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Abstract

Hyperbolic conservation laws arise in the context of continuum physics,
and are mathematically presented in differential form and understood
in the distributional (weak) sense. The formal application of the
Gauss-Green theorem results in integral balance laws, in which the
concept of flux plays a central role. This paper addresses the space-
time viewpoint of flux regularity, providing a rigorous treatment of
integral balance laws. The established Lipschitz regularity of fluxes
(over time intervals) leads to a consistent flux approximation. Thus
fully discrete finite volume schemes of high order may be consis-
tently justified with reference to the spacetime integral balance laws.

Keywords: balance laws, hyperbolic conservation laws, finite volume
approximations, flux regularity, consistency.

Dedicated to Professor Gerald Warnecke on his 65-th birthday.

1

revised tex file Click here to
access/download;Manuscript;Warnecke-

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/camc/download.aspx?id=36701&guid=30d2e6c5-3b8b-4f79-8ce4-fd268803ca62&scheme=1
https://www.editorialmanager.com/camc/download.aspx?id=36701&guid=30d2e6c5-3b8b-4f79-8ce4-fd268803ca62&scheme=1
https://www.editorialmanager.com/camc/viewRCResults.aspx?pdf=1&docID=1031&rev=1&fileID=36701&msid=c6be128c-8384-4327-9a49-1e7bc845140e


Springer Nature 2021 LATEX template

2 Integral Balance Laws and Regularity of Fluxes

1 Introduction

Hyperbolic conservation laws arise in the context of continuum physics, and are
mathematically presented in differential form [10]. Since the solution may con-
tain discontinuities no matter how smooth the initial data are, the equations
are often understood in the distributional (weak) sense. Quite often the Gauss-
Green theorem is applied in a formal way, thus obtaining integral balance laws
that are at the foundation of finite volume methods. However, this formal
treatment needs rigorous justification.

We refer to [8, 9, 16, 18, 19] for general abstract treatments of the Gauss-
Green theorem in the context of geometric measure theory [13].

This paper reviews our recent progress: (i) justifying integral balance laws
by the verification of continuity of spacetime fluxes; (ii) defining the consis-
tency of high order finite volume methods by the Lax-Wendroff approach; (iii)
establishing the Lax-Wendroff type convergence of finite volume approxima-
tions.

2 Integral balance laws

Hyperbolic conservation laws are often written in the divergence form of partial
differential equations,

ut +∇x · f(u) = 0, (1)

where t is the time of variable, ∇x· is the divergence operator in terms of space
variable x = (x1, · · · , xm), u = (u1, · · · , uD)⊤ ∈ RD is the vector of conserved
quantities and f(u) is the matrix of fluxes

f(u) = (f1(u), · · · , fD(u)) ∈ Rm × RD, (2)

and each fi(u) is an m-vector. We only assume that the flux f(u) is locally
bounded as the function of u.

Since classical solutions of (1) in general break down and discontinuities
appear in the solutions even when subject to very smooth initial data

u(x, 0) = u0(x), (3)

we resort to the notion of a weak solution of (1) and (3), namely , the solution
is defined in distributional sense:

Definition 1 (Weak solutions) Let u ∈ L∞ ∩ L1(Rm; [0, T )) be a weak solution of
(1) and (3) if it satisfies∫ T

0

∫
Rm

uϕt + f(u) · ∇xϕ(x, t)dxdt+

∫
Rm

u0(x)ϕ(x, 0)dx = 0, (4)

for all smooth test functions ϕ ∈ C∞(Rm × [0, T )). Note that ϕ is a D-vector.
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Integral Balance Laws and Regularity of Fluxes 3

Alternatively, following the physical point-of-view, one has two approaches
to integral balance laws in making sense for a solution of (1). We proceed to
present these approaches.

