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WAVE INTERACTIONS AND NUMERICAL APPROXIMATION
FOR TWO-DIMENSIONAL SCALAR CONSERVATION LAWS
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Abstract

This paper is concerned with the interplay of the spatial splitting and high resolution
schemes for the approximation of solutions to multidimensional scalar conservation laws.
We first review the general theory for two—dimensional wave interactions of “Riemann—
type”. This is followed by a detailed discussion of two cases: The Burgers equation and
the Guckenheimer equation. We then utilize the explicit, analytic structure of solutions
to test the adaptivity of the one-dimensional Godunov scheme and GRP (Generalized
Riemann Problem) scheme to “Strang spatial splitting” and the geometric complexity of
the problem. The results demonstrate that both schemes produce a correct approximation
to complex 2-D wave—interaction patterns. However, they differ at “fine” points of the
solutions, leading to various conclusions concerning the accuracy of numerical schemes.
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1 Introduction

The purpose of this paper is to explore some
aspects encountered in the numerical study of
solutions to multi-dimensional scalar conserva-
tion laws by high resolution schemes. More pre-
cisely, we focus on the interplay between the
high resolution schemes, which are basically one-
dimensional, and the method of the “spatial split-
ting”, which enables the extension of the 1-D
schemes to two-dimensional settings. Our ap-
proach here is based on the comparison of the
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numerical approximation with analytic solutions.
Such solutions are obtained in two cases, to be
discussed later in detail: The Burgers equation
and the Guckenheimer equation. In both cases,
the “Riemann—type” problems to be studied are
genuinely two—dimensional, leading to non—trivial
wave interactions, which nonetheless can be ob-
tained analytically. As pointed out by Lindquist
[9,10], “These solutions to two—dimensional Rie-
mann problems also supply a set of problems for
testing of finite difference schemes. The rich-
ness of structure of these solutions lends itself
to this purpose”. We note right away that a
nonlinear one—dimensional conservation law can
be “rotated” in the (z,y) plane, thus forming a
“two—dimensional” problem. This, however, can-
not lead to the kind of wave interactions discussed
here, and will not be considered (even though the
consideration of such problems is important in
testing the basic features of a numerical scheme).
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There are three ingredients in the present work: (a) Analytic solutions involving wave interactions
due to the two—dimensional geometry. (b) A high-resolution scheme for one-dimensional conservation
laws. (c) A “spatial splitting” technique which enables us to convert the one-dimensional scheme
into a two—dimensional one. The point here is to try and study the “mutual interaction” of these
ingredients. In particular, while (a)—(b) seem to be well studied, the interaction between (b) and (c)
is not yet fully understood (see “Two—dimensional prologue: No dimensional splitting” in [6].

This interaction is influenced by (at least) two factors, namely, the adaptivity of the particular one—
dimensional scheme to “spatial splitting” and the geometric complexity of the problem. The latter
includes also the interplay between a Cartesian grid and strong curvilinear waves (see [2]).

We consider the initial value problem (IVP) for the equation,

(1.1) u + f(u)g + g(u)y =0,

(12) U(:L‘,y, 0) = (Z)(IL‘,y), ((L‘,y) € RQ?

where u(z,y,t) is a real (scalar) function and f(u), g(u) are real smooth flux functions.

A “Riemann type” problem for (1.1) is the IVP where ¢(z,y) is finitely valued and homogeneous
of order zero,

(1.3) o(x,y) =up(h), 6= arg(z,y)(= arctan %),

and uo(0) is piecewise constant in [0,27] with finitely many jumps. Recall (see [5]) and the original
papers [7,13] that, for any initial function ¢ € L>°(R?), there exists a unique (weak) solution u(z,y,t)
to (1.1)—(1.2). The entropy condition (which includes already the fact that u is indeed a weak solution)
can be described as follows.

Let U(s) be a real convex function and F(s) and G(s) functions such that
(1.4) Fl(s) =U'(s)f'(s), G'(s) =U'(s)g'(5).
Then, in the sense of distributions,

(1.5) Uu)t + F(u)g + G(u), <0.
The initial value (1.2) is attained in the sense that

1.6 w(z,y,t) — o(z,y) in L} (R?), ast— 0.
loc

When the initial data is given by (1.3), the uniqueness implies that the solution is “self-similar”,
namely,

(1.7) u(z,y,t) =u(z/t,y/t, 1), t>0.

