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Abstract. The paper is concerned with various aspects of the spectral struc-
ture of the operator

H = −
∑n

j,k=1
∂xjaj,k(x)∂xk .

It is assumed to be formally self-adjoint in L2(Rn), n ≥ 2. The real coef-
ficients aj,k(x) = ak,j(x) are assumed to be bounded and H is assumed to
be uniformly elliptic and to coincide with −∆ outside of a ball. A Limiting
Absorption Principle (LAP) is proved in the framework of weighted Sobolev
spaces. It is then used for (i) A general eigenfunction expansion theorem and
(ii) Global spacetime estimates for the associated (inhomogeneous) general-
ized wave equation.
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1. Introduction

Let H be a self-adjoint (bounded or unbounded) operator in a Hilbert space H.
The classical spectral theorem [59] gives a representation of H,

H =

∫
R
λ dE(λ),

in terms of its (uniquely determined) spectral family (of projections) {E(λ)}.
The knowledge of {E(λ)} yields valuable information on the spectral struc-

ture of H; the location of its singular or absolutely continuous spectrum, as well
as its eigenvalues.

On the other hand, there are important issues (typically related to partial
differential operators) that cannot be resolved simply on the basis of the spectral
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theorem. We pick here one important topic and expound it in more detail, so as
to illustrate the point at hand.

Assuming that {E(λ)} is (strongly) continuous from the left, one might think
of E(λ+ 0)−E(λ) as a projection on the eigenspace associated with λ. However,
if λ is not an eigenvalue, this projection clearly vanishes. On the other hand,
the mathematical foundation of quantum mechanics has turned the expansion
by generalized eigenfunctions (such as the Fourier transform with respect to the
Laplacian) into a basic tool of the theory (see e.g. [86] for an early treatment).
So the question is how (if at all possible) to incorporate such an expansion into
the abstract framework of the spectral theorem. We shall address this question
in Section 5, where we show how the basic premise of this review, namely, the
smoothness concept of the spectral family, leads to an eigenfunction expansion
theorem for the class of divergence-type operators.

Using a formal point of view we can say that the bridge between the spectral
theorem and the aforementioned eigenfunction expansion theorem is obtained by
replacing the above difference E(λ+ 0)− E(λ) by its scaled version, the (formal,
at this stage) derivative d

dλE(λ). In fact, this derivative is the cornerstone of the
present review.

Certainly, this derivative is far from being a new object . In the physical lit-
erature it is known as the density of states [29, Chapter XIII]. It has appeared
implicitly in many mathematical studies of quantum mechanics.

After introducing our basic notational conventions and functional spaces in
Section 2, we present the basic abstract setting in Section 3. This structure was
first established in a joint work with the late A. Devinatz [15]. It relies on the fun-
damental hypothesis that the spectral derivative is Hölder continuous in a suitable
functional setting. The primary aim is to establish a Limiting Absorption Princi-
ple (LAP), namely, that the resolvents (from either side of the spectrum) remain
continuous up to the (absolutely continuous) spectrum in this setting. Once estab-
lished for an operator H, we show in Subsection 3.2 that it persists to functions
f(H), for a wide family of functions f , with interesting results for operators of
mathematical physics, such as the relativistic Schrödinger operator. It is pointed
out that without the smoothness assumption, the validity of the LAP for H does
not necessarily imply its validity even for H2.

The next three sections are devoted to the main application considered in
this review, namely, a detailed study of the operator

H = −
n∑

j,k=1

∂

∂xj
aj,k(x)

∂

∂xk
,

which is assumed to be formally self-adjoint in L2(Rn), n ≥ 2. The real coefficients
aj,k(x) = ak,j(x) are assumed to be bounded and H is assumed to be uniformly
elliptic and to coincide with −∆ outside of a ball. In particular, the coefficients can
be discontinuous. It is readily seen that these assumptions imply that σ(H), the
spectrum of H, is the half-axis [0,∞), and is entirely continuous. The threshold z =



Divergence-type operators: Spectral theory and spacetime estimates 3

0 plays a special role in this setting. The absolute continuity of the spectrum was
established in [11]. It is a straightforward result of the LAP, which is established in
Section 4 . In particular, we show that the limiting values of the resolvent remain
continuous across the threshold (which is therefore not a resonance).

Since its appearance in the classical works of Eidus [40] and Agmon [1], the
LAP has proven to be a fundamental tool in the study of spectral and scattering
theory . The method of Eidus (for second-order elliptic operators) relied on careful
elliptic estimates while the method of Agmon used Fourier analysis (division by
symbols with simple zeros), followed by a perturbative (”bootstrap”) argument
to deal with lower order terms. This latter method, extended to simply charac-
teristic operators of any order, is expounded in [49, Chapter 14]. The method of
Mourre (also known as the ”conjugate operator method”) [68] paved the way to
the breakthrough in the study of the (quantum) N−body problem [70]. We refer
to the monographs [4, 36] for the presentation of Mourre’s method in an abstract
framework. We also refer to the recent paper [41], where the LAP is proved by
using a combination of Mourre’s method and energy estimates.

The LAP for the divergence-type operator H introduced above cannot be ob-
tained by a straightforward application of either one of these methods. Firstly, the
presence of the non-constant coefficients aj,k(x) means that H is not a relatively
compact perturbation of the Laplacian, and the perturbation method of Agmon
cannot be applied. Secondly, if one insists (as we do here) on assuming only bound-
edness (and not smoothness) of these coefficients, the method of Mourre, as used
in the semiclassical literature [76], cannot be applied (the conjugate operator is re-
lated to a generator of the corresponding flow that , in turn, relies on smoothness).
In contrast, our approach to the LAP enables us to obtain resolvent estimates for
the Laplacian beyond the L2 setting, by using H−1,s weighted Sobolev spaces (see
Subsection 4.1). In this context the operator H can be handled as a perturbation
of the Laplacian.

We note in addition that both Agmon’s and Mourre’s methods cannot be
applied across the threshold at z = 0. Here we obtain continuity of the limiting
values of the resolvent across the threshold, at the expense of using a more restric-
tive weight function. This fact is essential in the the treatment of global spacetime
estimates in Section 6.

A more detailed discussion of the relevant literature is given in Section 4.
Section 5 is devoted to the eigenfunction expansion theorem (by generalized

eigenfunctions) associated with the operator H. We have already touched upon
this topic above, illustrating the differences between the general (abstract) spec-
tral theorem and the detailed Fourier-type expansion needed in applications. We
expand on this issue in the section.

A global spacetime estimate for the associated (inhomogeneous) generalized
wave equation is proved in Section 6. We chose to bring this example (instead of
the simpler Schrödinger-type equation) in order to stress the various possibilities
available with the tool of the spectral derivative. In doing so we need to restrict
much further our class of coefficient matrices. In fact, in order to obtain good
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control on the behavior of the limiting values of the spectral derivative at high
energy , we need to use geometric assumptions (non-trapping trajectories), which
are common in semiclassical theory.

2. Functional spaces and notation

We collect here some basic notations and functional spaces to be used throughout
this paper.

The closure of a set Ω (either in the real line R or in the complex plane C)
is denoted by Ω.

For any two normed spaces X, Y , we denote by B(X,Y ) the space of bounded
linear operators from X to Y , equipped with the operator norm ‖ ‖B(X,Y ) topology
(to which we refer as the uniform operator topology). In the case X = Y we simplify
to B(X).

The following weighted L2 and Sobolev spaces will appear frequently. First,
for s ∈ R and m a non-negative integer, we define

L2,s(Rn) :=
{
u(x)

∣∣ ‖u‖20,s =

∫
Rn

(1 + |x|2)s|u(x)|2dx <∞
}

Hm,s(Rn) :=
{
u(x)

∣∣ Dαu ∈ L2,s, |α| ≤ m, ‖u‖2m,s =
∑
|α≤m

‖Dαu‖20,s
}

(we write L2 for L2,0 and ‖u‖0 = ‖u‖0,0). More generally, for any σ ∈ R, let
Hσ ≡ Hσ,0 be the Sobolev space of order σ, namely,

Hσ =
{
û
∣∣ u ∈ L2,σ

}
,

‖û‖σ,0 = ‖u‖0,σ, where the Fourier transform is defined as usual by

û(ξ) = (2π)−
n
2

∫
Rn

u(x) exp(−iξx)dx. (2.1)

For negative indices, we denote by
{
H−m,s, ‖ · ‖−m,s

}
the dual space of

Hm,−s. In particular, observe that any function f ∈ H−1,s can be represented
(not uniquely) as

f = f0 +

n∑
k=1

i−1 ∂

∂xk
fk, fk ∈ L2,s, 0 ≤ k ≤ n. (2.2)

In the case n = 2 and s > 1, we define

L2,s
0 (R2) =

{
u ∈ L2,s(R2)

∣∣ û(0) = 0
}
,

and set H−1,s
0 (R2) to be the space of functions f ∈ H−1,s(R2) which have a

representation (2.2), where fk ∈ L2,s
0 , k = 0, 1, 2.
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3. The basic abstract structure

Let H be a Hilbert space over C (the complex numbers), whose scalar product and
norm we denote, respectively, by ( , ) and ‖ ‖.

Let X be another Hilbert space such that X ⊆ H, where the embedding is
dense and continuous. In other words, X can be considered as a dense subspace
of H, equipped with a stronger norm. Then, of course, X ↪→ H ↪→ X ∗, where X ∗
is the anti-dual of X , i.e., the continuous additive functionals l on X , such that
l(αv) = α l(v), α ∈ C. The (linear) embedding h ∈ H ↪→ x∗ ∈ X ∗ is obtained as
usual by the scalar product (in H), x∗(x) = (h, x).

We use ‖x‖X , ‖x∗‖X∗ for the norms in X , X ∗, respectively, and designate by
< , > the (X ∗,X ) pairing.

Let H be a self-adjoint (in general unbounded) operator on H and let {E(λ)}
be its spectral family. Let

R(z) = (H − z)−1, z ∈ C± =
{
z
∣∣ ± Im z > 0

}
,

be the associated resolvent operator. We denote by σ(H) ⊆ R the spectrum of H.
Clearly, if λ ∈ σ(H), then R(z) cannot converge to a limit in the uniform

operator topology of B(H) as z → λ. However, a basic notion in our treatment is
the fact that such continuity up to the spectrum of the resolvent can be achieved
in a weaker topology. We begin with the following definition.

Definition 3.1. Let [κ1, κ2] ⊆ R. We say that H satisfies the Limiting Absorption
Principle (LAP) in [κ1, κ2] if R(z), z ∈ C±, can be extended continuously to
Im z = 0, Re z ∈ [κ1, κ2], in the uniform operator topology of B(X ,X ∗). In this
case we denote the limiting values by R±(λ), κ1 ≤ λ ≤ κ2.

