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a b s t r a c t

We consider entropy solutions to the initial value problem associated with scalar nonlinear
hyperbolic conservation laws posed on the two-dimensional sphere. We propose a finite
volume scheme which relies on a web-like mesh made of segments of longitude and lati-
tude lines. The structure of the mesh allows for a discrete version of a natural geometric
compatibility condition, which arose earlier in the well-posedness theory established by
Ben-Artzi and LeFloch. We study here several classes of flux vectors which define the con-
servation law under consideration. They are based on prescribing a suitable vector field in
the Euclidean three-dimensional space and then suitably projecting it on the sphere’s tan-
gent plane; even when the flux vector in the ambient space is constant, the corresponding
flux vector is a non-trivial vector field on the sphere. In particular, we construct here
‘‘equatorial periodic solutions”, analogous to one-dimensional periodic solutions to one-
dimensional conservation laws, as well as a wide variety of stationary (steady state) solu-
tions. We also construct ‘‘confined solutions”, which are time-dependent solutions sup-
ported in an arbitrarily specified subdomain of the sphere. Finally, representative
numerical examples and test cases are presented.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, building on our earlier analysis in [6,2] we study in detail the class of scalar hyperbolic conservation laws
posed on the two-dimensional unit sphere

S2 ¼ fðx; y; zÞ 2 R3; x2 þ y2 þ z2 ¼ 1g:
We propose a Godunov-type finite volume scheme that satisfies certain important consistency and convergence properties.
We then present a second-order extension based on the generalized Riemann problem (GRP) methodology [3].

It should be stated at the outset that an important motivation for this paper is the need to provide accurate numerical
tools for the so-called shallow water system on the sphere. This system is widely used in geophysics as a model for global
air flows on the rotating Earth [8]. In its mathematical classification it is a system of nonlinear hyperbolic PDE’s posed on the
sphere. Its physical nature dictates that it can be described ‘‘invariantly”, namely in a way which is independent of any par-
ticular coordinate system. Locally, it has the (mathematical) character of a two-dimensional isentropic compressible flow,
whereas globally the spherical geometry plays a crucial role in shaping the nature of solutions – which, as expected for
nonlinear hyperbolic equations, may contain propagating discontinuities such as shock fronts or contact curves. Thus, the
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relation of the present study to the shallow water system is analogous to the connection between Burgers’ equation and the
system of compressible fluid flow (say, in the plane). In fact, in light of this analogy it is somewhat surprising that in the
existing literature so far, virtually all treatments, theoretical as well as numerical, were confined to the Cartesian setting.
In particular, to the best of our knowledge, there have been no systematic numerical studies of scalar conservation laws
on the sphere.

Having introduced the scalar conservation law as a simple model for more complex physical systems, we should
emphasize here also the intrinsic mathematical interest of the model under consideration. It is already known (see [5]
and references there) that even in the Cartesian setting, the two-dimensional scalar conservation law displays a wealth of
wave interactions typical of the physical phenomena (such as triple points, sonic shocks, interplay of rarefactions and shocks
coming from different directions and more). As we show here, ‘‘geometric effects”, superposed on the (necessarily)
two-dimensional framework, carry the scalar model still further. For example, the concept of ‘‘self-similar” solutions makes
no sense here. In particular, one loses the Riemann solutions, a fundamental building block in many schemes (of the so-called
‘‘Godunov-type”). On the other hand, it allows for large classes of non-trivial steady states, periodic solutions and solutions
supported in specified subdomains. All these have natural consequences in developing numerical schemes; they offer us a
variety of test cases amenable to detailed analysis, to be compared with the computational results.

In practical applications a finite volume scheme requires a specification of a coordinate system, where the symmetry-pre-
serving latitude–longitude coordinates are the ‘‘natural coordinates” of preferred choice. The proposed finite volume scheme
in this paper is based on these natural coordinates, but should pay attention to the artificial singularities at the poles.

In [2], a general convergence theorem was proved for a class of finite volume schemes for the computation of entropy
solutions to conservation laws posed on a manifold. As a particular example, the case of the sphere S2 was discussed, both
from the points of view of an ‘‘invariant” formalism and that of an ‘‘embedded” coordinate-dependent formulation. In the
present study we focus on the sphere S2 and we actually construct, in a fully explicit and implementable way, a finite volume
scheme which is geometrically natural and can be viewed as an extension of the basic Godunov scheme for one-dimensional
conservation laws. Furthermore, we prove that our scheme fulfills all of the assumptions required in [2], which ensures its
strong convergence toward the unique entropy solution to the initial value problem under consideration. We then describe
the GRP extension of the scheme, whose convergence proof is still a challenging open problem.

The theoretical background about the well-posedness theory for hyperbolic conservation laws on manifolds was estab-
lished recently by Ben-Artzi and LeFloch [6] together with collaborators [1,2,9]. An important condition arising in the theory
is the ‘‘zero-divergence” or geometric compatibility property of the flux vector; a basic requirement in our construction of a
finite volume scheme is to formulate and ensure a suitable discrete version of this condition.

We conclude this introduction with some notation and remarks connecting the present paper to the general finite volume
framework presented in [2]. Following the terminology therein, we use an ‘‘embedded” approach to the spherical geometry,
namely, we view the sphere as embedded in the three-dimensional Euclidean space R3. We denote by x a variable point on
the sphere S2, which can be represented in terms of its longitude k and its latitude /. Following the conventional notation in
the geophysical literature we assume that

0 6 k 6 2p; �p
2
6 / 6 p

2
;

so that the ‘‘North pole” (resp. ‘‘South pole”) is at / ¼ p
2 (resp. �/ ¼ p

2) and the equator is f/ ¼ 0;0 6 k 6 2pg (see Fig. 1.) The
coordinates in R3 are denoted by ðx1; x2; x3Þ 2 R3 and the corresponding unit vectors are i1; i2; i3. Thus, at each point
x ¼ ðk;/Þ 2 S

2, the unit tangent vectors (in the k;/ directions) are given by

ik ¼ � sin ki1 þ cos ki2;
i/ ¼ � sin/ cos ki1 � sin/ sin ki2 þ cos/i3:

It should be observed that while a choice of a coordinate system is necessary in practice, it always introduces singularities and
the unit vectors given above are notwell-defined at the poles and, therefore, in the neighborhood of these points it cannot be
used for a representation of smooth vector fields (such as the flux vectors of our conservation laws). We also emphasize that
the status of these two poles is equivalent to the one of any other pair of opposite points on the sphere. When such local
coordinates are introduced, special care is needed to handle these points in practice, and this is precisely why we advocate
a different approach.