In what follows we shall use the similarity coordinates

)

(1.8) =2 p=

z y
t t

and set v(&,n) = u(&,n,1).
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The solutions to the Riemann—type problem (1.1)—(1.3) display a rich variety of wave patterns,
some of which are far from being “evident”. We refer to [4,8,14,15,16] for a thorough presentation.
Our intention in this paper is to show that this variety can serve as a basis for the investigation
of “fine points and subtleties” pertinent to high resolution schemes. Unlike the “one-dimensional
test cases” (most of which have been carried out only for the Burgers equation), the truly two—
dimensional wave structures, combined with the inherent “spatial splitting” of the numerical schemes,
poses a considerable challenge. We remark that the description of geometric shapes in Cartesian grids
presents already a nontrivial difficulty for the schemes (see [2])

The structure of this paper is as follows. In Section 2 we review the basic theory concerning the
IVP (1.1)—(1.2). In Section 3, we discuss in detail the solutions for two cases of fluxes. The first is the
Burgers equation f(u) = g(u) = $u?, where we consider four examples. Even in this rather elementary
case, we demonstrate various possibilities of wave interactions. Next we describe the solution for the
“Guckenheimer equation”, where f(u) = fu? and g(u) = %u‘g. In Section 4, we recall the details
of our high resolution approach, based on the GRP (Generalized Riemann Problem) scheme. The
two—dimensional numerical simulation is carried out using a “spatial splitting” technique. In Section
5, we give numerical results both for the Godunov (first order) scheme and GRP scheme and discuss

their differences.

2 The Analysis of 2—D Riemann—Type Solutions

We recall here the basic facts concerning solutions of (1.1)—(1.3). Using the similarity notation (1.7)—
(1.8), we refer to the solution as v(&,7n). Note that the initial condition (1.3) now becomes

(2.1) up(f) = lim v(rcosf,rsinf), 0<60 < 27.

In general terms, the IVP can be cast in terms of an equation for v (in the (£,n) plane) with a
boundary condition (2.1) imposed at the “circle at infinity”. In fact, due to finite propagation speed,
the solution consists of separate 1-D waves (emanating from rays in direction of the jumps of ug(6)).
These waves interact in a disk centered at the origin, and the difficulty lies in the need to account for
the interactions, subject to the entropy conditions.

In regions of smooth solution (i.e., where v(¢,7) € C!), we have from (1.1),

(2.2) (=€ + f'(0)ve + (=n + ¢'(v))vy =0,

which is a quasilinear equation. Its characteristic curves carry constant values of v, and are therefore
straight lines (terminating at singularities). Let L¢ be the line carrying the value v = C. By (2.2)
it is an integral line for the field ®c(§,n) = (=& + f/(C), —n + ¢'(C)), hence lies on a ray emanating
from the critical point z¢ := (f/(C), ¢’(C)). We orient it, by convention, in the direction of z¢.

Remark 2.1. Note that by (1.1), the characteristic lines Lc are just the traces of the bicharacteristic
lines for (1.1) on the (x,y)-plane, now identified as the (£,m) plane. The chosen orientation for
L¢ (towards z¢) corresponds to orienting the bicharacteristic line in the direction t — 400 (so that

(&, m) = (%,%) approaches zc).

Definition 2.2. The “critical set” I'(v) for Eq. (2.2) is the set of all possible points z¢, i.e.,
(2.3) L(v) = {(f'(C),d'(C)),C =v(zc), for some zc € R%}.
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We now turn to conditions imposed on jump discontinuities of solutions to (2.2). Using the standard
procedure for the definition of weak solutions, we obtain the Rankine-Hugoniot jump relations.

Claim 2.3. Let n = n(£) be the (C') trajectory of a jump discontinuity. Then the slope o = 1'(€)
satisfies the R—H condition

n—g4_
(2.4) oc=—""—
5 - f'/‘!‘)_ 7
where h’+7_ = % and vy are the limiting values of the solution v at the jump.

Proof 2.4. Note that by the standard procedure (see [5])applied to (2.2) in the form

(2.5) (—=€v+ f(v)e + (=nv + g(v))y + 20 =0,

we get

which reduces to (2.4).

Remark 2.5. As in the case of Remark 2.1, the R—H condition (2.4) can be derived by applying the
notion of a weak solution directly to Eq. (1.1). In this case, a surface of discontinuity in the (x,y,t)
variables is expressed in a self-similar form y = tn($), and the R—H condition is applied to the normal
direction (o,—1,m — &0), where o = /(&) (and (§,m) = (§,%)). In particular, the “effective” flux
function in this direction (see [5]) is

(2.6) Hy(v) = af (v) - g(v).