Remark 3.2. By the well-known Stieltjes formula [59], for all x ∈ X ,

((E(δ)− E(γ))x, x) =
1

2πi

δ∫
γ

〈(
R+(λ)−R−(λ)

)
x, x

〉
dλ, [γ, δ] ⊆ [κ1, κ2],

it follows that H is absolutely continuous in [κ1, κ2].

Remark that our assumptions readily imply that the uniform operator topol-
ogy of B(X ,X ∗) is weaker than that of B(H). Also note that the limiting values
R−(λ) are, generally speaking, different from R+(λ).

For reasons to become clear later, we introduce still another Hilbert space
X ∗H , which is a dense subspace of X ∗, equipped with a stronger norm (so that
the embedding X ∗H ↪→ X ∗ is continuous). However, we do not require that H
be embedded in X ∗H . As indicated by the notation, X ∗H may depend on H (see
Example 3.5 below). A typical case would be when H can be extended as a densely
defined operator in X ∗ and X ∗H would be its domain there, equipped with the graph
norm. This will be the case in Theorem 3.11 below.

Let {E(λ)} be the spectral family of H. When there is no risk of confusion,
we also use E(B) to denote the spectral projection on any Borel set B (so that
E(λ) = E(−∞, λ)).
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Definition 3.3. Let U ⊆ R be open and let 0 < α ≤ 1. Assume that U is of full
spectral measure, namely, E(R\U) = 0. Then H is said to be of type (X ,X ∗H , α, U)
if the following conditions are satisfied:

1. The operator-valued function

λ→ E(λ) ∈ B(X ,X ∗), λ ∈ U,
is weakly differentiable with a locally Hölder continuous derivative in
B(X ,X ∗H); that is, there exists an operator-valued function

λ→ A(λ) ∈ B(X ,X ∗H), λ ∈ U,
so that (recall that ( , ) is the scalar product in H while < , > is the (X ∗,X )
pairing)

d

dλ
(E(λ)x, y) =< A(λ)x, y >, x, y ∈ X , λ ∈ U,

and such that for every compact interval K ⊆ U , there exists an MK > 0
satisfying

‖A(λ)−A(µ)‖B(X ,X∗H) ≤MK |λ− µ|α , λ, µ ∈ K.

2. For every bounded open set J ⊆ U and for every compact interval K ⊆ J ,
the operator-valued function (defined in the weak sense)

z →
∫
U\J

A(λ)

λ− z
dλ, z ∈ C, Re z ∈ K, | Im z| ≤ 1,

takes values and is Hölder continuous in the uniform operator topology of
B(X ,X ∗H), with exponent α.

Remark 3.4. We could localize this definition and, in particular, relax the assump-
tion that E(R \U) = 0. However, this is not needed for the operators discussed in
this review, typically perturbations of operators with absolutely continuous spec-
trum (see the following example below).

Example 3.5 (H0 = −∆). (This example will be continued in Subsections ??
and 4.1).

We take the operator H0 to be the unique self-adjoint extension of the re-
striction of −∆ to smooth compactly supported functions [59]. Let

{
E0(λ)

}
be the

spectral family associated with H0 so that, using the Fourier notation introduced
in Section 2,

(E0(λ)h, h) =

∫
|ξ|2≤λ

|ĥ|2 dξ, λ ≥ 0, h ∈ L2(Rn). (3.1)

We refer to Section 2 for definitions of the weighted L2 and Sobolev spaces involved
in the sequel. Recall that by the standard trace lemma, we have∫

|ξ|2=λ

|ĥ|2 dτ ≤ C
∥∥ĥ∥∥2

Hs , s >
1

2
, λ > 0, (3.2)
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where C > 0 is independent of λ and dτ is the restriction of the Lebesgue measure
(see [15] for the argument that it can be used for the full half-axis, not just compact
intervals).

We conclude that the weak derivative A0(λ) = d
dλE0(λ) exists in the space

B(L2,s, L2,−s) for any s > 1
2 and λ > 0 and satisfies

< A0(λ)h, k >= (2
√
λ)−1

∫
|ξ|2=λ

ĥk̂ dτ, h, k ∈ L2,s, (3.3)

where < , > is the (L2,−s, L2,s) pairing (conjugate linear with respect to the second
term) and dτ is the Lebesgue surface measure (we write L2,s for L2,s(Rn)).

Furthermore, by taking s large in (3.2) (it suffices to take s > n
2 +2) and using

the Sobolev imbedding theorem we infer that A0(λ) is locally Lipschitz continuous
in the uniform operator topology, so that by interpolation it is locally Hölder
continuous in the uniform operator topology of B(L2,s, L2,−s) for any s > 1

2 .
Finally, since the (distributional) Fourier transform of A0(λ)h is the surface

density (2
√
λ)−1δ|ξ|2−λĥ(ξ) dτ , we conclude that actually A0(λ)h ∈ Hm,−s, s > 1

2 ,
for any m > 0, and A0(λ) is locally Hölder continuous in the uniform operator
topology of B(L2,s, Hm,−s) for any s > 1

2 .

Thus, all the requirements of Definition 3.3 are satisfied with X = L2,s(Rn),
X ∗H0

= H2,−s(Rn), s > 1
2 .

3.1. The limiting absorption prinicple – LAP

Recall first the classical Privaloff-Korn theorem (see [31] for a proof).

Theorem. Let f : R→ C be a compactly supported Hölder continuous function so
that, for some N > 0 and 0 < α < 1,

|f(λ2)− f(λ1)| ≤ N |λ2 − λ1|α , λ2, λ1 ∈ R.
Let

F±(z) =

∫
R

f(λ)

λ− z
dλ, z ∈ C±.

Then, for every µ ∈ R, the limits

F±(µ) = limF (z) = ±iπf(µ) + P.V.

∫
R

f(λ)

λ− µ
dλ as z → µ, ± Im z > 0,

exist and moreover, for every compact K ⊆ C+ (or K ⊆ C−), there exists a
constant MK so that

|F±(z2)− F±(z1)| ≤ NMK |z2 − z1|α , z1, z2 ∈ K.
We can now state our basic theorem, concerning the LAP in the abstract

setting. We remark that a slightly different version will appear in Subsection 4.3.

Theorem 3.6. Let H be of type (X ,X ∗H , α, U) (where U ⊆ R is open and 0 < α ≤
1). Then H satisfies the LAP in U . More explicitly, the limits

R±(λ) = lim
ε↓0

R(λ± iε), λ ∈ U,
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exist in the uniform operator topology of B(X ,X ∗H) and the extended operator-
valued function

R(z) =

{
R(z), z ∈ C+,

R+(z), z ∈ U,
is locally Hölder continuous in the same topology (with exponent α).

A similar statement applies when C+ is replaced by C−, but note that the
limiting values R±(λ) are in general different.

Proof. Let J ⊆ U be a bounded open set such that J ⊆ U and K ⊆ J be a
compact interval. Let ϕ ∈ C∞0 (U) be a cutoff function with ϕ ≡ 1 on J . Taking
x, y ∈ X , we have, for Re z ∈ K, Im z 6= 0,

(R(z)x, y) =

∫
U

ϕ(µ) < A(µ)x, y >

µ− z
dµ+

∫
U\J

(1− ϕ(µ)) < A(µ)x, y >

µ− z
dµ

= (R1(z)x, y) + (R2(z)x, y) .

By hypothesis (see Definition 3.3) the operator-valued function

R2(z) =

∫
U\J

(1− ϕ(µ))A(µ)

µ− z
dµ,

belongs to B(X ,X ∗H), and it is locally Hölder continuous for Re z ∈ K. Thus, we
are reduced to considering R1.

Observe that the integral

R1(z) =

∫
U\J

ϕ(µ)A(µ)

µ− z
dµ,

is well-defined as a Riemann integral, since the integrand is continuous in the
uniform norm topology of B(X ,X ∗H). Thus R1(z) ∈ B(X ,X ∗H). It remains to prove
the assertion concerning its Hölder continuity.

Note that the embeddings X ↪→ H ↪→ X ∗ and X ∗H ↪→ X ∗ ↪→ X ∗∗H are dense
and continuous. Thus, we can view X as embedded in X ∗∗H , so that the pairing
< A(µ)x, y > can be regarded as an (X ∗H ,X ∗∗H ) pairing.

Suppose now that Im zi > 0, Re zi ∈ K, i = 1, 2, so that the Privaloff-Korn
theorem yields, for x, y ∈ X ,

|([R1(z2)−R1(z1)]x, y)|

≤MK sup
µ1 6=µ2

| < [ϕ(µ2)A(µ2)− ϕ(µ2)A(µ2)]x, y > |
|µ2 − µ1|α

|z2 − z1|α,

and as observed above

| < [ϕ(µ2)A(µ2)− ϕ(µ2)A(µ2)]x, y > |
≤
∥∥[ϕ(µ2)A(µ2)− ϕ(µ2)A(µ2)]x

∥∥
X∗H
‖y‖X∗∗H

≤
∥∥ϕ(µ2)A(µ2)− ϕ(µ2)A(µ2)

∥∥
B(X ,X∗H)

‖x‖X ‖y‖X∗∗H .
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Thus, ∣∣([R1(z2)−R1(z1)]x, y)
∣∣ ≤ NMK |z2 − z1|α ‖x‖X ‖y‖X∗∗H ,

where

N = sup
µ1 6=µ2

‖ϕ(µ2)A(µ2)− ϕ(µ2)A(µ2)‖B(X ,X∗H)

|µ2 − µ1|α
.

Since X is dense in X ∗∗H , the last estimate yields

‖R1(z2)−R1(z1)‖B(X ,X∗H) ≤ NMK |z2 − z1|α ,

and the proof is complete. �

Corollary 3.7. In view of the Stieltjes formula (see Remark 3.2 above) we have

A(λ) =
1

2πi

(
R+(λ)−R−(λ)

)
, λ ∈ U.

In particular, H is absolutely continuous in U and R+(λ)−R−(λ) cannot vanish
on a subset of σ(H) ∩ U of positive (Lebesgue) measure.

Remark 3.8. The operator A(λ), λ ∈ [0,∞), is known in the physical literature as
the density of states [29, Chapter XIII].

Also, combining the theorem with the observations in Example 3.5 we obtain
the following corollary, which is Agmon’s classical LAP theorem [1].

Corollary 3.9. Let H0 = −∆ and set R0(z) = (H0 − z)−1, Im z 6= 0. Then the
limits

R±0 (λ) = lim
ε↓0

R0(λ± iε), λ ∈ (0,∞),

exist in the uniform operator topology of B(L2,s, H2,−s), s > 1
2 . Furthermore, these

limiting values are Hölder continuous in this topology.

Remark 3.10. The considerations of Example 3.5, based on trace estimates, can
be applied to a wide range of constant coefficient partial differential operators
(so called simply characteristic operators, including all principal-type operators).
Hence, a suitable LAP can be established for such operators. We shall not pursue
this direction further in this review, but refer the reader to [15].