Continuing with the description of our ‘‘embedded” approach, we define the unit normal nx, to S2 at some point x by

nx ¼ cos/ cos ki1 þ cos/ sin ki2 þ sin/i3:

Then, any tangent vector field F to S
2 is represented by

F ¼ Fkik þ F/i/

and the tangential gradient operator is

rT ¼ 1
cos/

@

@k
;
@

@/

� �
:
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Thus, the (tangential) gradient of a scalar function hðk;/Þ is given by

rTh ¼ 1
cos/

@h
@k

ik þ @h
@/

i/ ð1:1Þ

and the divergence of a vector field F is

rT � F ¼ 1
cos/

@

@/
F/ cos/
� �þ @

@k
Fk

� �
: ð1:2Þ

Given now a vector field F ¼ Fðx;uÞ depending on a real parameter u, the associated hyperbolic conservation law under
consideration is

@u
@t

þrT � ðFðx;uÞÞ ¼ 0; ðx; tÞ 2 S2 � ½0;1Þ; ð1:3Þ

where u ¼ uðx; tÞ is a scalar unknown function, subject to the initial condition

uðx;0Þ ¼ u0ðxÞ; x 2 S2 ð1:4Þ
for some prescribed data u0 on the sphere. As mentioned above, we will impose on the vector field Fðx;uÞ an additional
‘‘geometry compatibility” condition.

An outline of this paper is as follows. In Section 2, we consider the construction of geometry-compatible flux vectors,
while Section 3 is devoted to a description of several families of special solutions associated with the constructed flux vec-
tors. In Section 4, we discuss our (first-order) finite volume scheme, which can be regarded as a Godunov-type scheme. We
prove that it satisfies all of the assumptions imposed on general finite volume schemes in [2], and we conclude that it con-
verges to the exact (entropy) solution. In Section 5, we describe the (second-order) GRP extension of the scheme. Finally, in
Section 6, we present a variety of numerical test cases.

2. Families of geometry-compatible flux vectors

As pointed out in [2], every smooth vector field Fðx;uÞ on S
2 can be represented in the form

Fðx;uÞ ¼ nðxÞ �Uðx;uÞ; ð2:1Þ
where Uðx;uÞ is a restriction to S

2 of a vector field (in R3) defined in some neighborhood (i.e., a ‘‘spherical shell”) of S2 and
for all values of the parameter u. The basic requirement imposed now on the flux vector Fðx;uÞ is the following divergence
free or geometric compatibility condition: For any fixed value of the parameter v 2 R,

WEB  GRID

Xplan

Yplan

Projection point

Fig. 1. Web grid on a sphere.
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rT � Fðx;vÞ ¼ 0: ð2:2Þ
A flux vector Fðx;uÞ satisfying (2.2) is called a geometry-compatible flux [6]. Note that this condition is equivalent, in terms of
the nonlinear conservation law (1.3), to the following requirement: constant initial data are (trivial) solutions to the conserva-
tion law. In the case of the sphere S2 the condition (2.2) can be recast in terms of a condition on the vector field Uðx;uÞ
appearing in (2.1). See [2, Proposition 3.3].

Our main aim in the present section is singling out two (quite general) families of geometry-compatible fluxes of partic-
ular interest, which are amenable to detailed analytical and numerical investigation.

The flux vectors of interest are introduced by way of the following two claims.

Claim 2.1 (Homogeneous flux vectors). If the three-dimensional fluxUðx;uÞ ¼ UðuÞ is independent of x (in a neighborhood of S2),
then the corresponding flux vector Fðx;uÞ given by (2.1) is geometry-compatible.

Proof. The following decomposition applies to any vector UðuÞ 2 R3 in the form

UðuÞ ¼ f1ðuÞi1 þ f2ðuÞi2 þ f3ðuÞi3; ð2:3Þ
so that Fðx; uÞ ¼ Fkðk;/;uÞik þ F/ðk;/; uÞi/, with

Fkðk;/;uÞ ¼ f1ðuÞ sin/ cos kþ f2ðuÞ sin/ sin k� f3ðuÞ cos/;
F/ðk;/;uÞ ¼ �f1ðuÞ sin kþ f2ðuÞ cos k:

ð2:4Þ

We can directly apply the divergence operator (1.2) to Fðx;uÞ and the desired claim follows. h

Claim 2.2 (Gradient flux vectors). Let h ¼ hðx;uÞ be a smooth function of the variables x (in a neighborhood of S2) and u 2 R, and
consider the associated three-dimensional flux Uðx;uÞ ¼ rhðx;uÞ (restricted to x 2 S2). Then, the flux vector Fðx;uÞ given by
(2.1) is geometry-compatible.

Proof. We use the divergence theorem in an arbitrary domain D#S
2 with smooth boundary @D:Z

D
rT � ðFðx;vÞÞdr ¼

Z
@D

Fðx; vÞ � mðxÞds ¼
Z
@D
ðnðxÞ � rhðx; vÞÞ � mðxÞds;

where mðxÞ is the unit normal (at x) along @D � S
2; dr is the surface measure on S

2, and ds is the arc length along @D.
In particular, nðxÞ � mðxÞ ¼ tðxÞ coincides with the (unit) tangent vector to @D at x. It follows that the triple product

ðnðxÞ � rhðx;uÞÞ � mðxÞ ¼ rhðx;uÞ � tðxÞ is nothing but the directional derivative r@D of h along @D. SinceZ
@D
r@Dhds ¼ 0;

we thus findZ
D
rT � Fðx; uÞdr ¼ 0

and since this holds for any smooth domain D, we conclude that rT � Fðx;vÞ ¼ 0 for all v 2 R. h

Remark 2.3.

1. Claim 2.1 is a special case of Claim 2.2. Indeed, by taking in the latter hðx;uÞ ¼ x1f1ðuÞ þ x2f2ðuÞ þ x3f3ðuÞ we obtain the
conclusion of the former. However, we chose to single out Claim 2.1 as a special case since it will serve in obtaining spe-
cial solutions (Section 3) and in dealing with numerical examples (Section 6).

2. The steps in the construction of the gradient flux vector in Claim 2.2 are ‘‘linear in nature”, namely if
hðx;uÞ ¼ h1ðx;uÞ þ h2ðx;uÞ then the corresponding (geometry-compatible) flux vectors satisfy Fðx;uÞ ¼ F1ðx;uÞ þ F2ðx;uÞ.
However, it is clear that the corresponding solutions to (1.3) do not add up linearly, due to the nonlinear dependence in u.

Remark 2.4. The flux functions described in Claim 2.2 represent a broad class of geometry-compatible fluxes. However,
there are simple examples of geometry-compatible flux functions which are not covered by Claim 2.2. One such group of
examples (using the notation F ¼ Fkik þ F/i/) is given by taking in (2.1)

U1 � U2 � 0;

U3ðx;uÞ ¼ U3ðx21 þ x22; uÞ;
i.e., the explicit dependence on x is radially symmetric with respect to the x3-axis. We assume further thatU0

3ðx;uÞX0, where
U0

3 is the derivative with respect to its first variable. Clearly in this case
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F/ � 0; Fk ¼ Fkð/;uÞ:
Hence, in view of (1.2) rT � Fðx;vÞ � 0 for any constant v. On the other hand, if there exists h ¼ hðx;uÞ such that
rxh ¼ Uðx;uÞ, we get

@h
@x1

¼ @h
@x2

¼ 0;

while

@h
@x3

¼ U3ðx21 þ x22;uÞ:

Thus, necessarily hðx;uÞ ¼ x3U3ðx21 þ x22;uÞ þ kðx1; x2Þ. Assuming that U3X0, we must have

@h
@x1

¼ 2x1x3U0
3ðx21 þ x22;uÞ þ

@k
@x1

� 0;

@h
@x2

¼ 2x2x3U0
3ðx21 þ x22;uÞ þ

@k
@x2

� 0;

Hence, in particular, U0
3 � 0 which contradicts our assumption.