The entropy (admissibility) condition on jump discontinuities is most easily obtained by resorting
to the (x,y,t) setting and the “directional” flux H,, as in (2.6). Using the convention v_ < vy, we
get [11]

H,(k) — Hy(v-) > H,(vy) — Hy(v-)

2.7
2.7) k—wv_ - vy —U_

) ke ['U_,'U+]

as a necessary and sufficient condition for a jump (v_, vy ) whose slope is o = 1/ (§).

In analogy with I'(v) (see(2.3)), we define the set (for a given solution v and a fixed state 7),
(2.8) To(v;®) = {(fi -, g4 ), v =D,vy = v(&p,my) for some (&4,74) € R?}.

We consider I';(v;7) as a subset of the (£,7) plane. In view of (2.4), it has the following geometric
interpretation. If [ is a tangent line to a smooth discontinuity curve, and v takes on the value ¥ at the
tangency point (on either side) then [ intersects I's(v;T).

The entropy condition (2.7) implies, as is well-known, that all bicharacteristic lines (in (z,y,t))
“impinge” on the shock surface, as t — +oo (or are tangent to it). In view of Remark 2.1 and
our convention for the orientation of characteristic curve in the (£,7) plane, we obtain the following
corollary.
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Corollary 2.6. If n = n(§) is the trajectory of an admissible shock, then the characteristic lines on
its two sides run “into it” (with the given orientation) or are tangent to it (so that the shock becomes
sonic on that side).

The structure of a centered rarefaction wave (CRW) in the (§,7) plane is derived from the discussion
of characteristic lines and their directions. For clarity we state it in the following claim.

Claim 2.7. A CRW centered at (£y,m0) is given by the sector

agn_%S@

§—%&o
where, for any direction r € |, 3], v = C, such that

9'(Cr) —mo
2.9 = 9Cr) =m0
24) 76—

Remark 2.8. Observe that this CRW corresponds to a rather complex structure in the original (z,y,t)
setting; the vertex (&o,m0) represents the line x = &ot, y = not. At every time level t there is a (rar-
efaction) fan of rays emanating from (x,y,t) and carrying constant values of u. The whole structure
moves in a self-similar fashion as t grows. The rays then become planes (carrying constant values of
u) whose traces on the (§,7m) plane satisfy (2.9).

We can summarize the procedure for the solution of the Riemann-type problem (1.1)-(1.3) as
follows.

(a) The problem is restated as Eq. (2.2) in the (£, 7) plane, where the function v(&,n) satisfies the
boundary condition (2.1).

(b) Outside of a sufficiently large disk (in (£,7)) we determine the 1-D waves issuing at the jump
discontinuities of ug(f) in the (x,y,t) setting, and determine v(§,n) = u(&,n, 1).

(c) The resulting waves are extended into the disk, where they interact and produce additional
waves (CRW or shocks), subject to the conditions (2.7) (shocks) and (2.9) (CRW).

As we shall see in the following examples, this last step can be quite involved, producing surprising
structures. For general treatments, we refer to [4,8,15].

3 Two Examples of Riemann—Type Solutions
3.1 The Burgers (2-D) Equation, f(u) = g(u) = $u®.

Here the two singular sets I'(v), I's(v;7) (see (2.3), (2.8)) are easily seen to be identical (and indepen-
dent of ¥ for I's(v, 7)),

L(v), Ts(v;v) C{(&n) € R% &=}
We refer to [9,1.,14] for the study of the equation with four constant values in the four quadrants.

(i) As a first case, take the initial data

1, 0<6<Z
(3.1) uo(h) = 2
—1, otherwise.
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If we think in terms of the original problem (1.1)-(1.3), it means that u(x,y,0) = 1 in the first
quadrant and —1 otherwise. Outside of a large disk, we obtain two noninteracting rarefaction waves,
emanating from {x > 0,y = 0} and {x = 0,y > 0}. The solution at ¢t = 1 is therefore given by (with

E=mz,n=y),
1, &>1landn>1,
-1, < —lorn<—1,
(3.2) u(z,y,1) =v(&n) =
n, &>nand —1<n<l1,
& m>fand —1<Eé<,

(see Figure 3.1(a)).