In general, it is easier to verify the conditions of Definition 3.3 for the operator
space B(X ,X ∗) than for B(X ,X ∗H). However, in some circumstances it is enough
to establish the conditions in the latter space. This is expressed in the following
theorem.

Theorem 3.11. Let H be densely defined and closable in X ∗, with closure H. Take
X ∗H = D(H) (its domain), equipped with the graph norm

‖x‖2X∗H = ‖x‖2X∗ + ‖Hx‖2X∗ .

Suppose that H is of type (X ,X ∗, α, U) (see Definition 3.3). Then in fact H is of
type (X ,X ∗H , α, U).
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Proof. In view of Theorem 3.6 (where all assumptions hold in B(X ,X ∗)) we know
that the limits

R±(λ) = lim
ε↓0

R(λ± iε), λ ∈ U,

exist in the uniform operator topology, are locally Hölder continuous and, further-
more, for all x ∈ X ,

lim
ε↓0

HR(λ± iε)x = x+ λR±(λ)x, λ ∈ U.

Since H is closed in X ∗, we obtain

HR±(λ)x = x+ λR±(λ)x ∈ X ∗,
so that R±(λ)x ∈ X ∗H . From the definition of the graph norm topology we see
that R±(λ) is locally Hölder continuous in B(X ,X ∗H). Thus, using Eq. (3.7), we
conclude that the same is true for A(λ), so that the first condition in Definition 3.3
is satisfied.

To establish the second condition, let J ⊆ U be an open set and K ⊆ J

compact. Let z ∈ C with Re z ∈ K, and let F (λ; z) =
χU\J (λ)

λ−z (as usual, χ is the

characteristic function of the indicated set). By the standard spectral calculus

HF (H; z) =

∫
U

λF (λ; z) dE(λ) =

∫
U\J

λA(λ)

λ− z
dλ,

so that both F (H; z) =
∫
U\J

A(λ)
λ−z dλ and HF (H; z) are in B(X ,X ∗) and are, in

fact, locally Lipschitz continuous in the uniform operator topology. Thus z →
F (H; z) is locally Lipschitz continuous in B(X ,X ∗H), which concludes the proof.

�

3.2. Persistence of smoothness under functional operations

For a wide class of functions f : R→ R the (self-adjoint) operator f(H) is defined
via the calculus associated with the spectral theorem [59], namely,

f(H) =

∫
R
f(λ) dE(λ),

where {E(λ)} is the spectral family of H.
Various spectral properties of f(H) (whose spectrum is Ran fσ(H)) can be

read off from the structure of f . (We use the notation Ran fW for the image of
W ⊆ R under f).

However, one important aspect which is missing is the fact that if H satisfies
the Limiting Absorption Principle in U , there is no guarantee that f(H) satisfies
the same principle in Ran fU or any part thereof. This remains true even if f is
very smooth, monotone, etc.

In contrast, if H is of type (X ,X ∗H , α, U), then also f(H) is of that type (with
U replaced by Ran fU and perhaps a different Hölder exponent), for a rather broad
family of functions. This is the content of the next theorem. In particular, in view
of Theorem 3.6, also f(H) satisfies the LAP.
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We do not attempt to make the most general statement, but instead refer
the reader to [20] for further details.

Theorem 3.12. Let H be of type (X ,X ∗H , α, U) (where U ⊆ R is open and 0 < α ≤
1). Let f : R → R be a locally Hölder continuous function. Assume, in addition,
that the restriction of f to U is continuously differentiable, and that its derivative
f ′ is positive and locally Hölder continuous on U .

Then the operator f(H) is of type (X ,X ∗H , α′,Ran fU ), for some 0 < α′ ≤ 1.

Proof. Let {F (λ)} be the spectral family of f(H). If B ⊆ R is a Borel set, the
spectral theorem yields

F (B) = E(f−1(B)),

and since E(R \ U) = 0 (see Definition 3.3), we can further write

F (B) = E(f−1(B) ∩ U).

Since f ′ > 0 in U , an easy calculation gives for the (weak) derivative

d

dµ
F (µ) = f ′(λ)−1 d

dλ
E(λ), λ = f(µ) ∈ U.

The assertion of the theorem follows directly from this formula. �

In view of Theorem 3.6 we infer that f(H) satisfies the LAP in Ran fU .

Remark 3.13. It should be remarked that if H satisfies the LAP in the sense of
Definition 3.1 (including all the functional setting mentioned there), there is no
guarantee that H2 satisfies the LAP in

{
µ = λ2

∣∣ λ ∈ U}. For this to be false,
however, one needs to find an example where the limiting values of the resolvent
are not Hölder continuous.

Continuing Corollary 3.9 and taking f(λ) =
√
|λ| + 1, we obtain a LAP for

the relativistic Schrödinger operator [20].

Corollary 3.14. Let L =
√
−∆ + I and set P (z) = (L − z)−1, Im z 6= 0. The

spectrum of L is σ(L) = [1,∞) and is absolutely continuous. The limits

P±(λ) = lim
ε↓0

P (λ± iε), λ ∈ (1,∞),

exist in the uniform operator topology of B(L2,s, H2,−s), s > 1
2 . Furthermore, these

limiting values are Hölder continuous in this topology.

4. The limiting absorption principle for second-order
divergence-type operators

In the following sections we consider divergence-type second-order operators. As
perturbations of the Laplacian they do not belong to any of the above categories;
the difference between such an operator and the Laplacian is not even compact.
However, our aim is to show that we can still deal with such operators, starting
from the smoothness properties of (the spectral derivative of) the Laplacian.
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Let H = −
n∑

j,k=1

∂jaj,k(x)∂k, where aj,k(x) = ak,j(x), be a formally self-

adjoint operator in L2(Rn), n ≥ 2. The notation ∂j = ∂
∂xj

is used throughout the

following sections.

We assume that the real measurable matrix function a(x) = {aj,k(x)}1≤j,k≤n
satisfies, with some positive constants a1 > a0 > 0, Λ0 > 0,

a0I ≤ a(x) ≤ a1I, x ∈ Rn, (4.1)

a(x) = I, |x| > Λ0. (4.2)

In what follows we shall use the notation H = −∇ · a(x)∇.

We retain the notation H for the self-adjoint (Friedrichs) extension associated
with the form (a(x)∇ϕ,∇ψ), where ( , ) is the scalar product in L2(Rn). When
a(x) ≡ I, we get H = H0 = −∆.

We refer to Section 2 for definitions of the various functional spaces that will
appear in what follows.

Let

R0(z) = (H0 − z)−1, R(z) = (H − z)−1, z ∈ C± =
{
z
∣∣ ± Im z > 0

}
,

be the associated resolvent operators.

We note that the operatorH can be extended in an obvious way (retaining the
same notation) as a bounded operator H : H1

loc → H−1
loc . In particular, H : H1,−s →

H−1,−s, for all s ≥ 0. Furthermore, the graph norm of H in H−1,−s is equivalent
to the norm of H1,−s.

Similarly, we can consider the resolvent R(z) as defined on L2,s, s ≥ 0, where
L2,s is densely and continuously embedded in H−1,s.

The fundamental result presented in this section is that H satisfies the LAP
over the whole real axis. The exact formulation is as follows:

Theorem 4.1. Suppose that a(x) satisfies (4.1),(4.2). Then the operator H satisfies
the LAP in R. More precisely, let s > 1 and consider the resolvent R(z) = (H −
z)−1, Im z 6= 0, as a bounded operator from L2,s(Rn) to H1,−s(Rn).

Then:

(a) R(z) is bounded with respect to the H−1,s(Rn) norm. Using the density of
L2,s in H−1,s, we can therefore view R(z) as a bounded operator from H−1,s(Rn)
to H1,−s(Rn).

(b) The operator-valued functions, defined respectively in the lower and upper
half-planes,

z → R(z) ∈ B(H−1,s(Rn), H1,−s(Rn)), s > 1, ± Im z > 0, (4.3)

can be extended continuously from C± =
{
z
∣∣ ± Im z > 0

}
to C± = C±

⋃
R (with

respect to the uniform operator topology of B(H−1,s(Rn), H1,−s(Rn)).

In the case n = 2 replace H−1,s by H−1,s
0 .
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We denote the limiting values of the resolvent on the real axis by

R±(λ) = lim
z→λ,± Im z>0

R(z). (4.4)

Remark 4.2. Since L2,s (resp. H1,−s) is densely and continuously embedded in
H−1,s (resp. L2,−s), we conclude that the resolvents R0(z), R(z) can be extended

continuously to C± in the B(L2,s(Rn), L2,−s(Rn)) uniform operator topology.

The spectrum of H is therefore entirely absolutely continuous. In particular,
it follows that the limiting values R±(λ) are continuous at λ = 0 and H has no
resonance there.

The study of the resolvent near the threshold λ = 0 is sometimes referred
to as low energy estimates. Following the proof of the theorem, at the end of
Subsection 4.2, we review some of the existing literature concerning such estimates,
as well as some other results pertaining to the LAP in non short-range settings.

Before proceeding to the proof of the theorem, we need to obtain more infor-
mation on the resolvent of the Laplacian.

4.1. The operator H0 = −∆ – revisited

The basic properties of this operator have already been discussed in Example 3.5
and Corollary 3.9. In particular, the explicit form of

{
E0(λ)

}
, its spectral family,

is given in Eq. (3.1), and the spectral derivative A0 is given explicitly in Eq. (3.3).
The weighted L2 estimates for A0 were obtained by using the trace esti-

mate (3.2).
However, we can refine this estimate near λ = 0 as follows.

Proposition 4.3. Let 1
2 < s < 3

2 , h ∈ L2,s. For n = 2 assume further that s > 1

and h ∈ L2,s
0 . Then ∫

|ξ|2=λ

|ĥ|2 dτ ≤ C min{λγ , 1}
∥∥ĥ∥∥2

Hs , (4.5)

where

0 < γ = s− 1

2
, n ≥ 3,

0 < γ < s− 1

2
, n = 2,

(4.6)

and C = C(s, γ, n).

Proof. If n ≥ 3, the proof follows as in [19, Appendix], when we take into account
the fact (generalized Hardy inequality) that multiplication by |ξ|−s is bounded
from Hs into L2 [45] (see also [64, Section 9.4]).

If n = 2 and 1 < s < 3
2 we have, for h ∈ L2,s

0 ,

|ĥ(ξ)| = |ĥ(ξ)− ĥ(0)| ≤ Cs,δ |ξ|δ ‖ĥ‖Hs ,

for any 0 < δ < min{1, s−1}. Using this estimate in the integral in the right-hand
side of (4.5), the claim follows also in this case. �
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Combining Eqs. (3.3),(3.2) and (4.5), we conclude that

|< A0(λ)f, g >| ≤< A0(λ)f, f >
1
2 < A0(λ)g, g >

1
2

≤ C min{λ− 1
2 , λη} ‖f‖0,s ‖g‖0,σ , f ∈ L2,s, g ∈ L2,σ,

(4.7)

where

(i) n ≥ 3,
1

2
< s, σ <

3

2
, s+ σ > 2 and 0 < 2η = s+ σ − 2,

or (4.8)

(ii) n = 2, 1 < s <
3

2
,

1

2
< σ <

3

2
, s+ σ > 2, 0 < 2η < s+ σ − 2

and f̂(0) = 0.