3. Special solutions of interest

3.1. Periodic equatorial solutions

The scalar conservation laws discussed in this paper have two basic features:

– The problem is necessarily two-dimensional (in spatial coordinates).
– The geometry plays a significant role, inasmuch as the flux vectors are subject to geometric constraints.

It should be noted that even within the framework of Euclidean two dimensional conservation laws there is a great wealth
of special solutions, displaying complex wave interactions, such as triple points, sonic shocks and more. We refer to [10,5] for
detailed treatments of the theoretical and numerical aspects.

In the situation under consideration in the present paper, geometric effects yield a large variety of non-trivial steady
states, solutions supported in arbitrary subdomains, etc. In this section we consider such solutions by selecting some special
flux vectors Fðx; uÞ on S2. This is accomplished by making special choices of Uðx;uÞ in the general representation (see (2.1))
Fðx;uÞ ¼ nðxÞ �Uðx;uÞ, where Uðx;uÞ is a restriction to S

2 of a vector field (in R3) defined in some neighborhood (i.e.,
‘‘spherical shell”) of S2 and for all values of the parameter u.

We begin our discussion with the case of periodic equatorial solutions, defined as follows. Taking f1ðuÞ ¼ f2ðuÞ � 0 in the
general decomposition (2.3) so that, by (2.4),

Fkðk;/;uÞ ¼ �f3ðuÞ cos/;
F/ðk;/;uÞ ¼ 0;

the conservation law (1.3) takes the particularly simple form
@u
@t

� @

@k
f3ðuÞ ¼ 0; ðx; tÞ 2 S

2 � ½0;1Þ: ð3:1Þ
In particular, obtain the following important conclusion.

Corollary 3.1 (Solutions with one-dimensional structure). Let eu ¼ euðk; tÞ be a solution to the following one-dimensional
conservation law with periodic boundary condition

@eu
@t

� @

@k
f3ðeuÞ ¼ 0; 0 < k 6 2p; euð0; tÞ ¼ euð2p; tÞ

and let bu ¼ buð/Þ be an arbitrary function. Then, the function uðk;/; tÞ ¼ euðk; tÞ buð/Þ is a solution to the conservation law (3.1).

It follows that all periodic solutions from the one-dimensional case can be recovered here as special cases. However, in
numerical experiments the computational grid is two-dimensional, so it is not obvious that the accuracy achieved in the
computation of the former can indeed be achieved in the numerical scheme implemented on the sphere. This issue will
be further discussed below, in Section 6.
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3.2. Steady states

Let F ¼ Fðx;uÞ be a flux vector and u0 : S2 ! R be an initial function such that rT � ðFðx;u0ðxÞÞÞ � 0. Then, clearly u0 is a
stationary solution (or steady state) to the conservation law. In fact, we can show that there exist many (analytically com-
putable) non-trivial steady state solutions, as follows.

Claim 3.2 (A family of steady state solutions). Let h ¼ hðx;uÞ be a smooth function defined for all x in a neighborhood of S2, and
consider the associated gradient flux vector U ¼ rh (as in Claim 2.2 ). Suppose the function u0 : S2 ! R satisfies the condition

ryhðy;u0ðxÞÞjy¼x ¼ rxHðxÞ; x 2 S2; ð3:2Þ
where H ¼ HðxÞ be a smooth function defined in a neighborhood of S2. Then, u0 is a stationary solution to the conservation law
(1.3).

Proof. We follow the proof of Claim 2.2 and the notation therein. Using the divergence theorem in an arbitrary domain
D#S2 with smooth boundary @D, we obtainZ

D
rT � ðFðx;u0ðxÞÞÞdr ¼

Z
@D

Fðx; u0ðxÞÞ � mds ¼
Z
@D
ðnðxÞ � rxHðxÞÞ � mðxÞds;

where, as before, mðxÞ is the unit normal, dr the surface measure, and ds the arc length. In particular, nðxÞ � mðxÞ ¼ tðxÞ; the
(unit) tangent vector to @D at x: It follows that the triple product ðnðxÞ �rxHðxÞÞ � mðxÞ ¼ ðrxHðxÞÞ � tðxÞ is the directional
derivative of H along @D: Thus,Z

D
rT � ðFðx;u0ðxÞÞÞdr ¼ 0

and since this holds for any smooth domain D, it follows that rT � ðFðx;u0ðxÞÞÞ � 0; which concludes the proof. h

The above claim yields readily a large family of non-trivial stationary solutions, as expressed in the following corollary.

Corollary 3.3. Consider the flux vector F ¼ Fðx;uÞ given by

Fðx; uÞ ¼ nðxÞ � ðf1ðuÞi1Þ
for an arbitrary choice of function f1 ¼ f1ðuÞ. Then, any function u0 ¼ u0ðx1Þ depending only on the first coordinate x1 is a stationary
solution to the conservation law (associated with this flux). In particular, in polar coordinates ðk;/Þ any function of the form
u0ðk;/Þ ¼ gðcos/ cos kÞ is a stationary solution.

Proof. According to Claim 2.1 this flux vector is associated with the scalar function hðx;uÞ ¼ x1f1ðuÞ: So we can invoke Claim
3.2 with HðxÞ ¼ Hðx1Þ such that H0ðx1Þ ¼ f1ðu0ðx1ÞÞ. h

Remark 3.4. This corollary enables us to construct stationary solutions supported in ‘‘bands” on the sphere. This is accom-
plished by taking u0 ¼ u0ðx1Þ to be supported in 0 < a < x1 < b < 1. Observe that this band is not parallel neither to the lat-
itude curves ð/ ¼ constÞ nor to the longitude curves ðk ¼ constÞ.

There is yet another possibility of obtaining stationary solutions, where all three coordinates are involved, as stated now.
This example can also be derived from the previous one by applying a rotation in R3.

Corollary 3.5. Consider the flux vector F ¼ Fðx;uÞ be given by

Fðx; uÞ ¼ nðxÞ � ðf1ðuÞi1 þ f2ðuÞi2 þ f3ðuÞi3Þ ¼ f ðuÞnðxÞ � ði1 þ i2 þ i3Þ

in which all three components coincide: f1ðuÞ ¼ f2ðuÞ ¼ f3ðuÞ ¼ f ðuÞ. Then, any function of the form u0ðxÞ ¼ eu0ðx1 þ x2 þ x3Þ,
where eu0 depends on one real variable, only, is a stationary solution to the conservation law associated with the above flux.