Note that since the waves do not interact, we could extend them to the full (£,7) plane. (ii)
Reversing the initial data (3.1), we now study the Burgers equation with
-1, 0<0 <3,

(3.3) up(0) =
1, otherwise.

Turning once again to the original problem (1.1)—(1.3), the solution at ¢t = 1, outside of a large disk,
consists of standing shocks along y = 0 (and z > 0) and x = 0 (y > 0). It can be checked that they
extend to the origin without interacting (and satisfy the entropy condition), so that the solution now
is

_17 £>0777>07

1, otherwise,

(3.4) v(&n) =

(see Figure 3.1(b)).

(iii) Now we take the initial data

-1, 0<0<3,
(3.5) uw(f) =491 5 <0<by,
0, Oy < 0 < 2,

where ™ < 0y < 37“ satisfies tany = 2 (so that the jump between 1 and 0 lies along y = 2z, = < 0).

Thus, at time ¢ > 0, outside of a large disk we have three shocks (in the (z,y) plane):
(a) A shock along y = —t moving at speed —3 (in the y—direction).
(b) A standing shock along x = 0, y > 0.

(c) A shock at 22 —y = 3¢ (for z sufficiently negative). This shock can easily be determined from
1
(2.4) if we note that 0 =2 and f, _ =g, = 3 (for vy =1, v_ =0).

It is easily seen that all shocks (a)—(c) satisfy the entropy conditions (since all characteristics are
directed towards £ = 7 and thus “incoming”). Note that by (2.8) (and the paragraph following it) the
shock (b) is directed towards (0,0) € I's(—1;1) and can only be extended to that point. The shocks
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(a) and (c) interact at (0,

n
v=-—1
£=0
Shock (b)
v=1
0
n=-1/2
(0,=1/2) Shock (a)
Shock (c) 0
v =
2% —'np=1/2

(c) Solution for Case (iii)
Fig.3.1: Full solutions of the Burgers equation for cases (i)—(iv) 3.1

. v
Rarefaction .
Wave

(—1/4, 1/4/ (I

/II)

0

n=-1/2

(=1/2,-1/2)

Shock (a)

(d) Solution for Case (iv)

407

—1), where we solve the Riemann problem for (2.2) locally with the data

1
1 and —1 on two sides to get the additional shock segment & = 0, 3 < n < 0. The full solution is

shown in Figure 3.1 (c).

(iv) Finally, we take the initial data,

(3.6)
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As before we start by looking at the solution in the (z,y,t) frame, outside of a large disk. Clearly,
as in the previous case, we have the two shocks (a), (b) (see Figure 3.1 (c)). However, instead of the
third shock we have now a rarefaction wave which propagates parallel to the line z +y = 0 (as in Case
(1)). Turning to the (£,7n) plane, the solution is as shown in Figure 3.1 (d).

The characteristic line £ +7n = k, k > 0, intersects the set I" at (%, %), and thus, by (2.3), carries
the value v = % = &Tn Since v = 1 at the leading characteristic, we have there k = 2, and this
characteristic intersects the standing shock at 7 = 2. Below this point, the standing shock interacts
with the rarefaction wave and decreases in strength. It is therefore diverted into the region & < 0. Let

(I) be the shock between (0,2) and the tail characteristic £ +n = 0 (see Figure 3.1 (d)), expressed as
n =n(&). For o =n/(§), we have by (2.4), since vy (&,n) = %(f +n), v =—1,

e

+

=

(
(E

)
)

7' ()

i

+ (o
S]

NI— [ Do

1
1

NI | D] —

. -3
'vi—v2_£_ .

_77_
5_

w‘

and since 1/ (§) = +o00 as £ — 0, we use the inverse function to write,

/ —§{+3n+2 /
(37) €)= gt (@) =0,
The solution of this equation is given by (£ +n+2)% +8(¢ —#n) = 0. Thus the shock (I) intersects the
line £ +n =0 at (—%, I). The next interesting feature of the solution is the existence of the shock (II)
connecting (—1,1) to (=3, —1). It is a straight line having slope 3 by (2.4). This shock represents
an additional phenomenon, namely, the interaction of the shocks (a) and (b) (or its part (I)). This
phenomenon is very common in the case of systems, but has no analog in the case of a single scalar

conservation law in one space dimension.

Remark 3.1. Consider the one—dimensional Burgers equation us + (%uz)m = 0, subject to the initial
data

() 0, z<0orz>1,
uglxr) =
1, O<z<l.