In both cases, A0(λ) is Hölder continuous and vanishes at 0, ∞, so we obtain as
in [15]:

Proposition 4.4. The operator-valued function

z → R0(z) ∈

{
B(L2,s, L2,−σ), n ≥ 3,

B(L2,s
0 , L2,−σ), n = 2,

(4.9)

where s, σ satisfy (4.8), can be extended continuously from C± to C±, in the re-
spective uniform operator topologies.

Remark 4.5. We note that the conditions (4.8) yield the continuity of A0(λ) across
the threshold λ = 0 and hence the continuity property of the resolvent as in
Proposition 4.4. However, for the local continuity at any λ0 > 0, it suffices to take
s, σ > 1

2 , as has been stated in Corollary 3.9, which is Agmon’s original result [1].
This remark applies equally to the statements below, where the resolvent is

considered in other functional settings.

We shall now extend this proposition to more general function spaces. Let
g ∈ H1,σ, where s, σ satisfy (4.8). Let f ∈ H−1,s have a representation of the
form (2.2). Eq. (3.3) can be extended to yield an operator (for which we retain the
same notation)

A0(λ) ∈ B(H−1,s, H−1,−σ),

defined by (where now < , > is used for the (H−1,s, H1,σ) pairing),

<A0(λ)

[
f0 + i−1

n∑
k=1

∂

∂xk
fk

]
, g >

= (2
√
λ)−1

∫
|ξ|2=λ

[
f̂0(ξ) +

n∑
k=1

ξkf̂k(ξ)

]
ĝ(ξ) dτ, f ∈ H−1,s, g ∈ H1,σ.

(4.10)

(replace H−1,s by H−1,s
0 if n = 2).
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Observe that this definition makes good sense even though the representation
(2.2) is not unique, since

f = f0 +

n∑
k=1

i−1 ∂

∂xk
fk = f̃0 +

n∑
k=1

i−1 ∂

∂xk
f̃k,

implies

f̂0(ξ) +

n∑
k=1

ξkf̂k(ξ) =
ˆ̃
f0(ξ) +

n∑
k=1

ξk
ˆ̃
fk(ξ)

(as tempered distributions).
To estimate the operator-norm of A0(λ) in this setting we use (4.10) and

the considerations preceding Proposition 4.4, to obtain, instead of (4.7), for k =
1, 2, . . . , n,∣∣∣∣< A0(λ)

∂

∂xk
fk, g >

∣∣∣∣
≤ C min{λ− 1

2 , λη} ‖f‖−1,s ‖g‖1,σ , f ∈ H−1,s, g ∈ H1,σ,

(4.11)

where s, σ satisfy (4.8) (replace H−1,s by H−1,s
0 if n = 2).

We now define the extension of the resolvent operator by

R0(z) =

∞∫
0

A0(λ)

λ− z
dλ, Im z 6= 0. (4.12)

The convergence of the integral (in the operator norm) follows from the esti-
mate (4.11).

The LAP in this case is given in the following proposition.

Proposition 4.6. The operator-valued function R0(z) is well-defined (and analytic)
for non-real z in the following functional setting.

z → R0(z) ∈

{
B(H−1,s, H1,−σ), n ≥ 3,

B(H−1,s
0 , H1,−σ), n = 2,

(4.13)

where s, σ satisfy (4.8). Furthermore, it can be extended continuously from C± to

C±, in the respective uniform operator topologies. The limiting values are denoted
by R±0 (λ).

The extended function satisfies

(H0 − z)R0(z)f = f, f ∈ H−1,s, z ∈ C±, (4.14)

where for z = λ ∈ R, R0(z) = R±0 (λ).

Proof. For simplicity we assume n ≥ 3. By Definition (4.12) and estimate (4.11),
we get readily R0(z) ∈ B(H−1,s, H−1,−σ) if Im z 6= 0 as well as the analyticity of
the map z → R0(z), Im z 6= 0. Furthermore, the extension to Im z = 0 is carried
out as in [15].
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Eq. (4.14) is obvious if Im z 6= 0 and f ∈ L2,s. By the density of L2,s in
H−1,s, the continuity of R0(z) on H−1,s and the continuity of H0−z (in the sense
of distributions) we can extend it to all f ∈ H−1,s.

As z → λ ± i · 0 we have R0(z)f → R±0 (λ)f in H−1,−σ. Applying the
(constant coefficient) operator H0 − z yields, in the sense of distributions, f =
(H0 − z)R0(z)f → (H0 − λ)R±0 (λ)f which establishes (4.14) also for Im z = 0.

Finally, the established continuity of z → R0(z) ∈ B(H−1,s, H−1,−σ) (up to
the real boundary) and Eq. (4.14) imply the continuity of the map z → H0R0(z) ∈
B(H−1,s, H−1,−σ).

The stronger continuity claim (4.13) follows, since the norm of H1,−σ is equiv-
alent to the graph norm of H0 as a map of H−1,−σ to itself. �

Remark 4.7. The main point here is the fact that the limiting values can be
extended continuously to the threshold at λ = 0.

In the neighborhood of any λ > 0 this proposition follows from [79, Theorem
2.3], where a very different proof is used. In fact, using the terminology there,
the limit functions R±0 (λ)f are the unique (on either side of the positive real axis)
radiative functions and they satisfy a suitable Sommerfeld radiation condition. We
recall it here for the sake of completeness, since we will need it in the next section.

Let z = k2 ∈ C \ {0}, Im k ≥ 0. For f ∈ H−1,s let u = R0(z)f ∈ H1,−σ be as
defined above. Then

Ru =

∫
|x|>Λ0

∣∣∣∣r−n−1
2

∂

∂r
(r

n−1
2 u)− iku

∣∣∣∣2 dx <∞, (4.15)

where r = |x|. We shall refer to Ru as the radiative norm of u.
Furthermore, we can take s, σ > 1

2 , as in Remark 4.5.

4.2. Proof of the LAP for the operator H

We start with some considerations regarding the behavior of the resolvent near
the spectrum.

Fix [α, β] ⊂ R and let

Ω =
{
z ∈ C+

∣∣ α < Re z < β, 0 < Im z < 1
}
. (4.16)

Let z = µ+ iε ∈ Ω and consider the equation

(H − z)u = f ∈ H−1,s, u ∈ H1,−σ (f ∈ H−1,s
0 if n = 2). (4.17)

(Observe that in the case n = 2 also u ∈ L2,σ
0 ).

With Λ0 as in (4.2), let χ(x) ∈ C∞(Rn) be such that

χ(x) =

{
0, |x| < Λ0 + 1,

1, |x| > Λ0 + 2.
(4.18)

Eq. (4.17) can be written as

(H0 − z) (χu) = χf − 2∇χ · ∇u− u∆χ. (4.19)
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Letting ψ(x) = 1−χ(x2 ) ∈ C∞0 (Rn) and using Proposition 4.6 and standard elliptic
estimates, we obtain from (4.19)

‖u‖1,−σ ≤ C
[
‖f‖−1,s + ‖ψu‖0,−s

]
, (4.20)

where s, σ satisfy (4.8), σ′ > σ and C > 0 depends only on Λ0, σ, s, n.
We note that, since ψ is compactly supported, the term ‖ψu‖0,−s can be

replaced by ‖ψu‖0,−s′ for any real s′.

In fact, the second term in the right-hand side can be dispensed with, as is
demonstrated in the following proposition.

Proposition 4.8. The solution to (4.17) satisfies,

‖u‖1,−σ ≤ C ‖f‖−1,s , (4.21)

where s, σ satisfy (4.8) and C > 0 depends only on σ, s, n, Λ0.

Proof. In view of (4.20) we only need to show that

‖ψu‖0,−s ≤ C ‖f‖−1,s . (4.22)

Since L2,s(Rn) is dense in H−1,s(Rn), it suffices to prove this inequality for f ∈
L2,s(Rn) ∩H−1,s(Rn) (using the norm of H−1,s).

We argue by contradiction. Let{
zk
}∞
k=1
⊆ Ω,

{
fk
}∞
k=1
⊆ L2,s(Rn) ∩H−1,s(Rn)

(with f̂k(0) = 0 if n = 2) and{
uk = R(zk)fk

}∞
k=1
⊆ H1,−σ(Rn)

be such that

‖ψuk‖0,−s = 1, ‖fk‖−1,s ≤ k
−1, k = 1, 2, . . . ,

zk → z0 ∈ Ω as k →∞.
(4.23)

By (4.20),
{
uk
}∞
k=1

is bounded in H1,−σ. Replacing the sequence by a suitable sub-

sequence (without changing notation) and using the Rellich compactness theorem

we may assume that there exists a function u ∈ L2,−σ′ , σ′ > σ, such that

uk → u in L2,−σ′ as k →∞. (4.24)

Furthermore, by weak compactness we actually have (restricting again to a subse-
quence if needed)

uk
w−→ u in H1,−σ as k →∞. (4.25)

Since H maps continuously H1,−σ into H−1,−σ, we have

Huk
w−→ Hu in H−1,−σ as k →∞,

so that from (H − zk)uk = fk we infer that

(H − z0)u = 0. (4.26)
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In view of (4.19) and Remark 4.7 the functions χuk are radiative functions.
Since they are uniformly bounded in H1,−σ, their radiative norms (4.15) are uni-
formly bounded.

Suppose first that z0 6= 0. In view of Remark 4.7 we can take s, σ > 1
2 . Then

the limit function u is a radiative solution to (H0 − z0)u = 0 in |x| > Λ0 + 2
and hence must vanish there (see [79]). By the unique continuation property of
solutions to (4.26) we conclude that u ≡ 0. Thus by (4.24) we get ‖ψuk‖0,−σ′ → 0

as k →∞, which contradicts (4.23).
We are therefore left with the case z0 = 0. In this case u ∈ H1,−σ satisfies

the equation

∇ · (a(x)∇u) = 0. (4.27)

In particular, ∆u = 0 in |x| > Λ0 and

∞∫
Λ0

∫
|x|=r

r−2σ

(
|u|2 + |∂u

∂r
|2
)
dτdr <∞. (4.28)

Consider first the case n ≥ 3. We may then use the representation of u by spherical
harmonics so that, with x = rω, ω ∈ Sn−1,

u(x) = r−
n−1
2


∞∑
j=0

bjr
µjhj(ω) +

∞∑
j=0

cjr
−νjhj(ω)

 , r > Λ0, (4.29)

where

µj(µj − 1) = νj(νj + 1) = λj +
(n− 1)(n− 3)

4
, (4.30)

0 = λ0 < λ1 ≤ λ2 ≤ . . .

being the eigenvalues of the Laplace-Beltrami operator on Sn−1, and hj(ω) the
corresponding spherical harmonics. Since λ1 = n− 1, it follows that

µ0 =
n− 1

2
, µ0 + 1 ≤ µ1 ≤ µ2 ≤ . . . ,

n− 3

2
= ν0 < ν1 ≤ ν2 ≤ . . . (4.31)

We now observe that (4.28) forces

b0 = b1 = . . . = 0.