Proof. Following the proof of the previous corollary, we now take HðxÞ ¼ H0ðx1 þ x2 þ x3Þ; where H00ðnÞ ¼ f ðeu0ðnÞÞ. h

Remark 3.6. In analogy with Remark 3.4, this result allows us to construct stationary solutions in a spherical ‘‘cap” (a piece
of the sphere cut out by a plane). In Section 6 below, we will provide numerical test cases for such stationary solutions.

3.3. Confined solutions

If in the conservation law (1.3) we have Fðx;uÞ � 0 for x in the exterior of some domain D#S2; identically in u 2 R; and if
the initial function u0ðxÞ vanishes outside of D, then clearly the solutions satisfy uðx; tÞ ¼ 0 for x R D and all t P 0: We label
such solutions as confined (to D) solutions. In view of Eq. (2.1) a sufficient condition for the vanishing of Fðx;uÞ outside of D is
obtained by Uðx;uÞ ¼ 0 for x R D; identically in u 2 R: In view of Claim 2.2, this will follow if we choose hðx;uÞ such that
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hðx; uÞ–0 for x only in D: In particular, let w ¼ wðnÞ be a twice continuously differentiable function on R supported in the
interval ða; bÞ# ð0;1Þ and such that 3b2 > 1 and 3a2 < 1: With an eye to computable test cases, we can use this function
to generate solutions which are confined within the intersection of S2 with the (three-dimensional) cube ½a; b�3.
Claim 3.7. (A family of confined solutions). Let w be as above and let f ¼ f ðuÞ be any (smooth) function of u 2 R. Define
h ¼ hðx;uÞ by

hðx;uÞ ¼ wðx1Þwðx2Þwðx3Þf ðuÞ
and let Fðx;uÞ be the gradient flux vector determined in terms of hðx;uÞ as in Claim 2.2. Let D#S2 be the spherical patch cut out
from S

2 by the inequalities a < xi < b; i ¼ 1;2;3. Then, if the initial data u0ðxÞ is supported in D; the solution u ¼ uðx; tÞ of the
conservation law (1.3) associated with Fðx;uÞ is supported in D for all t P 0:

Possible choices for a function w : ½a; b� ! R as in the claim are wðnÞ ¼ sin2ðknÞ for some integer k such that ka and kb are
multiples of p, or else wðnÞ ¼ ðn� aÞ2ðn� bÞ2.

4. Design of the scheme

4.1. Computational grid

The general structure of our grid is shown in Fig. 1, and its essential feature is the following. Every cell R is bounded by
sides which lie either along a fixed latitude circle ð/ ¼ const:Þ or a fixed longitude circle ðk ¼ const:Þ. We have

R :¼ fk1 6 k 6 k2; /1 6 / 6 /2g ð4:1Þ
as represented in Fig. 2. In most cases, @R consists of the four sides of R. However, across special latitude circles we reduce
the number of cells, so that the situation (for a reduction by ratio of 2) is as in Fig. 3. In this case the boundary @R consists of
five sides, (so that the intermediate point ðk3;/2Þ is regarded as an additional vertex), and even in this five-sided cellR every
side satisfies the above requirement.

The length of a side e ¼ fk1 6 k 6 k2; / ¼ const:g equals ðk2 � k1Þ cos/, while the length of a side e0 ¼ f/1 6
/ 6 /2; k ¼ const:g is /2 � /1. Consequently, the area AR of the cell R is

AR ¼
Z k2

k1

dk
Z /2

/1

cos/d/ ¼ ðk2 � k1Þðsin/2 � sin/1Þ:

4.2. Geometry-compatible discretization of the divergence operator

Given any rectangular domainR of the form (4.1), the approximate flux divergence is now derived as an approximation of
the integral of the flux along the boundary @R, divided by its area, as follows:

ðrT � Fðx;uÞÞapprox ¼ IR
AR

; IR ¼
I
@R

Fðx;uÞ � mds
� �approx

; ð4:2Þ

where ds is the arc length along @R and m is the outward-pointing unit normal to @R � S
2. In the limit k2;/2 ! k1;/1 the

approximation (4.2) to the divergence term approaches the exact value (1.2).
We need to check that the geometric compatibility condition (2.2) is satisfied for the approximate flux divergence. This

requirement will be taken into account in formulating our finite volume scheme for (1.3).

Fig. 2. Rectangular cell R as part of grid on S2.
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Consider now the actual evaluation of the term IR defined in (4.2) and consider the cell shown in Fig. 2, under the assump-
tion that u ¼ uðk;/; tÞ is smooth on R. We propose to approximate the flux integral along each edge of R in the following
way. As in Section 2, let us decompose the flux into its ðk;/Þ components:

Fðx; uÞ ¼ Fkðk;/;uÞik þ F/ðk;/;uÞi/:
On each side the integration is carried out by (i) taking midpoint values of the appropriate flux component, and (ii) using

the correct arc length of the side. We designate the midpoints of the edge e as ke;m ¼ ðk1 þ k2Þ=2 and /e;m ¼ /1 (see Fig. 2), and
likewise for the edge e0.

Throughout the rest of this section we restrict attention to the gradient flux vector constructed in Claim 2.2. In particular, it
comprises the class of homogeneous flux vectors, given by (2.3) and (2.4).

Taking u as constant u ¼ ue;m along the side e 2 @R, the total approximate flux is given byI
e
Fðx;uÞ � mds

� �approx
¼ �ðhðe2;ue;mÞ � hðe1;ue;mÞÞ; ð4:3Þ

where e1; e2 are, respectively, the initial and final endpoints of e (with respect to the sense of the integration). Summing up
over all edges we obtain:

Claim 4.1 (Discrete geometry-compatibility condition). Consider the gradient flux vector constructed in Claim 2.2. Then, if
u � const:; IR ¼ 0, so that

½rT � Fðx; uÞ�approx ¼ 0

and thus a discrete version of the divergence free condition (2.2) holds.

Remark 4.2. The claim above applies to gradient flux vectors in Claim 2.2, and, in particular, to homogeneous flux (2.3) and
(2.4). On the other hand, for a more general geometry-compatible flux Fðx;uÞ, such a result can be obtained only if the depen-
dence on x is integrated exactly along each side, a requirement that must be imposed on the scheme.

4.3. Godunov-type approach to the numerical flux

We continue to deal with the gradient flux given in Claim 2.2. We assume different (constant) values of u ¼ uðk;/; tÞ in
grid cells and evaluate the numerical flux values at each edge from the solution to a Riemann problem with data comprising
these values uðk;/; tÞ in the cells on either side of that edge. At the midpoint ðke;m;/e;mÞ of each side e we solve the Riemann
problem in a direction perpendicular to e, and denote the resulting solution ue;m. The corresponding fluxes are then evaluated
as Fðke;m;/e;m;ue;mÞ.