The solution now consists of a centered rarefaction fan emanating from (0,0) and taking over the
shock emanating from (1,0) (see Figs.8 and 4). Gradually, the rarefaction “ consumes” the shock
and maxzcr u(z,t) tends to 0 as t — +oo. However, this is an interaction in time, whereas, the
interaction leading to the formation of the shock (II) in Figure 3.1 (d) is spatial. The latter can be
viewed as analog to the formation of Mach Stems in the 2-D fluid dynamical setting.

3.2 The Guckenheimer Equation, f(u) = %uz, g(u) = %u?’.

This equation was first studied by Guckenheimer in [4]. Here we take the initial data
0, 0<6@<2E,
(3.8) up() =4 1, F<o<i,

—1, 37”<7T<27T.
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0.6 7
0.5 n
041 n
03 7
0,b)
Sonic Shock Shock (a)
0.2 T
Triple Point (€, 3)
0.1 v=-1 .
- Shock (b) ¢
0 1 1 1 1 1
up =0 0 01 02 03 04 05 06
Fig.3.2: Wave interaction for the one-dimensional Fig.3.3: Guckenheimer structure

Burgers equation.

Outside of a large disk we obtain three shocks (see Figure 3.1):

(a) A shock emanating from y = 0 and moving at speed % in the positive y direction (note that u?
is concave on [—1,0]). In the (£,n) plane it is given by n = %

(b) A standing shock along £ =0 (n < 0).

(c) A shock emanating from the line z + y = 0. In the (§,n) plane we note that, in view of (2.4),
(2.8), it is directed towards (1, 3) and is therefore given by £ +n = 2

The interaction of these three shocks in a disk around (0,0) form a very complex wave structure
(see [4,15,8] for details), which can be described as follows (see Figure 3.1), in the (£, 7n) plane.

At a certain point (0,b), 0 < b < 1, the shock (b) bifurcates into a centered rarefaction wave (CRW)
whose leading characteristic is a sonic shock, across which the solution v jumps from —1 to a (still
unknown) value v. Then v increases across the rarefaction from v to 1. The rarefaction wave modifies
shock (c) in a fashion similar to that of the part (I) of the shock in the previous example of the Burgers
equation (Case (iv)). Note that the tail characteristic of the CRW carries the value v = 1, hence by
(2.3) is directed towards (1,1). It intersects the shock (c) at a point (§p,70) such that

) no—b

+ :—7 :1—b’
o + Mo 5 &
hence
3 _p 5 4 1y
_ 6 _6T686
(3.9) So=g9 3 M="5_—"p

The leading characteristic (sonic shock) carries the value v (which we should use when viewing it as
a characteristic line) and is therefore directed towards (v,72). It intersects the shock (a) at (£, 3),
where
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so that
- _(3-bp

3.10 =3 7
(3.10) §=2—
From the shock relation (2.4) across the sonic shock we obtain a relation between v, b as follows,

1 1/7341 ~ ~

. — = =2 — — ,
¢ E-a5E) (- @D
where ¢ is expressed in terms of b, T by (3.10). We get,
P-b_ 3 0(1-7)

v

namely,
1 (1-2)iv2-1

(3.12) po Ly BTGV 7 )

3 v
Thus, v remains as the only parameter to be determined.

The result of the interaction between the CRW and the shock (c) leads, as noted above, to a
“bending” of the latter, forming a shock branch n = 1(€) between (&y,70) and (£, 3). Let Lc be the
characteristic line in the CRW, carrying the value v = C, C € [v, 1]. If it intersects the shock branch
at o, no = n(&c), we have by (2.4) (with vy = C, v— =0),

1,12
nc — §C
(3.13) M) = ——1~
& 10

However, since L¢ is directed towards (C, C?), we have also,
nc—>b C?—-b
e c

hence (since v > 0),

ne —b+/(nc — b)? + b2
28c '

Inserting (3.14) in (3.13) and suppressing the subscript “C”, we obtain an ordinary differetial equation
for the shock branch n = n(¢),

(3.14) C=C(cne) =

n(€) — 2C(&,m(£))?
£—3CEn©)

The equation depends on the parameter v, and its solution should connect (£y,170) to (€, %)

Choosing a value b € (0,1/3), &, no are determined by (3.9), v by (3.12) and § by (3.10). Also
the function C(€,n) is determined by (3.14). The differential equation (3.15) is then solved (using in
practice a fourth order Range-Kutta method), starting at (§p,70). The solution n(§) then intersects

the line n = % at & = &. We modify b (by a shooting method) until we get & = ¢.