Also, by (4.29) ∫
|x|=r

∂u

∂r
dτ = − (n− 2)

∣∣Sn−1
∣∣ c0, r > Λ0, (4.32)

(
∣∣Sn−1

∣∣ is the surface measure of Sn−1), while integrating (4.27) we get∫
|x|=r

∂u

∂r
dτ = 0, r > Λ0. (4.33)
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Thus c0 = 0. It now follows from (4.29) that, for r > Λ0,∫
|x|=r

(
|u|2 +

∣∣∣∣∂u∂r
∣∣∣∣2
)
dτ ≤

(
r

Λ0

)−2ν1 ∫
|x|=Λ0

(
|u|2 +

∣∣∣∣∂u∂r
∣∣∣∣2
)
dτ. (4.34)

Multiplying (4.27) by u and integrating by parts over the ball |x| ≤ r, we in-
fer from (4.34) that the boundary term vanishes as r → ∞. Thus ∇u ≡ 0, in
contradiction to (4.23)–(4.24).

It remains to deal with the case n = 2. Instead of (4.29) we now have

u(x) = r−
1
2

b̃0r 1
2 log r +

∞∑
j=0

bjr
µjhj(ω) +

∞∑
j=1

cjr
−νjhj(ω)

 , r > Λ0, (4.35)

where µ0 = 1
2 , µ1 = 3

2 , ν1 = 1
2 . As in the derivation above, the condition (4.28)

yields b0 = b1 = . . . = 0. Also, we get b̃0 = 0 in view of (4.33). It now follows that∫
|x|=r

u
∂u

∂r
dτ = −2π

∞∑
j=1

(
νj +

1

2

)
|cj |2 r−2νj−1, r ≥ Λ0, (4.36)

from which, as in the argument following (4.34), we deduce that u ≡ 0, again in
contradiction to (4.23)–(4.24). �

Proof of Theorem 4.1. Part (a) of the theorem is actually covered by Proposi-
tion 4.8. Moreover, the proposition implies that the operator-valued function

z → R(z) ∈ B(H−1,s(Rn), H1,−σ(Rn)), s > 1, z ∈ Ω,

is uniformly bounded, where s, σ satisfy (4.8). Here and below replace H−1,s by

H−1,s
0 if n = 2.

We next show that the function z → R(z) can be continuously extended
to Ω in the weak toplogoy of B(H−1,s(Rn), H1,−σ(Rn)). To this end, we take
f ∈ H−1,s(Rn) and g ∈ H−1,σ(Rn) and consider the function

z →< g,R(z)f >, z ∈ Ω,

where< , > is the (H−1,σ, H1,−σ) pairing. We need to show that it can be extended
continuously to Ω.

In view of the uniform boundedness established in Proposition 4.8, we can
take f , g in dense sets (of the respective spaces). In particular, we can take f ∈
L2,s(Rn) and g ∈ L2,σ(Rn), so that the continuity property in Ω is obvious.

Consider therefore a sequence {zk}∞k=1 ⊆ Ω such that zk −−−−→
k→∞

z0 ∈ [α, β].

The sequence {uk = R(zk)f}∞k=1 is bounded in H1,−σ(Rn). Therefore there exists

a subsequence
{
ukj
}∞
j=1

which converges to a function u ∈ L2,−σ′ , σ′ > σ.

We can further assume that ukj
w−−−→

j→∞
u in H1,−σ. It follows that

< g, ukj >−−−→
j→∞

< g, u > .
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Passing to the limit in
(
H − zkj

)
ukj = f we see that the limit function satisfies

(H − z0)u = f.

We now repeat the argument employed in the proof of Proposition 4.8. If
z0 6= 0 we note that the functions {χuk}∞k=1 are radiative functions with uniformly
bounded radiative norms (4.15) in |x| > Λ0 + 2. The same is therefore true for the
limit function u.

If z0 = 0, then the function u ∈ H1,−σ solves Hu = f .
In both cases this function is unique and we get the convergence

< g,R(zk)f >=< g, uk >−−−−→
k→∞

< g, u > .

We can now define
R+(z0)f = u, (4.37)

with an analogous definition for R−(z0).
At this point we can readily deduce the following extension of the resolvent

R(z) as the inverse of H − z.
(H − z)R(z)f = f, f ∈ H−1,s, z ∈ C±, (4.38)

where R(z) = R±(λ) when z = λ ∈ R.
Indeed, observe that if Im z 6= 0 then (H − z)R(z)f = f for f ∈ L2,s(Rn)

and (H − z)R(z) ∈ B(H−1,s, H−1,−σ), so the assertion follows from the density
of L2,s(Rn) in H−1,s(Rn). For z = λ ∈ R we use the (just established) weak

continuity of the map z ↪→ (H − z)R(z) from H−1,s into H−1,−σ in C±.
The passage from weak to uniform continuity (in the operator topology) is a

classical argument due to Agmon [1]. In [9] we have applied it in the case n = 1.
Here we outline the proof in the case n > 1.

We establish first the continuity of the operator-valued function z → R(z),
Ω, in the uniform operator topologoy of B(H−1,s(Rn), L2,−σ(Rn)).

Let
{
zk
}∞
k=1
⊆ Ω and

{
fk
}∞
k=1
⊆ H−1,s(Rn) be sequences such that zk −−−−→

k→∞
z ∈ Ω and fk converges weakly to f in H−1,s(Rn). It suffices to prove that the
sequence uk = R(zk)fk, which is bounded in H1,−σ(Rn), converges strongly in
L2,−σ(Rn). Since this is clear if Im z 6= 0, we can take z ∈ [α, β].

Note first that we can take 1
2 < σ′ < σ so that s, σ′ satisfy (4.8). Then

the sequence {uk}∞k=1 is bounded in H1,−σ′(Rn) and there exists a subsequence{
ukj
}∞
j=1

which converges to a function u ∈ L2,−σ.

We can further assume that ukj
w−−−→

j→∞
u in H1,−σ.

It follows that the limit function satisfies (see Eq. (4.38))

(H − z)u = f.

Once again we consider separately the cases z 6= 0 and z = 0.
In the first case, in view of (4.38) and Remark 4.7, the functions χuk are

radiative functions. Since they are uniformly bounded in H1,−σ their radiative
norms (4.15) are uniformly bounded, and we conclude that also Ru <∞.
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In the second case, we simply note that u ∈ H1,−σ solves Hu = f .

As in the proof of Proposition 4.8 we conclude that in both cases the limit is
unique, so that the whole sequence {uk}∞k=1 converges to u in L2,−σ(Rn).

Thus, the continuity in the uniform operator topologoy of B(H−1,s(Rn),
L2,−σ(Rn)) is proved.

Finally, we claim that the operator-valued function z → R(z) is continuous in
the uniform operator topology of B(H−1,s(Rn), H1,−σ(Rn)). Indeed, if we invoke
Eq. (4.38), we get that also z → HR(z) is continuous in the uniform operator
topology of B(H−1,s(Rn), H−1,−σ(Rn)).

Since the domain of H in H−1,−σ(Rn) is H1,−σ(Rn), the claim follows. The
conclusion of the theorem follows by taking σ = s. �

Remark 4.9. In view of (4.19) and Remark 4.7 it follows that for λ > 0 the
functions R±(λ)f , f ∈ H−1,s, are radiative, i.e., satisfy a Sommerfeld radiation
condition.

The fact that the limiting values of the resolvent are continuous across the
threshold at λ = 0 has been established in the case H = H0 [14, Appendix A], and
in the one-dimensional case (n = 1) in [9, 12, 30]. The paper [74] deals with the
two-dimensional (n = 2) case, but the resolvent R(z) is restricted to continuous
compactly supported functions f , thus enabling the use of pointwise decay esti-
mates of R(z)f at infinity. In the case of the closely related acoustic propagator ,
where the matrix a(x) = b(x1)I is scalar and dependent on a single coordinate,
there are in general countably many thresholds embedded in the continuous spec-
trum. Any study of the LAP must therefore deal with this difficulty. We mention
here the papers [12, 24, 23, 39, 32, 34, 57, 58, 63, 85], as well as the anisotropic
case where b(x1) is a general positive matrix [13].

We mention next some related studies concerning the LAP where, however,
the threshold has been avoided. Our discussion is restricted, however, to opera-
tors that can be characterized as ”perturbations of the Laplacian” . The extensive
literature concerning the N−body operators is omitted , apart from the mono-
graphs [4, 36] that have already been mentioned in the Introduction in connection
with Mourre’s approach to the LAP.

The pioneering works of Eidus and Agmon have already been mentioned in
the Introduction. Under assumptions close to ours here (but also assuming that
a(x) is continuously differentiable) a weaker version (roughly, strong instead of
uniform convergence of the resolvents) was obtained by Eidus [40, Theorem 4 and
Remark 1]. For H = H0 the LAP has been established by Agmon [1]. Indeed,
it was established for operators of the type H0 + V , where V is a short-range
perturbation. The short-range potential V was later replaced by a long-range or
Stark-like potential [53, 6], a potential in Lp(Rn) [44, 55], a potential depending
only on direction x/|x| [46] and a perturbation of such a potential [71, 72]. In these
latter cases the condition α > 0 is replaced by α > lim sup

|x|→∞
V (x).
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We refer to [20] for the LAP for operators of the type f(−∆)+V for a certain
class of functions f .

We refer to [76] and references therein for the case of perturbations of the
Laplace-Beltrami operator ∆g on noncompact manifolds. The LAP (still in (0,∞))
holds under the assumption that g is a smooth metric on Rn that vanishes at
infinity. We make use of this result in the proof of Theorem 6.1 (see Section 6).

The LAP for the periodic case (namely, a(x) is symmetric and periodic) has
recently been established in [69]. Note that in this case the spectrum is absolutely
continuous and consists of a union of intervals (bands).

4.3. An application: Existence and completeness of the wave operators W±(H,H0)

A nice consequence of Theorem 4.1 is the existence and completeness of the wave
operators. We recall first the definition [59, Chapter X].

Consider the family of unitary operators

W (t) = exp(itH) exp(−itH0), −∞ < t <∞.
The strong limits W±(H,H0) = s- lim

t→±∞
W (t), if they exist, are called the wave

operators (relating H,H0). They are clearly isometries. If their ranges are equal,
we say that they are complete.