We can split Eq. (1.3) by invoking the explicit form of the divergence (1.2), getting

Fig. 3. Five-sided rectangular cell R (on southern hemisphere of S2).
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@u
@t

þ 1
cos/

@

@k
Fkðk;/;uÞ ¼ 0 for the side e0 : k ¼ k2; ð4:4kÞ

@u
@t

þ 1
cos/

@

@/
ðF/ðk;/;uÞ cos/Þ ¼ 0 for the side e : / ¼ /2: ð4:4/Þ

Consider two adjacent cells, as in Fig. 4 or in Fig. 5. By fixing / ¼ /e;m (resp. k ¼ ke;m) in (4.4)k (resp. (4.4)/) we can evaluate
u ¼ ue;m as a one-dimensional solution at k ¼ ke;m (resp. / ¼ /e;m).

We include here some remarks that will be useful in the implementation of the scheme.
Consider an homogeneous flux vector as in Claim 2.1 so that its components are given by (2.4). Suppose that

uðk;/; tnÞ ¼ uL (resp. uðk;/; tnÞ ¼ uR) in the cell fk1 < k < k2; /1 < / < /2g (resp. fk2 < k < k3; /1 < / < /2g), as in Fig. 4.
At the point Mðke0 ;m;/e0 ;mÞ Eq. (4.4)k takes the form

@u
@t

þ tan/e0 ;m @

@k
ðf1ðuÞ cos kþ f2ðuÞ sin kÞ � @

@k
f3ðuÞ ¼ 0: ð4:5Þ

Setting

gðk;uÞ ¼ tan/e0 ;mðf1ðuÞ cos kþ f2ðuÞ sin kÞ � f3ðuÞ; ð4:6Þ
we see that Eq. (4.5) is the scalar one-dimensional conservation law

@u
@t

þ @

@k
gðk;uÞ ¼ 0; t P tn ð4:7Þ

subject to the initial data u ¼ uL (resp. u ¼ uR) for k < k2 (resp. k > k2).
Likewise, we repeat the former analysis for /-adjacent cells by taking the constant states uðk;/; tnÞ ¼ uL, uðk;/; tnÞ ¼ uR in

cells fk1 < k < k2; /1 < / < /2g; fk1 < k < k2; /2 < / < /3g, as depicted in Fig. 5. At the point Mðk ¼ ke;m; / ¼ /2Þ, the equa-
tion (4.4)/ then takes the form

@u
@t

þ 1
cos/

@

@/
ð� sin ke;m cos/f1ðuÞ þ cos ke;m cos/f2ðuÞÞ ¼ 0: ð4:8Þ

We then set the /-flux function

kð/;uÞ ¼ ð� sin ke;mf1ðuÞ þ cos ke;mf2ðuÞÞ cos/; ð4:9Þ
so that Eq. (4.8) is the scalar one-dimensional conservation law

@u
@t

þ 1
cos/

@

@/
kð/;uÞ ¼ 0; t P tn ð4:10Þ

subject to the initial data u ¼ uL (resp. u ¼ uR) for / < /2 (resp. / > /2).

4.4. Solution to the Riemann problem

The solution at the discontinuity k ¼ k2 at the initial time t ¼ tn is given by the Riemann solution to (4.4)k. For simplicity of
the presentation we specialize here to the flux (4.7). Since the dependence of gðk;uÞ on k is smooth, this solution is obtained
by fixing k ¼ k2, thus solving the classical conservation law

@u
@t

þ @

@k
gðk2;uÞ ¼ 0; t P tn ð4:11Þ

subject to the initial jump discontinuity of u.

Fig. 4. Two k-adjacent cells with constant states uL; uR .
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Here ‘‘e ¼ 2” so that ke;m ¼ k2;m ¼ k2, etc.
We denote this solution by u2;m. Observe that the flux gðk;uÞ in (4.11) is in general nonconvex. The Riemann solution may

therefore consist of several waves. It is a self-similar solution depending only on the slope ðk� k2Þ=ðt � tnÞ. The value u2;m is
the value along the line k ¼ k2. It therefore corresponds either to a sonic wave, namely g0ðk2;u2;mÞ ¼ 0, or to an ‘‘upwind
value” u ¼ uL (resp. u ¼ uR) in the case where all waves propagate to the right (resp. left).

Actually, the procedure for solving the Riemann problem in the case of a nonconvex flux function gðk2;uÞ is well-known
and goes back to classical works by Oleinik and others. We recall it here briefly. Assume first that uL < uR. Consider the convex
envelope of g, namely, the largest convex continuous function gc , over the interval ½uL;uR�, such that gc 6 g at all points.
Clearly, gc ¼ g in ‘‘convex sections” of the graph of g, while it consists of linear segments when gc < g. It is easy to see that
the ‘‘convex segments”, where g ¼ gc , represent rarefaction waves (in the full Riemann solution) while the linear segments
represent jumps (i.e., shock waves). In particular, the solution u2;m is given by the following formula:

u2;m ¼ vmin; where gðk2; vminÞ 6 gðk2; vÞ for all v 2 ½uL;uR�: ð4:12Þ
There are in fact three possibilities for this solution:

(a) uL < u2;m < uR, which implies that g0ðk2;u2;mÞ ¼ 0 (a sonic point).
(b) u2;m ¼ uL, the whole wave pattern moves to the right.
(c) u2;m ¼ uR, the whole wave pattern moves to the left.

Similarly, in the case uL > uR, we construct the ‘‘concave envelope” of g, namely, the smallest concave continuous function
gc such that gc P g. Again the linear segments correspond to jump discontinuities while the concave segments ðg ¼ gcÞ cor-
respond to rarefaction waves. The solution to the Riemann problem is now given by u2;m ¼ vmax, where
gðk2; vmaxÞ P gðk2;vÞ;v 2 ½uR;uL�. As above, there are three possibilities for the solution (sonic, left-upwind, or right-upwind).

Replacing in the foregoing analysis the k-flux function gðk2;uÞ by the /-flux function kð/2;uÞ, the Eq. (4.10) reads

@u
@t

þ @

@/
ð� sin k2;mf1ðuÞ þ cos k2;mf2ðuÞÞ ¼ 0; t P tn: ð4:13Þ

We get the Riemann solution to (4.13) in the three cases (a)–(c) as above.

4.5. Convergence proof

The computational elements (‘‘grid cells”) are denoted in [2] by K. Their sides are denoted by e and the flux function across
e is given by fe;Kðu;vÞ; where u is the (constant) value in K and v is the value in the neighboring cell (sharing the same side e)

Fig. 5. Two /-adjacent cells with constant states uL; uR.
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Ke. In our grid of the sphere, some cells are actually pentagons; these are the cells whose lower-latitude side (along a latitude
/ ¼ const) borders the two higher-latitude sides of the two lower-latitude neighbor cells, as shown in Fig. 3 for the southern
hemisphere grid. For such cells, the lower-latitude side consists of two faces, each one of them common with one of the low-
er-latitude neighboring cells.