(3.15) ' (€) =

For our case here the values obtained are

b = 0.282305677, v = 0.608741813, § = 0.35196101.
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4 The numerical method associated with GRP scheme

In this section we recall our high resolution approach to approximate ([4]) by using a “Strang—type”
operator splitting to divide Eq. (1.1) into two simpler one-dimensional conservation laws (see [12]),

(4.1) up + f(u)z =0,
(4.2) u + g(u)y, = 0.

Then we implement the GRP (Generalized Riemann Problem) scheme [1] to each of these two equa-
tions.

We begin with the GRP scheme for (4.1). Take an equally spaced grid in R, Tig1= (j+ %)h, jEeZ.
At each time level t,, it is assumed that the solution u(z,t,) is approximated by a piecewise linear
function.

(4.3) w"(z) = wi + (z — ;)87 x € (a:j_%,xj+%),
and the value w} is the average of w"(z) in “cell j” (=(z;_1,2,,1)) and is associated with its center
2 2
T = %(azj_% + xj+%), and s7 is the slope of w™(z) in cell j. Let U(x,) be the exact solution of (4.1)
with the initial data U(z,t,) = w™(x). Then the approximate averages w?“ are determined by
n+tl _ . n n—&-% n+%
(4.4) w; =Wy _A(fﬂ_% _f]-_% )s

1
where A = £ and the numerical flux f;j_rf should approximate the time average of f(U(z; 1,1)),
2 2

tnStStn+1:tn+k-

In the first step, we evaluate w;? 1 by

(45) 'LU;L_F% = R(O;'LU‘;L_’_%’:F),

where R(%;az) is the (self-similar) solution to the Riemann problem for (4.1), having initial data a=

as Fx > 0. The limiting values w;? 1 appearing in (4.5) are defined by
2 b

(4.6)

n : n
w? . _ = lim w"(x).
It F  z—z 1T ( )
jt+3

Thus, the value w;.l+ , is the “instantaneous” value obtained by solving the Riemann problem with the
2
limiting values of w"(x) at the cell boundary T 1. The Riemann solution is determined simply as
2

follows.

(1) w?+% = z such that f(z) = min{f(w);w € [w?+%,—’w?+%,+]} if w;‘l+%,— < w;l+%7+, or,

(ii) w?+% = z such that f(z) = max{f(w);w € [w;l%’Jr,w;l%’_]} if w;.l%# < w;l%’_.

In the Godunov scheme, we always take s = s7,; = 0 and set w;l:%% = ;l+% ([3]). We note that
the wave moves to the right (resp. the left) if f’(w;‘Jr%) > 0 (resp. f’(w;‘Jr%) <0). If w;.l+% # w?+%,£

then the point is sonic and f’(w;ll) =0.
2
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The crucial ingredient in the GRP method is the assumption that both U(xﬁ%,t) and f(U(x ]+1,t))

are approzimated linearly (in t € [t,,tn+1]). We obtain the linear expressions,

~ ou
(4.7) u(x J+1vt) +1 + <8t )j+l (t —tn),
=~ oU\"
(1.5) Pl gt) = )+ i) (57) (e
ipl
Jt3
. oU\" . .
The exact instantaneous value of N at the cell boundary is obtained from (4.1),
i+3
—f'(w?, 1)s}, if the wave moves to the right,
ouU n Jj+3
(4.9) <E>j+l = —f’(w;l+%)s?+1, if the wave moves to the left,
’ 0, if ;. 1 18 a sonic point.
2

Then, as the second step, we define the GRP fluxes in (4.4) by

ntl At

(4.10) i = U@t 5),
+3 7, n+i .
(4.11) f;l%? = f(w;;g), o0 < j < 0.

Thus w?“ is determined by (4.4).
r— T 1
_['_7
— ;w' 1 )
t—t, = ItoE

R n n
4L we note that f(w" il ) —f(wj+%7+), Wiy > w” el 50 that the shock speed

Remark 4.1. (Stationary shocks). If the Riemann solution R( yields a stationary

shock along x = x

FUT(j40,0) = F(U(2j,1,1))

(4.12) s(t) = —
U (2,20, 0) U (200D
(U*(x j+1,t) are the values of U on the two sides of the shock, Ui(a:j+%,tn) = +27i) can be

differentiated to yield,

AU R L C o

w” .
Jtyt J+é,—

(413) S,(t)|t:tn =

n

The value of (%—Z) in (4.9) is determined according to whether £s'(t,) > 0 and w;‘Jrl is replaced

it3 :

by one of the values of w" Tl taken from the “smooth side”.

n+1

;" are calculated in two steps.

