenient to use the basic primitive variables U = (ρ, u, p). See Remark 26.

The Rankine–Hugoniot conditions for shocks are

σ = ρu − ρ u
ρ − ρ

, u = u ±Φ(p; p, ρ), ρ = h(p; p, ρ), (7.51)
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where (ρ, u, p) and (ρ, u, p) are the states ahead and behind the shock, respec-
tively, and

Φ(p; p, ρ) = (p − p)

√
1 − µ2

ρ(p + µ2p)
, h(p; p, ρ) = ρ

p + µ2p
p + µ2p

, µ2 = γ − 1
γ + 1

.

(7.52)
Assume that this shock is associated with u+c and moves to the right, as shown
in Fig. 1. Then it can be resolved with a standard method, see [5].

Proposition 35 (Resolution of shocks) Assume that a shock associated with u+c
moves to the right. Then the limiting values (∂p/∂t)∗ and (∂u/∂t)∗ satisfy the linear
relations

ãR

(
∂u
∂t

)

∗
+ b̃R

(
∂p
∂t

)

∗
= d̃R, (7.53)

where the coefficients are given explicitly in the following,

ãR = 1 − σ0u∗
u2∗ − c2∗2

− σ0ρ∗2c2∗2

u2∗ − c2∗2

·Φ1,

b̃R = 1
ρ∗2

σ0

u2∗ − c2∗2

−
(

1 − σ0u∗
u2∗ − c2∗2

)
Φ1,

d̃R = LR
p · p′

R + LR
u · u′

R + LR
ρ · ρ′

R + A′(0)
A(0)

jR,

(7.54)

and

LR
p = − 1

ρR
+ (σ0 − uR) ·Φ2,

LR
u = σ0 − uR − ρR · c2

R ·Φ2 − ρR ·Φ3,

LR
ρ = (σ0 − uR) ·Φ3,

jR = −(Φ2c2∗2 +Φ3)ρRuR + (1 +Φ1ρ∗2u∗)
σ0c2∗2u∗
u2∗ − c2∗2

;

σ0 = ρ∗2u∗ − ρRuR

ρ∗2 − ρR
,

Φ1 = 1
2

√
1 − µ2

ρR(p∗ + µ2pR)
· p∗ + (1 + 2µ2)pR

p∗ + µ2pR
,

Φ2 = −1
2

√
1 − µ2

ρR(p∗ + µ2pR)
· (2 + µ2)p∗ + µ2pR

p∗ + µ2pR
,

Φ3 = −p∗ − pR

2ρR

√
1 − µ2

ρR(p∗ + µ2pR)
.

(7.55)
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Next we want to resolve the contact discontinuities. Let x = x(t) be the jump
discontinuity. The Rankine–Hugoniot (jump) conditions are

u(x(t)− 0, t) = u(x(t)+ 0, t), p(x(t)− 0, t) = p(x(t)+ 0, t). (7.56)

Indeed, u and p are the Riemann invariants associated with λ0 = u. Denote
D/Dt = ∂/∂t + u∂/∂x, u±(t) := u(x(t)± 0, t), p±(t) = p(x(t)± 0, t). Then along
x = x(t) we have

Du+(t)
Dt

= Du−(t)
Dt

,
Dp+(t)

Dt
= Dp−(t)

Dt
. (7.57)

Note that
∂u
∂t

= Du
Dt

+ u
ρc2

Dp
Dt

+ A′(x)
A(x)

u2,

∂p
∂t

= Dp
Dt

+ ρu
Du
Dt

.

(7.58)

or
Du
Dt

= 1
c2 − u2

[
c2 ∂u
∂t

− u
ρ

∂p
∂t

− A′(x)
A(x)

c2u2
]

,

Dp
Dt

= c2

u2 − c2

[
ρu
∂u
∂t

− ∂p
∂t

− A′(x)
A(x)

ρu3
]

.

(7.59)

Then, once the limiting values (∂u/∂t)∗ and (∂p/∂t)∗ on one side of the contact
discontinuity are known, we can obtain them on the other side. We remind that
they are different on the two sides since the density ρ experiences a jump there.