With this construction of the grid, we can check the conditions in [2] imposed on the numerical flux. It is important to
keep in mind that we are dealing with the gradient flux vectors given by Claim 2.2.

Claim 4.3 (Convergence of the proposed scheme). Consider the first-order finite volume scheme described above. Assume that
the flux vector has the gradient form in Claim 2.2. Let fe;Rðu;vÞ be the numerical flux calculated on the side e of the
computational cellR; using (4.3), where the midpoint value of u is obtained from the Riemann solution. Then fe;Rðu;vÞ satisfies the
assumptions (5.5)–(5.7) of [2], and the numerical solution converges to the exact solution as the maximal size of the grid cells
shrinks to zero.

Proof. Consider the flux across a longitude side e : k ¼ k2, which is given by Fk in the equation (4.4)k. The procedure for inte-
grating the flux across e is described by (4.3), while in Section 4.4 the calculation of Fkðk2;/2;m;u2;mÞ is described. It can be
summarized as follows.

First, the solution u2;m to the Riemann problem associated with equation (4.4)k is found, assuming u;v to be the values on
the two sides. However, note that Fk depends explicitly on /, and to be precise we need to replace in (4.4)k the mean value
/2;m by /. Thus, we find u2;m ¼ u2;mð/Þ.

Clearly, in the case u ¼ v we get identically u2;mð/Þ ¼ u ¼ v and so the exact flux satisfies

Fk ¼ Fkðk2;/;u2;mÞ

and its integration will give exactly the approximate value

fe;Kðu;vÞ ¼ �ðhðe2;u2;mÞ � hðe1;u2;mÞÞ

as in (4.3). Thus, condition (5.5) in [2] is satisfied.
Clearly, the conservation property (5.6) is satisfied even with the approximate definition.
Also, the flux as defined in (4.3) makes it easy to check (5.7), as the flux is independent of / and the monotonicity is thus a

result of general properties of the Riemann solver (even for nonconvex fluxes). For example, if u < v , one considers the
convex envelope of Fk, as defined in (4.4)k (with / ¼ /2;m) and then considers u2;m as theminimal value on this envelope (over
½u;v �). Clearly changing u upward will either change u2;m upward or leave it unchanged. This completes the proof. h

Remark 4.4. The convergence proof relies on the fact that the flux function is geometry-compatible. An inspection of the
scheme shows that it can be applied also to fluxes that do not satisfy this condition. However, the quality of the numerical
results (and indeed, also some features of the theoretical solution) are not known in this case. In all the numerical examples
in the present paper (Section 6) we use geometry-compatible fluxes.

5. Second-order extension based on the GRP solver

To improve the expected order of accuracy, we consider again the cell k1 < k < k2; /1 < / < /2 and assume that u is lin-
early distributed there. We use uL;k;uL;/ (resp. uR;k;uR;/) to denote the slopes in the cell to the left (resp. right) of the side
k ¼ k2. We also denote by uLð/Þ (resp. uRð/Þ) the limiting value (linearly distributed) of u at k ¼ k2� (resp. k ¼ k2þ). Clearly,
the solution to the Riemann problem across the discontinuity is a function of /, and we denote it by u2;mð/Þ, which conforms
to our notation in Section 4.4 above (where u was constant on either side of the discontinuity). The value of u2;mð/Þ is ob-
tained by solving the Riemann problem associated with Eq. (4.4)k with /2;m replaced by /, subject to the initial data
uLð/Þ; uRð/Þ. Restricting to the middle point / ¼ /2;m, the solution u2;mð/2;mÞ (at k ¼ k2;m ¼ k2) is in one of the three categories
listed above (i.e., sonic, left-upwind, right-upwind). By continuity, the solution u2;mð/Þ will still be in the same category for
/� /2;m sufficiently small. The solution at ðk2;m;/2;mÞ varies in time and the GRP method deals with the determination of its
time-derivative at that point.

Accounting for the variation of the solution over a time interval enables us to modify the Godunov approach to the deter-
mination of edge fluxes, as presented in Section 4.3. We assume that the flux vector depends explicitly on x; as in (2.1). In
what follows we use for simplicity the ‘‘imbedded” notation x ¼ ðx1; x2; x3Þ for a point on the sphere (see the Introduction),
along with the corresponding spherical coordinates k;/: We further assume that the vector field U is given by the following
extension of (2.3)

Uðx;uÞ ¼ rxhðx; uÞq1ðx1Þf1ðuÞi1 þ q2ðx2Þf2ðuÞi2 þ q3ðx3Þf3ðuÞi3: ð5:1Þ

The zero-divergence identity is obtained as a result of expressing U as a gradient rh in the sense of Claim 2.2.
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For our choice of U, such a representation of U as gradient of h is obtained when h is taken as

hðx;uÞ ¼ r1ðx1Þf1ðuÞ þ r2ðx2Þf2ðuÞ þ r3ðx3Þf3ðuÞ ð5:2Þ

and qjðxjÞ ¼ r0jðxjÞ; j ¼ 1;2;3:
Using (1.2) and (2.4) together with the geometry-compatibility property, we get an explicit form of the conservation law

(1.3) in our case as

@u
@t

� sin kq1ðx1Þ
@

@/
f1ðuÞ þ cos kq2ðx2Þ

@

@/
f2ðuÞ þ tan/ cos kq1ðx1Þ

@

@k
f1ðuÞ þ sin kq2ðx2Þ

@

@k
f2ðuÞ

� �

� q3ðx3Þ
@

@k
f3ðuÞ ¼ 0: ð5:3Þ

Our GRP numerical approximation to this equation is based on an operator splitting approach, by which we mean that the
derivatives with respect to / and k are separately considered. We note that this approach has already been implemented
in the Godunov case (4.4). In that case, no use has been made of the geometry-compatibility property. Indeed, this has no
bearing on the first-order scheme since the solution to the Riemann problem is obtained by ‘‘freezing” the explicit depen-
dence on k;/ (and, in particular, ignoring the terms involving the derivatives with respect to this explicit dependence). In
order to construct out second-order GRP scheme we proceed as follows.

The ‘‘k-split” equation obtained from (5.3), is rewritten as an equation with a source term (a balance law)

@u
@t

þ @

@k
gðx; uÞ ¼ Sk; t > tn;

Sk ¼ tan/2;m f1ðuÞ @

@k
ðq1ðx1Þ cos kÞ þ f2ðuÞ @

@k
ðq2ðx2Þ sin kÞ

� �
� f3ðuÞ @

@k
q3ðx3Þ;

gðx;uÞ ¼ tan/2;mðq1ðx1Þ cos kf1ðuÞ þ q2ðx2Þ sin kf2ðuÞÞ � q3ðx3Þf3ðuÞ

ð5:4Þ

subject to the initial data (for u and its k–slope) uLð/2;mÞ, uL;k (resp. uRð/2;mÞ, uR;k) for k < k2 (resp. k > k2). Observe that the
equation is written in a ‘‘quasi-conservative form”, which offers more convenience in the GRP treatment [3, Chapter 5].
The right-hand side term Sk is just the result of the (explicit) k differentiation of the flux gðx;uÞ. The solution u2;m to the asso-
ciated Riemann problem is obtained by considering the limiting values uLð/2;mÞ; uRð/2;mÞ, as in Section 4.4.