Now we need to update w"*!(z) in (4.3), i.e., the new slopes s”
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Step 1. Determine w;‘:} =u(z;;1,tn41) by (4.7) and then set
3 2

(4.14) sntl — Lt nthy,

w' .
J Ax( it+3 i=3

Step 2 (“ Limiter Algorithm”). Set the final value for some 6 € (0,2],

1 ~
(415) i = ominmod((2 — O)(wiiy — wih), AeTT (2 - 0)(wf —wiy)),

where the minmod function is defined by,

min(|al, |b],|c|), if s = sign(a) = sign(b) = sign(c),
w16 mimmod(ap.e) - 4 *mR(abBLID, i = sign(a) = sign() = sign(o)
0, otherwise,

In practice, we adopt 6 = 0.

Next, we apply a “Strang-type” operator splitting to (1.1). Let S(At), Sy(At) and S, (At) be differ-
ence approximation operators for integration by a time step At of (1.1), (4.1) and (4.2), respectively.
Here the one dimensional operator S;(At) (resp. Sy(At)) is given by our GRP scheme described
above. Then the Strang—type operator sequence reads

(4.17) S(At) = sx(%m)sy(m)sx(%m),

which means that the evaluation of an initial data u by (1.1) over a short time At is approximated
by first evolving u subject to (4.1) over time %At to obtain w1, then evolving u; in accordance with
(4.2) over time At to get up and evolving up again over time At subject to (4.1). This is a second
order finite difference approximation to (1.1), as shown in [12].

To secure the numerical stability, we require that the CFL condition holds separately with respect
to each of the split one-dimensional equations (4.1), (4.2). The resulting average values in cells are
now denoted by w}';. Thus, the CFL condition for (1.1) becomes

k

n n k
(4.18) v = maX{|f/(wi,j)|A—x? g’ (w}!;

)|A_y}< L.

In our computation (see Section 5), the CFL condition is computed according to (4.18) at each time
level, the maximum value over all time levels is retained. Indeed, the CFL condition for (1.1) is readily
determined because the maximum value of solutions is controlled by the initial data.

5 Numerical examples

In this section we present numerical results for the problems of Section 3, using our GRP high resolution
approach. Our numerical solutions are all given both by the Godunov schemes and the GRP scheme
with CFL condition v < 0.5. The computations for the Burgers equation are carried out in the domain
[—1.5,1.5] which is divided into 300 x 300 uniform cells and are illustrated by contour curves at the
final time 7' = 1. We display the results of all four cases for this equation. We refer to [6, Section 4] for
a numerical computation of a solution to a two—dimensional Burgers equation. In their case, however,
no analytic solution is available. We then proceed to present numerical results for the Guckenheimer
equation.
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(a) second order integration (GRP) (b) first order integration Godunov)

Fig.5.1: The Burgers equation with initial data (3.1)

In Figures 5 (a)—(b), we display the numerical solutions to the first case (i) of the Burgers equation
with initial data (3.1). Comparing the exact solution (3.2) (see Fig. 3.1 (a)) to the numerical solution,
we consider separately the “1-D” regions away from the diagonal z = y and the “corner” region near
x =y. In the “1-D” region, the GRP solution is quite accurate, showing slightly displaced level lines
only at the head and tail edges. The Godunov solution, however, shows a much larger “outward”
displacement of the head and tail lines. Observe that these are the lines across which the derivative
U or u, undergoes a jump discontinuity. The improved resolution of second-order schemes like GRP
at such points (even in 1-D computations) is already well established. Turning to the “corner” region
near x = y, we note that while the GRP solution reproduces quite well the exact pattern of the 2-D
rarefaction wave, the Godunov solution is more “rounded” at the corner points, where the x—facing
and y—facing rarefaction waves interact. This is a genuinely two—dimensional effect, demonstrating
the higher dissipativity of the Godunov scheme.

In Figs.5.2(a) to (b) we display the numerical solutions to the second case (ii) of the Burgers equation
with initial data (3.3). Comparing the exact solution (3.4) (see Figure 3.1 (b)) to the numerical solution
we see that both schemes reproduce the standing shocks accurately. It demonstrates that this known
capability of the Godunov and GRP schemes is unaltered by the two—dimensional splitting.