Combining all above discussion, we can solve the generalized Riemann prob-
lem (7.20) and (2.1). We summarize our results in the following propositions.

Proposition 36 (Non-sonic case) Assume a typical wave configuration for the
generalized Riemann problem for (7.20) as shown in Fig. 1. Then we can obtain
(∂u/∂t)∗ and (∂p/∂t)∗ by solving the following pair of linear equations,

aL

(
∂u
∂t

)

∗
+ bL

(
∂p
∂t

)

∗
= dL,

aR

(
∂u
∂t

)

∗
+ bR

(
∂p
∂t

)

∗
= dR,

(7.60)

where aL, bL, dL and aR, bR, dR are specified below. Also the computation of
(∂ρ/∂t)∗ are computed by the following two cases.

(i) If u∗ > 0, the contact discontinuity moves to the right. The coefficients aL,
bL and dL are given in (7.47),

(aL, bL, dL) = (ãL, b̃L, d̃L). (7.61)
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The coefficients aR, bR and dR are given by

aR = c2
∗1

c2
∗1 − u2∗

[
ãR

(
1 − ρ∗1u2∗

ρ∗2c2∗2

)
+ b̃R(ρ∗2 − ρ∗1)u∗

]
,

bR = 1

c2
∗1 − u2∗

[
ãR

(
− 1
ρ∗1

+ c2
∗1

ρ∗2c2∗2

)
u∗ − b̃R

(
−ρ∗2

ρ∗1
u2∗ + c2

∗1

)]
,

dR = d̃R + A′(0)
A(0)

u3∗
c2
∗1 − u2∗

[
ãR

(
1 − ρ∗1c2

∗1

ρ∗2c2∗2

)
+ b̃R(ρ∗2 − ρ∗1)c

2
∗1

]
.

(7.62)

The value (∂ρ/∂t)∗ is computed from the rarefaction side,

(
∂ρ

∂t

)

∗
= 1

c2∗

⎡
⎣
(
∂p
∂t

)

∗
+ (γ − 1)ρ∗u∗

(
c∗
cL

) 1+µ2

µ2

TLS′
L

⎤
⎦ , (7.63)

by using the state equation p = p(ρ, S).
(ii) If u∗ < 0, the contact discontinuity moves to the left. The coefficients aR,

bR and dR are given in Proposition 35,

(aR, bR, dR) = (ãR, b̃R, d̃R). (7.64)

While the coefficients aL, bL and dL are computed by

aL = c2∗2

c2∗2 − u2∗

[
ãL

(
1 − ρ∗2u2∗

ρ∗1c2
∗1

)
+ b̃L(ρ∗1 − ρ∗2)u∗

]
,

bL = 1

c2∗2 − u2∗

[
ãL

(
− 1
ρ∗2

+ c2∗2

ρ∗1c2
∗1

)
u∗ − b̃L

(
−ρ∗1

ρ∗2
u2∗ + c2∗2

)]
,

dL = d̃L + A′(0)
A(0)

u3∗
c2∗2 − u2∗

[
ãL

(
1 − ρ∗2c2∗2

ρ∗1c2
∗1

)
+ b̃L(ρ∗1 − ρ∗2)c2∗2

]
.

(7.65)

The value (∂ρ/∂t)∗ is computed from the shock side,

gR
ρ

(
∂ρ

∂t

)

∗
+ gR

p

(
Dp
Dt

)

∗
+ gR

u

(
Du
Dt

)

∗
= u∗ · fR, (7.66)
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where gR
ρ , gR

p , gR
u and fR are constant, explicitly given in the following,

gR
ρ = u∗ − σ0, gR

p = σ0

c2∗2

− u∗H1, gR
u = ρ2∗(σ0 − u∗) · u∗ · H1,

fR = (σ0 − uR) · H2 · p′
R + (σ0 − uR) · H3 · ρ′

R − ρR · (H2c2
R + H3

) · u′
R

−A′(0)
A(0)

·
(

H2c2
R + H3

)
ρRuR,

(7.67)

and H1, H2 and H3 are expressed by

H1 = ρR(1 − µ4)pR

(pR + µ2p∗)2
, H2 = ρR(µ

4 − 1)p∗
(pR + µ2p∗)2

, H3 = p∗ + µ2pR

pR + µ2p∗
. (7.68)