Since the GRP approximation to the solution is given by

u2;mð/2;mÞ þ @u
@t

ðk2;m;/2;m; tnþÞDt
2
; Dt ¼ tnþ1 � tn;

we need to determine the instantaneous time-derivative @u
@t ðk2;m;/2;m; tnþÞ. This derivative is given, in view of (5.4), by

@u
@t

ðk2;m;/2;m; tnþÞ ¼ �um;k
@

@u
gðx;uÞjk2;m ;/2;m ;u2;m ;

where the slope value um;k is obtained by ‘‘upwinding”, determined by the associated Riemann problem as follows.

(i) u2;m ¼ uLð/2;mÞ. (the wave moves to the right) and we then set

um;k ¼ uL;k:

(ii) u2;m ¼ uRð/2;mÞ. (the wave moves to the left) and we then set

um;k ¼ uR;k:

It remains to consider the sonic case. As noted above (Section 4.4), it remains sonic in the neighborhood of /2;m, so that we
have there @

@u gðx;uÞjk2;m ;/2;m ;u2;m ¼ 0. The time-derivative of u reduces therefore to

@

@t
uðk2;m;/2;m; t ¼ tnþÞ ¼ 0:

The ‘‘/-split” equation obtained from (5.3), is treated in analogy with the ‘‘k-split” procedure outlined above.
In summary, the full equation (5.3) is resolved in two steps, i.e., the ‘‘k-split” Eq. (5.4) and its ‘‘/-split” analogue. Since

these two equations refer to two different midpoints (i.e., the midpoint of k ¼ k2 and the midpoint of / ¼ /2), we cannot
expect, in general, the identical vanishing of the sum Sk þ S/. However, remark that the geometry-compatibility condition
(2.2) refers to the case of constant value of u. In the case at hand, setting u � �u constant in the computational cell and its
neighbors implies the vanishing of all slopes, and hence the vanishing of all instantaneous time-derivatives of the solution
to the GRP at all midpoints of the cell interfaces. The solution therefore remains constant u ¼ �u. This is the sense in which the
geometry-compatibility condition is satisfied in the GRP framework.
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6. Numerical tests

6.1. First test case: equatorial periodic solutions

Here, the conservation law takes the form (3.1) and the flux function and initial data are given by

f1ðuÞ ¼ f2ðuÞ ¼ 0; f 3ðuÞ ¼ �2pðu2=2Þ;

uðk;/;0Þ ¼ sin k; 0 < k < 2p; 0 < / < p=12;
0; otherwise:

� ð6:1Þ

As discussed in Section 3 (see the discussion of solutions to (3.1)) it is clear that the solution here (as a function of k) is iden-
tical to the periodic solution for the Burgers equation in R1; with periodic boundary conditions on ½0 < x < 2p�. However, we
compute the numerical solution here on our spherical grid, and we need to check not only that it conforms with the one-
dimensional case but that it does not ‘‘leak” beyond the band supporting the initial data. The results at the shock formation
time ts ¼ 1=2p are shown in Fig. 6 for Dk ¼ 2p=16, in Fig. 7 for Dk ¼ 2p=32 and in Fig. 8 for Dk ¼ 2p=64. These GRP solutions
to (4.7) clearly converge to the exact solution with refinement of the k grid, and are comparable to the corresponding
solution to the scalar conservation law in R1 with Dx ¼ 2p=22.
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Fig. 6. Exact, GRP/SCL and GRP/SPHERE (Dk ¼ 2p=16) solutions to the IVP (6.1) at t ¼ 1=2p.
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Fig. 7. Exact, GRP/SCL and GRP/SPHERE (Dk ¼ 2p=32) solutions to the IVP (6.1) at t ¼ 1=2p.
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6.2. Second test case: steady state solution

We refer to Corollary 3.3 and using the notation there we take the flux vector and initial data as:

f1ðuÞ ¼ u2=2; f 2ðuÞ ¼ f3ðuÞ ¼ 0;
uðk;/;0Þ ¼ cos k cos/:

ð6:2Þ

Using the terminology of Corollary 3.3 we see that the initial function is the ‘‘simplest” possible function, corresponding to
gðx1Þ ¼ x1.

As is shown in Fig. 9, the numerical solution remains nearly unchanged in time after being subjected to integration up to
t ¼ 6 by the GRP scheme with constant time step Dt ¼ 0:04, the (color) maps of uðk;/; tÞ at the initial and final times are
virtually indistinguishable. The shown grid has latitude step D/ ¼ p=60; and an equatorial longitude step Dk ¼ p=64. A
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Fig. 8. Exact, GRP/SCL and GRP/SPHERE (Dk ¼ 2p=64) solutions to the IVP (6.1) at t ¼ 1=2p.
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Fig. 9. Steady state initial data (and solution) to the IVP (6.2) at t ¼ 6. Color map range scaled to ðumin; umaxÞ ¼ ð�0:998;0:998Þ.
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measure udiff of the numerical solution error is defined as the l1–norm difference juðk;/;6Þ � uðk;/;0Þj, obtained by summa-
tion over all grid cells. In this case we obtained udiff ¼ 0:0083, which is small relative to the full range umax � umin ¼ 2. We also
calculated the stability ratio, defined as

lCFL ¼ max Dtw=Lcellf g;
wherew, Lcell are the wave speed and the cell length in either coordinate direction, respectively. The maximum value is taken
over all cells and all time-integration steps. In the present case we obtained lCFL ¼ 0:55. This test case demonstrates that the
GRP scheme correctly computes the time-evolution for the non-constant data (6.2), which identically vanishes for the exact
(steady) solution.

6.3. Third test case: steady state solution in a spherical cap

Referring to Remark 3.6 we construct a conservation law having a steady solution as follows. The flux vector and initial
data are:

f1ðuÞ ¼ f2ðuÞ ¼ f3ðuÞ ¼ u2=2;

uðk;/;0Þ ¼ ðx1 þ x2 þ x3Þ=
ffiffiffi
3

p
¼ ½cos/ðcos kþ sin kÞ þ sin/�=

ffiffiffi
3

p
;

ð6:3Þ

As is shown in Fig. 10, the numerical solution remains nearly unchanged in time after being subjected to integration up to
t ¼ 6 by the GRP scheme with constant time step Dt ¼ 0:015, the color maps of uðk;/; tÞ at the initial and final times are vir-
tually indistinguishable. The shown grid has latitude step D/ ¼ p=60; and an equatorial longitude step Dk ¼ p=64. Again,
the l1–norm of the difference is udiff ¼ 0:013, which is small relative to the full range umax � umin ¼ 2. The stability ratio ob-
tained in the present case is lCFL ¼ 0:60. This test case provides a second example of an accurate calculation of a steady state.
Unlike the previous example, the level curves of the solution are transversal to the coordinate directions.