Using a well-known theorem of Kato and Kuroda [61], we have the following
corollary.

Corollary 4.10. The wave operators W±(H,H0) exist and are complete.

Indeed, all that is needed is that H,H0 satisfy the LAP in R, with respect
to the same operator topologies.

We refer to [54], where the existence and completeness of the wave operators
W±(H,H0) is established under suitable smoothness assumptions on a(x). (How-
ever, a(x)− I is not assumed to be compactly supported and H can include also
magnetic and electric potentials.)

5. An eigenfunction expansion theorem

In the Introduction we mentioned the connection (as well as the gap) between the
spectral theorem (for self-adjoint operators) in its functional-analytic formulation
and the generalized eigenfunction theorem, a fundamental tool in the study of
partial differential operators (and scattering theory). It was mentioned there that
these theorems should be connected through the Limiting Absorption Principle.
This is indeed the purpose of this section.

We derive an eigenfunction expansion theorem for a divergence-type operator
H, the operator considered in Section 4.

Let {E(λ), λ ∈ R} be the spectral family associated with H and A(λ) =
d
dλE(λ) be its weak derivative. We use the formula (3.7),

A(λ) =
1

2πi
lim
ε↓0

(R(λ+ iε)−R(λ− iε)) =
1

2πi

(
R+(λ)−R−(λ)

)
.
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By Theorem 4.1 we know that A(λ) ∈ B(L2,s(Rn), L2,−s(Rn)), for values of s as
given in the theorem.

The formal relation (H − λ)A(λ) = 0 can be given a rigorous meaning if,
for example, we can find a bounded operator T such that T ∗A(λ)T is bounded
in L2(Rn) and has a complete set (necessarily at most countable) of eigenvectors.
These will serve as generalized eigenvectors for H. We refer to [22, Chapters V, VI]
and [25] for a development of this approach for self-adjoint elliptic operators. Note
that by this approach we have at most a countable number of such generalized
eigenvectors for any fixed λ. In the case of H0 = −∆ they correspond to

|x|−
n−3
2 J√κj

(√
λ |x|

)
ψj(ω),

where κj = λj + (n−1)(n−3)
4 , λj being the jth eigenvalue of the Laplace-Beltrami

operator on the unit sphere Sn−1, ψj the corresponding eigenfunction and Jν is
the Bessel function of order ν.

On the other hand, the inverse Fourier transform

g(x) = (2π)−
n
2

∫
Rn

ĝ(ξ)eiξx dξ, (5.1)

can be viewed as expressing a function in terms of the generalized eigenfunctions
exp (iξx) of H0. Observe that now there is a continuum of such functions corre-
sponding to λ > 0, namely, |ξ|2 = λ.

From the physical point-of-view this expansion in terms of plane waves proves
to be more useful for many applications. In particular, replacing −∆ by the
Schrödinger operator −∆ +V (x) one can expect, under certain hypotheses on the
potential V , a similar expansion in terms of distorted plane waves. This has been
accomplished, in increasing order of generality (more specifically, decay assump-
tions on V (x) as |x| → ∞) in [73, 52, 1, 79, 2]. See also [87] for an eigenfunction
expansion for relativistic Schrödinger operators.

Here we use the LAP result of Theorem 4.1 in order to derive a similar
expansion for the operator H. In fact, our generalized eigenfunctions are given by
the following definition.

Definition 5.1. For every ξ ∈ Rn, let

ψ±(x, ξ) = −R∓
(
|ξ|2)((H − |ξ|2) exp(iξx)

)
= R∓(|ξ|2)

 n∑
l,j=1

∂l(al,j(x)− δl,j)∂j

 exp(iξx).
(5.2)

The generalized eigenfunctions of H are defined by

ϕ±(x, ξ) = exp(iξx) + ψ±(x, ξ). (5.3)

We assume n ≥ 3 in order to simplify the statement of the theorem. As
we show below (see Proposition 5.3) the generalized eigenfunctions are (at least)
continuous in x, so that the integral in the statement makes sense.
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Theorem 5.2. Suppose that n ≥ 3 and that a(x) satisfies (4.1), (4.2). For any
compactly supported f ∈ L2(Rn) define

(F±f)(ξ) = (2π)−
n
2

∫
Rn

f(x)ϕ±(x, ξ) dx, ξ ∈ Rn. (5.4)

Then the transformations F± can be extended as unitary transformations (for
which we retain the same notation) of L2(Rn) onto itself. Furthermore, these trans-
formations diagonalize H in the following sense:

f ∈ L2(Rn) is in the domain D(H) if and only if |ξ|2(F±f)(ξ) ∈ L2(Rn) and

H = F∗±M|ξ|2F±, (5.5)

where M|ξ|2 is the multiplication operator by |ξ|2.

Before starting the proof of the theorem, we collect some basic properties of
the generalized eigenfunctions in the following proposition.

Proposition 5.3. The generalized eigenfunctions

ϕ±(x, ξ) = exp(iξx) + ψ±(x, ξ)

(see (5.3)) are in H1
loc(Rn) for each fixed ξ ∈ Rn and satisfy the equation(

H − |ξ|2
)
ϕ±(x, ξ) = 0. (5.6)

In addition, these functions have the following properties:
(i) The map

Rn 3 ξ → ψ±(·, ξ) ∈ H1,−s(Rn), s > 1,

is continuous.
(ii) For any compact K ⊆ Rn, the family of functions

{
ϕ±(x, ξ)

∣∣ ξ ∈ K} is
uniformly bounded and uniformly Hölder continuous in x ∈ Rn.

Proof. Since (H − |ξ|2) exp(iξx) ∈ H−1,s, s > 1, Eq. (5.6) follows from the defini-
tion (5.2) in view of Eq. (4.38).

Furthermore, the map

Rn 3 ξ →
(
H − |ξ|2

)
exp(iξx) ∈ H−1,s(Rn), s > 1,

is continuous, so the continuity assertion (i) follows from Theorem 4.1.
For s > 1, the set of functions

{
ψ±(·, ξ)

∣∣ ξ ∈ K} is uniformly bounded in

H1,−s. Thus, in view of (5.6), it follows from the De Giorgi-Nash-Moser Theo-
rem [42, Chapter 8] that the set

{
ϕ±(x, ξ)

∣∣ ξ ∈ K
}

is uniformly bounded and
uniformly Hölder continuous in {|x| < R} for every R > 0. In particular, we can
take R > Λ0 (see Eq. (4.2)). In the exterior domain {|x| > R} the set

{
ψ±(x, ξ)

∣∣
ξ ∈ K

}
is bounded in H1,−s, s > 1, and we have

(
H0 − |ξ|2

)
ψ±(x, ξ) = 0.

In addition, the boundary values
{
ψ±(x, ξ)

∣∣ |x| = R, ξ ∈ K
}

are uniformly
bounded. From well-known properties of solutions of the Helmholtz equation we
conclude that this set is uniformly bounded and therefore, invoking once again the
De Giorgi-Nash-Moser Theorem, uniformly Hölder continuous. �



Divergence-type operators: Spectral theory and spacetime estimates 25

Proof of Theorem 5.2. We use the LAP proved in Theorem 4.1, adapting the
methodology of Agmon’s proof [1] for the eigenfunction expansion in the case of
Schrödinger operators with short-range potentials. To simplify notation, we prove
for F+.

Let u ∈ H1 be compactly supported. For any z such that Im z 6= 0 we can
write its Fourier transform as

û(ξ) = (2π)−
n
2

∫
Rn

u(x) exp(−iξx) dx =
(2π)−

n
2

|ξ|2 − z

∫
Rn

u(x) (H0 − z) exp(−iξx) dx.

Let θ ∈ C∞0 (Rn) be a (real) cutoff function such that θ(x) = 1 for x in a neigh-
borhood of the support of u.

We can rewrite the above equality as

û(ξ) =
(2π)−

n
2

|ξ|2 − z
< (H0 − z)u(x), θ(x) exp(iξx) >,

where < , > is the (H−1,s, H1,−s)-sesquilinear pairing (conjugate linear with re-
spect to the second term).

We have therefore, with f = (H − z)u,

û(ξ) (5.7)

=
(2π)−

n
2

|ξ|2 − z

(
< (H − z)u(x), θ(x) exp(iξx) > +< (H0 −H) exp(iξx), u(x) >

)
=

(2π)−
n
2

|ξ|2 − z
(< f(x), θ(x) exp(iξx) > + < f(x), R(z̄) (H0 −H) exp(iξx) >) .

Introducing the function

f̃(ξ, z) = f̂(ξ) + (2π)−
n
2 < f(x), R(z̄) (H0 −H) exp(iξx) >,

we have

û(ξ) = R̂(z)f(ξ) =
f̃(ξ, z)

|ξ|2 − z
, Im z 6= 0. (5.8)

We now claim that this equation is valid for all compactly supported f ∈ H−1.
Indeed, let u = R(z)f ∈ H1,−s, s > 1. Let ψ(x) = 1 − χ(x), where χ(x) is

defined in (4.18). We set

uk(x) = ψ(k−1x)u(x), fk(x) = (H − z)
(
ψ(k−1x)u(x)

)
, k = 1, 2, 3, . . .

The equality (5.8) is satisfied with u, f replaced, respectively, by uk, fk. Since

ψ(k−1x)u(x) −−−−→
k→∞

u(x)

in H1,−s, we have

(H − z) (ψ(k−1x)u(x)) −−−−→
k→∞

(H − z)u = f(x)

in H−1,−s, where in the last step we have used Eq. (4.38).
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In addition, since (H0 −H) exp(iξx) is compactly supported

< fk(x), R(z̄) (H0 −H) exp(iξx) >= < (H0 −H) exp(iξx), R(z)fk(x) >

−−−−→
k→∞

< (H0 −H) exp(iξx), R(z)f > =< f,R(z̄) (H0 −H) exp(iξx) > .

Combining these considerations with the continuity of the Fourier transform (on
tempered distributions) we establish that (5.8) is valid for all compactly supported
f ∈ H−1.

Let {E(λ), λ ∈ R} be the spectral family associated with H. Let A(λ) =
d
dλE(λ) be its weak derivative. More precisely, we use the relation (3.7), to get

(using Theorem 4.1), for any f ∈ H−1,s, s > 1,

< f,A(λ)f >=
1

2πi
< f,

(
R+(λ)−R−(λ)

)
f > .

We now take f ∈ L2 and compactly supported. From the resolvent equation we
infer

R(λ+ iε)−R(λ− iε) = 2iεR(λ+ iε)R(λ− iε), ε > 0,

so that

< f,A(λ)f >= lim
ε↓0

ε

π
‖R(λ+ iε)f‖20 , ε > 0.