Proposition 37 (Sonic case) Assume that the t-axis is located inside the rarefac-
tion wave associated with u − c. Then we have

(
∂u
∂t

)

0
= 1

2

[
d̃L + θ

2γ
γ−1 TLS′

L + A′(0)
A(0)

u2
0

]
,

(
∂p
∂t

)

0
= ρ0c0

2

[
d̃L − θ

2γ
γ−1 TLS′

L − A′(0)
A(0)

u2
0

]
,

(7.69)

where d̃L is given in (7.49), with θ = c0/cL, and (u0, ρ0, c0) is the limiting value
of (u, ρ, c) along the t-axis so that u0 −c0 = 0, cf. the sonic case in Proposition 30.

Proof Note that at the origin, we have

(
∂φ

∂t

)

0
=
(
∂φ

∂t

)

0
+ (u0 − c0)

(
∂φ

∂x

)

0
=
(

T
∂S
∂x

)

0
+ A′(0)

A(0)
c0u0. (7.70)

That is, (
∂u
∂t

)

0
− 1
ρ0u0

(
∂p
∂t

)

0
=
(

T
∂S
∂x

)

0
+ A′(0)

A(0)
c0u0. (7.71)

Since (T∂S/∂x)0 = θ
2γ
γ−1 TLS′

L, we use Proposition 34 to complete the proof.

Finally we present the acoustic case that UL = UR but U′
L �= U′

R, which leads
to the G1 scheme.
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Proposition 38 (Acoustic case) Assume that UL = UR and U′
L �= U′

R. Then we
have the acoustic case, and (∂u/∂t)∗ and (∂p/∂t)∗ are solved as

(
∂u
∂t

)

∗
= − 1

2

[
(u∗ + c∗)

(
u′

L + p′
L

ρ∗c∗

)
+ (u∗ − c∗)

(
u′

R − p′
R

ρ∗c∗

)]
,

(
∂p
∂t

)

∗
= − ρ∗c∗

2

[
(u∗ + c∗)

(
u′

L + p′
L

ρ∗c∗

)
− (u∗ − c∗)

(
u′

R − p′
R

ρ∗c∗

)]

− A′(0)
A(0)

ρ∗c2∗u∗.

(7.72)

The quantity (∂ρ/∂t)∗ is solved according to the direction of the contact discon-
tinuity, (

∂ρ

∂t

)

∗
= 1

c2∗

[(
∂p
∂t

)

∗
+ u∗

(
p′

L − c2∗ρ′
L

)]
(7.73)

if u∗ = uL = uR > 0; and

(
∂ρ

∂t

)

∗
= 1

c2∗

[(
∂p
∂t

)

∗
+ u∗

(
p′

R − c2∗ρ′
R

)]
(7.74)

if u∗ = uL = uR < 0.

8 Numerical examples

In accord with Sect. 7, we present several numerical examples to show the
performance of our GRP scheme.

8.1 The Riemann problem for isentropic flows

Two examples are given for isentropic flows (7.1), see Fig. 8, in which fifty grid
points are used both for the Godunov scheme and the GRP scheme. Note that
(7.1) can be used to model a shallow water motion, ρ being explained as the
height of water with γ = 2. Therefore the first simulates the dam collapse prob-
lem with an almost dry bed on one side. We clearly see that the sonic point
glitch in the first-order Godunov solution is eliminated by the GRP scheme.
Also this example shows that our GRP can preserve the positivity of the height
of water. The second is the standard Riemann problem. The solution contains
a shock propagating to the left and a rarefaction wave moving to the right. We
see the high accuracy of the GRP scheme, particularly for the rarefaction wave,
which may be due to its analytic resolution in our GRP scheme. Recall that in
[12] the rarefaction wave is replaced by a rarefaction shock.
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Fig. 8 Numerical solutions for isentropic flows. a The Riemann initial data are:ρL = 10.0, uL = 0.0,
ρR = 10−5, uR = 0.0. b The Riemann initial data are: ρL = 10.0, uL = 0.0, ρR = 25, uR = 0.0