6.4. Fourth test case: confined solutions

We take (as in Claim 2.2) Uðx;uÞ ¼ rhðx;uÞ, where hðx;uÞ ¼ wðx1Þx1f1ðuÞ: The function wðx1Þ is defined by

wðx1Þ ¼
1; x1 6 0;
1� 6x21 þ 8ffiffi

2
p x31; 0 6 x1 6

ffiffi
2

p
2 ;

0;
ffiffi
2

p
2 6 x1:

8><
>: ð6:4Þ
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Fig. 10. Steady state initial data (and solution) to the IVP (6.3) at t ¼ 6. Color map range scaled to ðumin;umaxÞ ¼ ð�0:998; 0:998Þ.
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The flux vector is then given by

Fðx; uÞ ¼ nðxÞ �Uðx;uÞ:
The solution is clearly confined to the sector x1 6

ffiffi
2

p
2 of the sphere. Its boundary is a circle which intersects the meridian k ¼ 0

at / ¼ p
4 :

The flux in the subdomain x1 6 0 is given by

Fðx; uÞ ¼ nðxÞ � f1ðuÞi1;
so if we take the initial data as wðx1Þu0ðx1Þ; where u0 is the steady state solution of the second test case (and also the same
f1ðuÞ), the solution remains steady in that part, namely, in x1 6 0: Clearly, it evolves in time in the region 0 6 x1 6

ffiffi
2

p
2 , but van-

ishes identically (for all time) if
ffiffi
2

p
2 6 x1:

The confined IVP was integrated in time up to t ¼ 6 by the GRP scheme, using the same grid and time step as in the second
test case (Section 6.2). The solution is represented by the color map in Fig. 11. It shows clearly that the solution remains con-
fined to the cap x1 <

ffiffiffiffiffiffiffiffiffi
1=2

p
. The stability ratio obtained in the present case, with constant integration time step Dt ¼ 0:04, is

lCFL ¼ 0:55.

6.5. Fifth test case: the Williamson test case #1

This test case is the first of seven test cases suggested by Williamson et al. [14], specifically for the shallow water equa-
tions that model the global air flow on the rotating earth. In this case the earth rotation is set to zero, and a ‘‘cosine bell”
patch of the level function hðk;/; tÞ is advected by a constant-magnitude wind along a great circle oriented at an angle
a relative to the polar axis. The shallow water system reduces in this case to the scalar conservation law (1.3), where the
scalar function is the level function hðk;/; tÞ ¼ uðk;/; tÞ. In particular, the corresponding flux function is found to be geom-
etry compatible. Translated to our framework, this test case is as follows. The initial function is given by

uðk;/;0Þ ¼ ðH0=2Þ½1þ cosðpq=RÞ�; q < R;
0; q P R;

�
ð6:5Þ

where (for the unit sphere) R ¼ 1=3, and the (normalized) peak level is taken as H0 ¼ 1. The angle q is given by

q ¼ arccos½sin/c sin/þ cos/c cos/ cosðk� kcÞ�;
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Fig. 11. Confined solution test case, with the IVP data to the IVP (6.4) at t ¼ 6. Color map range scaled to ðumin;umaxÞ ¼ ð�0:998;0:183Þ.
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Fig. 12. The Williamson test case #1. Trajectory: a ¼ 0:05. to the IVP (6.5) at the initial state t ¼ 0. Color map range scaled to ðumin;umaxÞ ¼ ð0;0:991Þ.
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Fig. 13. The Williamson test case #1. Trajectory: a ¼ 0:05. to the IVP (6.5) at t ¼ 12. Color map range scaled to ðumin; umaxÞ ¼ ð0;0:833Þ.
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where the center of the cosine bell is taken as

½kc;/c� ¼ ½0:5p; 0�:
The flux vector is linear in u and is given by

Fkðk;/;uÞ ¼ V0u½cos/ cosaþ sin/ cos k sina�;
F/ðk;/;uÞ ¼ �V0u sin k sina:

The constant V0 represents the magnitude of the velocity in the original setup of this test case [14], and it is given by
V0 ¼ 2p=tf for a complete trajectory around the sphere at time tf . In the numerical example we took tf ¼ 12, and a constant
time step Dt ¼ 0:008. The l1–error measure at the final time was udiff ¼ 0:05 and the CFL coefficient lCFL ¼ 0:43. Compared to
the l1 measure of the initial cosine bell function of about 0:30, this represents a relative error of 1=6.

The initial setup (t ¼ 0) is shown in Fig. 12 and the final map is shown in Fig. 13. The great circle trajectory is also shown
in these plots (note that it reaches a peak latitude angle of / ¼ p=2� a ¼ p=2� 0:05, near the pole). The shown grid has lat-
itude step D/ ¼ p=126; and an equatorial longitude step Dk ¼ p=128. The CPU time on a PC with Pentium IV processor was
140 seconds (all former examples took considerably less time).

Comparing the initial and final color maps, we note a very good preservation of the round bell-shape – noting only slight
widening and distortion at the final time. The peak value, though, was smeared out: It decreased from the initial value of
0.991 to the final value of 0.833, i.e., about 16% drop, which is comparable to the previously mentioned relative value of
the l1-error. Note that the initial peak value is lower than the exact level of H0 ¼ 1 due to averaging of initial data in cells.
This error is quite small, considering that the initial patch radius is resolved by just about 14 grid cells.

The present test case demonstrates that the present GRP scheme shows promise to perform well when adapted to the
shallow water system.

7. Summary and discussion

The numerical treatment of the shallow water equations on the sphere has been addressed in a large number of works.
We refer to [7–13] and references therein. However, unlike the scalar Burgers equation, which has served as a simplified
model in the theoretical and numerical studies of hyperbolic conservation laws in a Cartesian framework, there has been
no such analogue in the spherical case. The present paper, a third in a series (following the theoretical study [6] and the gen-
eral finite volume framework [2]) is meant to serve this purpose. The points that have been emphasized in this paper can be
summarized as follows.

(a) We have seen a large wealth of flux functions which, combined with the geometric structure, allow for a variety of
analytic non-trivial solutions. Such solutions can be stationary or confined to pre-determined sectors on the sphere.

(b) The design of the finite volume scheme is strongly connected to the analytic properties of the equation, as well as to
the underlying geometry. In particular, length and area measurements of mesh cells are treated exactly, so that the
‘‘null-divergence” condition is rigorously satisfied on the discrete level.

(c) The use of the GRP second-order methodology improves considerably the quality of the numerical solution.

For a generalization to the shallow water equations on the sphere, we refer the reader to the follow-up paper [4].
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