Using Eq. (5.8) and Parseval’s theorem, we therefore have

< f,A(λ)f >= lim
ε→0+

ε

π

∥∥∥(|ξ|2 − (λ+ iε)
)−1

f̃(ξ, λ+ iε)
∥∥∥2

0
, ε > 0. (5.9)

Note that f̃(ξ, z) can be extended continuously as z → λ+ i · 0 by

f̃(ξ, λ) = f̂(ξ) + (2π)−
n
2 < f(x), R−(λ) (H0 −H) exp(iξx) > . (5.10)

In order to study properties of f̃(ξ, z) as a function of ξ we compute

f̃(ξ, z) = f̂(ξ) + (2π)−
n
2<

 n∑
l,j=1

∂l(al,j(x)− δl,j)∂j

 exp(iξx), R(z)f(x) >

= f̂(ξ) + (2π)−
n
2 i

n∑
l,j=1

ξj

∫
Rn

(al,j(x)− δl,j) ∂l(R(z)f(x)) exp(−iξx) dx,

(5.11)
where in the last step we have used that both ∂l(R(z)f(x)) and (al,j(x) − δl,j)
exp(−iξx) are in L2.

Consider now the integral

g(ξ, z) =

∫
Rn

(al,j(x)− δl,j) ∂l(R(z)f(x)) exp(−iξx) dx, z ∈ Ω,

where Ω is as in (4.16).
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In view of Theorem 4.1, the family {∂lR(z)f(x)}z∈Ω is uniformly bounded

in L2,−s, s > 1, so by Parseval’s theorem we get

‖g(·, z)‖0 < C, z ∈ Ω,

where C only depends on f .

This estimate and (5.11) imply that, if f ∈ L2 is compactly supported,

(i) The function

Rn × Ω 3 (ξ, z)→ f̃(ξ, z)

is continuous. For real z it is given by (5.10).

(ii)

lim
k→∞

∫
|ξ|>k

(
|ξ|2 − z

)−1 |f̃(ξ, z)|2 dξ = 0,

uniformly in z ∈ Ω.

As z → |ξ|2 + i · 0, we have by Theorem 4.1 and Eq. (5.3),

lim
z→|ξ|2+i·0

f̃(ξ, z) = (2π)−
n
2

∫
Rn

f(x)ϕ+(x, ξ) dx = F+f(ξ),

so that, taking (i) and (ii) into account, we obtain from (5.9), for any compactly
supported f ∈ L2,

< f,A(λ)f >=
1

2
√
λ

∫
|ξ|2=λ

|F+f(ξ)|2 dσ, λ > 0, (5.12)

where dσ is the surface Lebesgue measure.

It follows that, for any [α, β] ⊂ (0,∞),

((E(β)− E(α))f, f) =

∫ β

α

< f,A(λ)f > dλ =

∫
α≤|ξ|2≤β

|F+f(ξ)|2 dξ. (5.13)

Letting α→ 0, β →∞, we get

‖f‖0 = ‖F+f‖0 . (5.14)

Thus f → F+f ∈ L2(Rn) is an isometry for compactly supported functions, which
can be extended by density to all f ∈ L2(Rn).

Furthermore, since the spectrum of H is entirely absolutely continuous, it
follows that for every f ∈ L2, Eq. (5.12) holds for almost all λ > 0 (with respect
to the Lebesgue measure).

Let f ∈ D(H). By the spectral theorem

< Hf,A(λ)Hf >= λ2 < f,A(λ)f >=
1

2
√
λ

∫
|ξ|2=λ

∣∣|ξ|2 F+f(ξ)
∣∣2 dσ, λ > 0.
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In particular,

‖Hf‖20 =

∫
Rn

∣∣|ξ|2 F+f(ξ)
∣∣2 dξ. (5.15)

Conversely, if the right-hand side of (5.15) is finite, then
∫∞

0
λ2 < f,A(λ)f > dλ <

∞, so f ∈ D(H).
The adjoint operator F∗+ is a partial isometry (on the range of F+). If f(x) ∈

L2(Rn) is compactly supported and g(ξ) ∈ L2(Rn) is likewise compactly sup-
ported, then

(F+f, g) = (2π)−
n
2

∫
Rn

 ∫
Rn

f(x)ϕ+(x, ξ) dx

 g(ξ) dξ

= (2π)−
n
2

∫
Rn

f(x)

 ∫
Rn

g(ξ)ϕ+(x, ξ) dξ

 dx,

where in the change of order of integration Proposition 5.3 was taken into account.
It follows that, for a compactly supported g(ξ) ∈ L2(Rn),

(F∗+g)(x) = (2π)−
n
2

∫
Rn

g(ξ)ϕ+(x, ξ) dξ, (5.16)

and the extension to all g ∈ L2(Rn) is obtained by the fact that F∗+ is a partial
isometry.

Now if f ∈ D(H), g ∈ L2(Rn), we have

(Hf, g) =

∫
Rn

|ξ|2 F+f(ξ)F+g(ξ) dξ =

∫
Rn

F∗+
(
|ξ|2 F+f(ξ)

)
g(ξ) dξ,

which is the statement (5.5) of the theorem.
It follows from the spectral theorem that, for every interval J = [α, β] ⊆

[0,∞) and for every f ∈ L2(Rn), we have, with EJ = E(β) − E(α) and χJ the
characteristic function of J ,

EJf(x) = F∗+
(
χJ(|ξ|2)F+f(ξ)

)
or

F+EJf(ξ) = χJ(|ξ|2)F+f(ξ).

It remains to prove that the isometry F+ is onto (and hence unitary). So, suppose
to the contrary that, for some nonzero g(ξ) ∈ L2(Rn),

(F∗+g)(x) = 0.

In particular, for any f ∈ L2(Rn) and any interval J as above,

0 =
(
EJf,F∗+g

)
= (F+EJf, g) =

(
χJ(|ξ|2)F+f(ξ), g(ξ)

)
=
(
F+f(ξ), χJ(|ξ|2)g(ξ)

)
,

so that F∗+
(
χJ(|ξ|2) g(ξ)

)
= 0.



Divergence-type operators: Spectral theory and spacetime estimates 29

By Eq. (5.16) we have, for any 0 ≤ α < β,∫
α<|ξ|2<β

g(ξ)ϕ+(x, ξ) dξ = 0

so that, in view of the continuity properties of ϕ+(x, ξ) (see Proposition 5.3), for
a.e. λ ∈ (0,∞), ∫

|ξ|2=λ

g(ξ)ϕ+(x, ξ) dσ = 0. (5.17)

From the definition (5.3) we get∫
|ξ|2=λ

g(ξ) exp(iξx) dσ −
∫

|ξ|2=λ

g(ξ)R−(λ) ((H − λ) exp(iξx)) dσ = 0. (5.18)

Since (H − λ) exp(iξx) is compactly supported (when |ξ|2 = λ), the continuity
property of R−(λ) enables us to write∫
|ξ|2=λ

g(ξ)R−(λ) ((H − λ) exp(iξx)) dσ = R−(λ)

∫
|ξ|2=λ

g(ξ) (H − λ) exp(iξx) dσ,

which, by Remark 4.9, satisfies a Sommerfeld radiation condition. We conclude
that the function

G(x) =

∫
|ξ|2=λ

g(ξ) exp(iξx) dσ ∈ H1,−s, s >
1

2
,

is a radiative solution (see Remark 4.7) of (−∆− λ)G = 0 and hence must vanish.
Since this holds for a.e. λ > 0, we get ĝ(ξ) = 0, hence g = 0. �

6. Global spacetime estimates for a generalized wave equation

The Strichartz estimates [83] have become a fundamental ingredient in the study
of nonlinear wave equations. They are Lp spacetime estimates that are derived for
operators whose leading part has constant coefficients. We refer to the books [81,
82] and [5] for detailed accounts and further references.

Here we focus on spacetime estimates pertinent to the framework of this
review, namely, weighted L2 estimates.

We recall first some results related to the Cauchy problem for the classical
wave equation,

�u =
∂2u

∂t2
−∆u = 0, (6.1)

subject to the initial data

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ Rn. (6.2)
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The Morawetz estimate [66] yields∫
R

∫
Rn

|x|−3|u(x, t)|2 dxdt ≤ C
(
‖∇u0‖20 + ‖v0‖20

)
, n ≥ 4,

while in [8] we gave the estimate∫
R

∫
Rn

|x|−2α−1 |u(x, t)|2 dxdt ≤ Cα
(
‖|∇|αu0‖20 +

∥∥|∇|α−1v0

∥∥2

0

)
, n ≥ 3,

for every α ∈ (0, 1).

Related results were obtained in [65] (allowing also dissipative terms), [50]
(with some gain in regularity), [88] (with short-range potentials) and [47] for spher-
ically symmetric solutions.

Here we consider the equation

∂2u

∂t2
+Hu =

∂2u

∂t2
−

n∑
i,j=1

∂iai,j(x)∂ju = f(x, t), (6.3)

subject to the initial data (6.2).

We first replace the assumptions (4.1), (4.2) by stronger ones as follows:

(H1) a(x) = g−1(x) =
(
gi,j(x)

)
1≤i,j≤n , (6.4)

where g(x) = (gi,j(x))1≤i,j≤n is a smooth Riemannian metric on Rn such that

g(x) = I, |x| > Λ0.

(H2) The Hamiltonian flow associated with h(x, ξ) = (g(x)ξ, ξ)

is nontrapping for any (positive) value of h. (6.5)

Recall that (H2) means that the flow associated with the Hamiltonian vectorfield
H = ∂h

∂ξ
∂
∂x −

∂h
∂x

∂
∂ξ leaves any compact set in Rnx .

Identical hypotheses are imposed in the study of resolvent estimates in semi-
classical theory [26, 27].

In our estimates we use homogeneous Sobolev spaces associated with the
operator H.

We let G = H
1
2 which is a positive self-adjoint operator. Note that ‖Gθ‖0 is

equivalent to the homogeneous Sobolev norm ‖∇θ‖0.

Theorem 6.1. Suppose that n ≥ 3 and that a(x) satisfies Hypotheses (H1)–(H2).
Let s > 1.
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(a) (local energy decay) There exists a constant C1 = C1(s, n) > 0 such that
the solution to (6.3), (6.2) satisfies∫

R

∫
Rn

(
1 + |x|2

)−s [|Gu(x, t)|2 + |ut(x, t)|2
]
dxdt

≤ C1

‖Gu0‖20 + ‖v0‖20 +

∫
R

∫
Rn

|f(x, t)|2 dxdt

 . (6.6)

(b) (amplitude decay) Assume that f = 0. There exists a constant C2 =
C2(s, n) > 0 such that the solution to (6.3), (6.2) satisfies,∫

R

∫
Rn

(
1 + |x|2

)−s |u(x, t)|2 dxdt ≤ C2

[
‖u0‖20 + ‖G−1v0‖20

]
. (6.7)

This estimate generalizes similar estimates obtained for the classical (g = I)
wave equation [8, 65].