In Figs.5.3 (a)—(b) we display the numerical solutions to the third case of the Burgers equation,
with initial data as in (3.5). Comparing these solutions to the exact solution we see that once again
the shocks are well captured by both schemes. Note, however, the sharper resolution of the oblique
shock by the GRP scheme.

Finally, in Figures 5 (a)—(b) we display the numerical solutions to the fourth case of the Burgers

equation, with initial data (3.6). The exact solution depicted in Figure 3.1 (d) is considerably more

complex than in the previous three cases. Note that the sharp wedge at (—%, —%) is “rounded” by

both schemes. However, as in the previous cases, the Godunov scheme leads to excessive spreading of
the rarefaction wave and the oblique shock (corresponding to parts (I) and (II) of the shock in Figure

3.1 (d)).
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Passing to the Guckenheimer equation with initial data (3.8), we give the numerical results obtained
by using both the Godunov and the GRP split schemes. The computation domain was taken to be
the square —1 < x <1, —1 <y < 1, which was divided into 320 x 320 square cells. The time step was
At =0.003125, leading to a CFL number (see (4.18)) v = 0.5 (since max |u| = 1). The computation
was performed up to the final time ¢ = 1. The boundary conditions were specified by calculating
the exact solution on the outer segments of boundary cells. This is possible as long as the domain
boundary is intersected only by the three shocks (a), (b), (c) (see Figure 3.1), which is still true at

t=1.

In the following discussion we denote by U; ; the numerical value obtained at time ¢ = 1 in cell
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Fig.5.4: The Burgers equation with initial data (3.6)

(i,7). The level curves are obtained by interpolating the U values. The results are shown in the
sub-domain [—0.05 <z < 0.60, 0 <y < 0.65] (see Fig. 5(a) for the GRP scheme, and Fig. 5(b) for
the Godunov scheme). Recall that inside the rarefaction fan u(z,y, 1) is constant along the (straight)
characteristic lines, so that numerical U-level curves should approximate the fan structure. The U-
level sequence (5.1) given below is designed to show the shock fronts and the rarefaction fan. The five
levels L =9,...,13 correspond to the tail, head and three inner characteristic lines of the rarefaction
fan (as shown in Fig.3.3).

-1402L ... L=0,1,..,8
51 L:{

0.60874, 0.68295, 0.76366, 0.86089, 1, ... L =0,...,13.

In order to enable interpolation at the lowest and highest U-levels, they were slightly shifted to —0.990
and 0.997, respectively. For comparison of the exact and numerical solutions, we represent the exact
solution (Fig. 3.1) by discrete “marker points” situated on shock fronts, as shown in Fig. 5. Additional
marker points are located at points (z,y) inside the rarefaction fan, where the exact solution takes on
the same values Ur, L =9, ...,13 as given by (5.1).

Our primary observation with respect to the numerical solution is that both finite—difference
schemes, applied according to the operator splitting (4.17), produce a correct approximation to this
complex 2-D wave—interaction pattern (see Fig. 5). The GRP solution agrees quite well with the
exact one, while the Godunov solution shows a nearly equal agreement for the shock fronts, but a
lesser agreement in the rarefaction fan. In this centered fan, the characteristic line that coincides
with the sonic shock front corresponds to a constant value of u = v, and it is one of the U-level lines
plotted (L = 9). In the GRP solution this line is seen very near the sonic shock front (Fig. 5(a)),
while in the Godunov case its stand—off distance is perceptibly higher (Fig. 5(b)). The captured sonic
shock is represented by the cluster of level lines L = 0, ...,9 (since the jump across this shock is from
u = Uy tou = Uy). At the other end of the rarefaction fan, the head characteristic line is plotted with
Uiz = 0.997 (close to the exact value of Uz = 1, for a clear U-level interpolation). In the Godunov
solution this line extends well beyond the exact solution, while in the GRP solution it agrees well
with the exact marker points. The rarefaction fan is the only region of the solution where u(x,y, 1)
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Fig.5.5: The Guckenheimer structure both by the GRP and Godunov schemes with coarse grip cells

varies smoothly with a non-zero gradient. Hence, these observations indicate that in such regions
the (second—order accurate) GRP scheme produces considerably smaller errors than the (first-order
accurate) Godunov scheme. In what concerns the bifurcation point (0,b) and the triple point (E , %),
resulting from the two—dimensional setting, we observe that they are well replicated by both schemes.
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