8.2 Rotating shallow water equations with Coriolis force

We use our scheme to simulate the classical Rossby problem, which illustrates
the evolution of a simple jet-shaped initial momentum imbalance, see [6]. The
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Fig. 9 Shock formation from jets

initial distribution h(x, 0) ≡ 10, u(x, 0) ≡ 0.0 and v(x, 0) = VNL(x), where

NL(x) = (1 + tanh(4x/L + 2)) · (1 − tanh(4x/L − 2))
(1 + tanh(2))2

, (8.1)

and the parameters V and L are given by the Rossby number Ro = V
fL and the

Burger number Bu = gh
f 2L2 . In Fig. 9, we use f = 0.5, g = 9.81, Ro = 1.0 and

Bu = 0.25. We observe that two shocks are formed at t/Tf = 0.6, Tf = 2π/f ,
and propagate to the left and to the right from the jet, respectively. One of
the shocks is formed within the jet core. The result is totally consistent with
that in [6].

8.3 A steady flow in a converging-diverging nozzle

We use the examples in [4, Sect. 6.5] to test the ability of the present scheme to
attain the steady state very quickly. Consider a flow in a converging-diverging
nozzle, which occupies the interval 0 ≤ x ≤ 1, and whose cross-sectional area
function is given by the following expression,

A(x) =
⎧⎨
⎩

Ain exp
(− log(Ain) sin2(2πx)

)
, 0 ≤ x < 0.25,

Aex exp

(
− log(Aex) sin2

(
2π(1 − x)

3

))
,

(8.2)
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Fig. 10 Large time in the Laval Nozzle. The solid line is the steady solution, and the points are the
GRP solution with 22 grid points at time t = 15.5
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Fig. 11 Large time in the Laval Nozzle. The solid line is the steady solution, and the points are the
GRP solution with 22 grid points at time t = 15.5

where Ain = 4.8643 and Aex = 4.2346. The initial data we use are

U(x, 0) =
{

UL = (ρ0, 0, p0), 0 < r < 0.25,
UR = (ρ0, 0, ρ0(pb/p0)

γ ), 0.25 < r < 1,
(8.3)

where pb is a constant value determined by the steady state solution at x = 1.
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Fig. 12 Large time in the Laval Nozzle. The solid line is the steady solution, and the points are the
GRP solution with 22 grid points at time t = 1.0

For a perfect gas with a polytropic index γ = 1.4, the Mach number M(x) =
u(x)/c(r) is determined by A(r) through the algebraic relation

[A(x)]2 = 1
[M(x)]2

[
2

γ + 2

(
1 + γ − 1

2
[M(x)]2

)] γ+1
γ−1

. (8.4)

Then the steady flow is given by

p(x) = p0

[
1 + γ − 1

2
[M(x)]2

]− γ
γ−1

,

ρ(x) = ρ0

[
1 + γ − 1

2
[M(x)]2

]− 1
γ−1

,

u(x) = M(x)
√
γp(x)/ρ(x),

(8.5)

where ρ0 and p0 need to be specified.
We consider two cases:
(A) A smooth flow where p(1) = 0.0272237 is obtained from (8.5) by taking

x = 1 in (8.4) leading to M(1) = 3.
(B) Setting p(1) = 0.4 leads to a discontinuous steady state solution, as shown

by the solid lines in Fig. 11.
We use the same strategy in [4, Sect. 6.5] to deal with the boundary conditions

at x = 0 and 1. In both cases, we use 22 coarse points to display the performance
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Fig. 13 Large time in the Laval Nozzle. The solid line is the steady solution, and the points are the
GRP solution with 22 grid points at time t = 2.5

of our scheme in Figs. 10 and 11, and see that our GRP solution is in very good
agreement with the exact solution.

In order to see how fast our GRP solution converges to the steady state, we
display two different time intervals: t = 1.0 and 2.5, see Figs. 12 and 13. It is seen
that at time t = 2.5, our GRP solution almost attains the steady state. These
show that our GRP solution can converge to the steady state very quickly.
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