Remark 6.2. The estimate (6.6) is an energy decay estimate for the wave equa-
tion (6.3). A localized (in space) version of the estimate has served to obtain
global (small amplitude) existence theorems for the corresponding nonlinear equa-
tion [27, 48].

The weighted L2 spacetime estimates for the dispersive equation

i−1 ∂

∂t
u = Lu,

have been extensively treated in recent years. In general, in this case there is
also a gain of derivatives (so called smoothing) in addition to the energy decay.
For the Schrödinger operator L = −∆ + V (x), with various assumptions on the
potential V , we refer to [3, 7, 8, 17, 19, 50, 62, 78, 80, 89] and references therein.
In [33] the case of magnetic potentials is considered. The Schrödinger operator on
a Riemannian manifold is treated in [26, 38]. For more general operators see [16,
20, 28, 51, 67, 77, 84] and references therein.

Proof of Theorem 6.1. (a) Define, with G = H
1
2 ,

u± =
1

2
(Gu± iut) .

Then

∂tu± = ∓iGu± ±
i

2
f. (6.8)

Defining

U(t) =

(
u+(t)
u−(t)

)
, (6.9)

we have

i−1U ′(t) = −KU + F, (6.10)
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where

K =

(
G 0
0 −G

)
, F (t) =

(
1
2f(·, t)
− 1

2f(·, t)

)
.

Note that, as is common when treating evolution equations, we write U(t), F (t),
etc. for U(x, t), F (x, t), etc. when there is no risk of confusion.

The operator K is a self-adjoint operator on D = L2(Rn) ⊕ L2(Rn). Its
spectral family EK(λ) is given by EK(λ) = EG(λ)⊕ (I − EG(−λ)), λ ∈ R, where
EG is the spectral family of G.

Let E(λ) be the spectral family of H, and let A(λ) = d
dλE(λ) be its weak

derivative (3.7). By the definition of G we have

EG(λ) = E(λ2),

hence its weak derivative is given by

AG(λ) =
d

dλ
EG(λ) = 2λA(λ2), λ > 0. (6.11)

In view of the LAP (Theorem A) we therefore have that the operator-valued
function

AG(λ) ∈ B(L2,s(Rn), L2,−s(Rn))

is continuous for λ ≥ 0.
Denoting Ds = L2,s(Rn)⊕ L2,s(Rn), it follows that

AK(λ) =
d

dλ
EK(λ) = AG(λ)⊕AG(−λ), λ ∈ R,

is continuous with values in B(Ds,D−s) for s > 1.
Making use of Hypotheses (H1)–(H2), we invoke [76, Theorem 5.1] to con-

clude that lim sup
µ→∞

µ
1
2 ‖A(µ)‖B(L2,s,L2,−s) < ∞, so that by (6.11) there exists a

constant C > 0 such that

‖AG(λ)‖B(L2,s,L2,−s) < C, λ ≥ 0. (6.12)

It follows that also

‖AK(λ)‖B(Ds,D−s) < C, λ ∈ R, s > 1, λ ∈ R. (6.13)

Let < , > be the sesquilinear pairing between D−s and Ds (conjugate linear
with respect to the second term).

For any ψ, χ ∈ Ds we have, in view of the fact that AK(λ) is a weak derivative
of a spectral measure,

(i) |< AK(λ)ψ, χ >|2 ≤< AK(λ)ψ,ψ > · < AK(λ)χ, χ >,

(ii)

∞∫
−∞

< AK(λ)ψ,ψ > dλ = ‖ψ‖2L2(Rn)⊕L2(Rn) .
(6.14)

We first treat the pure Cauchy problem, i.e., f ≡ 0.
To estimate U(x, t) = e−itKU(x, 0) we use a duality argument. Some of the

following computations will be rather formal, but they can easily be justified by
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a density argument, as in [8, 20]. We shall use (( , )) for the scalar product in
L2(Rn+1)⊕ L2(Rn+1).

Take w(x, t) ∈ C∞0 (Rn+1)⊕ C∞0 (Rn+1). Then,

((U,w)) =

∞∫
−∞

e−itKU(x, 0) · w(x, t) dxdt

=

∞∫
−∞

< AK(λ)U(x, 0),

∞∫
−∞

eitλw(·, t)dt > dλ

= (2π)1/2

∞∫
−∞

< AK(λ)U(x, 0), w̃(·, λ) > dλ,

where

w̃(x, λ) = (2π)−
1
2

∫
R

w(x, t)eitλdt.

Noting (6.14), (6.13) and using the Cauchy-Schwarz inequality

∣∣((U,w))
∣∣ ≤ (2π)1/2 ‖U(x, 0)‖0

 ∞∫
−∞

< AK(λ)w̃(·, λ), w̃(·, λ) > dλ

1/2

≤ C ‖U(x, 0)‖0

 ∞∫
−∞

‖w̃(·, λ)‖2Ds dλ

 1
2

.

It follows from the Plancherel theorem that

∣∣((U,w))
∣∣ ≤ C ‖U(x, 0)‖0

 ∫
R

‖w(·, t)‖2Ds dt

1/2

.

Let φ(x, t) ∈ C∞0 (Rn+1) ⊕ C∞0 (Rn+1) and take w(x, t) =
(
1 + |x|2

)− s
2 φ(x, t) so

that ∣∣(((1 + |x|2
)− s

2 U, φ)
)∣∣ ≤ C ‖U(x, 0)‖0 · ‖φ‖L2(Rn+1) .

This concludes the proof of the part involving the Cauchy data in (6.6), in view
of (6.9).

To prove the part concerning the inhomogeneous equation, it suffices to take
u0 = v0 = 0. In this case the Duhamel principle yields, for t > 0,

U(t) =

∫ t

0

e−i(t−τ)KF (τ)dτ,

where we have used the form (6.10) of the equation.
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Integrating the inequality

‖U(t)‖D−s ≤
∫ t

0

∥∥∥e−i(t−τ)KF (τ)
∥∥∥
D−s

dτ,

we get ∫ ∞
0

‖U(t)‖D−s dt ≤
∫ ∞

0

∫ ∞
τ

∥∥∥e−i(t−τ)KF (τ)
∥∥∥
D−s

dt dτ.

Invoking the first part of the proof we obtain∫ ∞
0

‖U(t)‖D−s dt ≤ C
∫ ∞

0

‖F (τ)‖0 dτ,

which proves the part related to the inhomogeneous term in (6.6).

(b) Define

v±(x, t) = exp(±itG)φ±(x),

where

φ±(x) =
1

2

[
u0(x)∓G−1v0(x)

]
.

Then clearly

u(x, t) = v+(x, t) + v−(x, t).

We establish the estimate (6.7) for v+.

Taking w(x, t) ∈ C∞0 (Rn+1) we proceed as in the first part of the proof. Let
< , > be the (L2,−s(Rn), L2,s(Rn)) pairing. Then

(v+, w) =

∞∫
−∞

eitGφ+(x)w(x, t) dxdt

=

∞∫
0

< AG(λ)φ+,

∞∫
−∞

e−itλw(·, t)dt > dλ

= (2π)1/2

∞∫
0

< AG(λ)φ+, w̃(·, λ) > dλ,

where

w̃(x, λ) = (2π)−
1
2

∫
R

w(x, t)e−itλ dt.

Noting (6.12) as well as the inequalities (6.14) (with AG replacing AK) and using
the Cauchy-Schwarz inequality
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|(v+, w)| ≤ (2π)1/2 ‖φ+‖0

 ∞∫
0

< AG(λ)w̃(·, λ), w̃(·, λ) > dλ

1/2

≤ C ‖φ+‖0

 ∞∫
0

‖w̃(·, λ)‖20,s dλ

 1
2

.

The Plancherel theorem yields

|(v+, w)| ≤ C ‖φ+‖0

∫
R

‖w(·, t)‖20,s dt

1/2

.

Let ω ∈ C∞0 (Rn+1) and take w(x, t) =
(
1 + |x|2

)− s
2 ω(x, t) so that∣∣((1 + |x|2

)− s
2 v+, ω

)∣∣ ≤ C ‖φ+‖0 ‖ω‖L2(Rn+1) .

This (with the similar estimate for v−) concludes the proof of the estimate (6.7).
�

Remark 6.3 (optimality of the requirement s > 1). A key point in the proof was
the use of the uniform bound (6.13). In view of the relation (6.11), this is reduced
to the uniform boundedness of λA(λ2), λ ≥ 0, in B(L2,s, L2,−s). By [76, Theorem

5.1] the boundedness at infinity, lim sup
µ→∞

µ
1
2 ‖A(µ)‖ <∞, holds already with s > 1

2 .

Thus the further restriction s > 1 is needed in order to ensure the boundedness at
λ = 0 (Theorem A).

Remark 6.4. Clearly we can take [0, T ] as the time interval, instead of R, for any
T > 0.
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107–134.

[77] M. Ruzhansky and M. Sugimoto, Global L2-boundedness theorems for a class of
Fourier integral operators, Comm. Partial Differential Equations 31 (2006), 547–
569.

[78] M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations
in the critical case, Math. Ann. 335 (2006), 645–673.

[79] Y. Saito, Spectral Representations for Schrödinger Operators with Long-Range Po-
tentials, Lecture Notes in Math., vol. 727, Springer-Verlag, 1979.

[80] B. Simon, Best constants in some operator smoothness estimates, J. Funct. Anal.
107 (1992), 66–71.

[81] C.D. Sogge, Lectures on Non-Linear Wave Equations, International Press, 2008.

[82] W. A. Strauss, Nonlinear Wave Equations, CBMS Reg. Conf. Ser. in Math., vol. 73,
Amer. Math. Soc., 1989.

[83] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay
of solutions of wave equations, Duke Math. J. 44 (1977), 705–714.

[84] M. Sugimoto, Global smoothing properties of generalized Schrödinger equations, J.
Anal. Math. 76 (1998), 191–204.

[85] H. Tamura, Resolvent estimates at low frequencies and limiting amplitude principle
for acoustic propagators, J. Math. Soc. Japan 41 (1989), 549-575.



40 M. Ben-Artzi

[86] E.C. Titchmarsh, Eigenfunction expansions associated with second-order differential
equations, Clarendon Press, 1946.

[87] T. Umeda, Generalized eigenfunctions of relativistic Schrödinger Operators I, Elec-
tron. J. Differential Equations 127 (2006), 1–46.

[88] G. Vodev, Local energy decay of solutions to the wave equation for short-range
potentials, Asymptot. Anal. 37 (2004), 175–187.

[89] B. G. Walther, A sharp weighted L2-estimate for the solution to the time-dependent
Schrödinger equation, Ark. Mat. 37 (1999), 381–393.

Matania Ben-Artzi
Institute of Mathematics
Hebrew University, Jerusalem 91904
Israel
e-mail: mbartzi@math.huji.ac.il