Let Ω ⊆ Rm be a bounded domain, Γ = ∂Ω, and 0 ≤ t1 < t < t2 < T . Let
ν be the outward unit normal. We formally apply the Gauss-Green theorem
and carry out the integration of (1) in space to have:

Definition 2 (Instant Integral balance law) Let the function u ∈
C((0, T ); L∞(Rn)) ∩ C([0, T ); L1(Rn)). Then

d

dt

∫
Ω
u(x, t)dx = −

∫
Γ
f(u) · νdSx (5)

is called the instant balance law of (1), where dSx is surface Lebesgue measure, if
the following two conditions are satisfied,

(i) For every t ∈ [0, T ), and every bounded domain Ω ⊆ Rm, the total mass
M(Ω, t) =

∫
Ω
u(x, t)dx over Ω is well defined and continuously differentiable

function of t.
(ii) the Cauchy flux across the boundary Γ

h(Γ; t) :=

∫
Γ

f(u) · νdSx (6)

is well-defined and continuous in time t, and Equation (5) is satisfied. Note
that h is a D-vector.

Remark 1 In the context of theoretical continuum mechanics the quantity
∫
A f(u) ·

νdSx across a section A ⊆ Γ is called the Cauchy flux (across A) and f(u) · ν is its
density.

Remark 2 In the context of finite volume formulation, (5) is called the semi-discrete
form of (1), for which Ω is regarded as a computational control volume. Temporal
advancing techniques could be used to derive practical schemes provided that the
Cauchy flux is well-defined and effectively approximated.

We can go further and integrate (5) (formally) over any time interval [t1, t2],
obtaining the following spacetime integral balance law.

Definition 3 (Spacetime integral balance laws) Let the function u ∈
C((0, T ); L∞(Rn)) ∩ C([0, T ); L1(Rn)). Then∫

Ω
u(x, t2)dx−

∫
Ω
u(x, t1)dx = −

∫ t2

t1

∫
Γ
f(u) · νdSxdt, 0 ≤ t1 < t2 < T, (7)

is called the spacetime balance law of (1) if Equation (7) holds, subject to the
following conditions.

1. M(Ω, t) (see (i) in Definition 2) is continuous in t.
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4 Integral Balance Laws and Regularity of Fluxes

2. The spacetime flux across the boundary Γ over time interval [t1, t2],

h(Γ; t1, t2) :=

∫ t2

t1

∫
Γ

f(u) · νdSxdt (8)

is well-defined and continuous with respect to suitable perturbations of the
boundary Γ.

Remark 3 In analogy to the Cauchy flux, we call

H(A; t1, t2) =

∫ t2

t1

∫
A
f(u) · νdSxdt, A ⊆ Γ, (9)

the spacetime flux through the boundary section A.

The validity of the conditions in Definitions 2 and 3, especially in what
concerns the fluxes (6) and (8) is far from obvious. Note that the solution of
(1) is typically discontinuous and f(u) is nonlinear so that the traces of fluxes
need to be attended. Recall the following comment concerning this issue: “the
drawback of this, functional analytic, demonstration is that it does not provide
any clues on how the qD may be computed from A” [10, Section 1.3], where
qD refers to the flux density, and A is the Cauchy flux. In the next section we
justify the continuity of the spacetime flux with respect to space perturbation
and establish the validity of the spacetime integral balance law (7) for a weak
solution.

3 Regularity of fluxes and spacetime integral
balance laws

In this section we follow [6] in establishing (7) for weak solutions in the multi-
dimensional case. In the case of one spatial coordinate this result was obtained
in [5]. We start from Γ0 = Γ and construct a tubular neighborhood [20] with
the following properties. For some small 0 < δ < 1 there exists a family of
expanding smooth bounded domains {Ωµ ⊆ Rm, µ ∈ (−δ, 1− δ) so that their
respective boundaries {Γµ, µ ∈ (−δ, 1−δ)} form a foliation of a tubular neigh-
borhood of Γ0. The coordinate µ is normal to Γµ so that ∂/∂µ = νx is the unit
normal. Denote by dSµ the Labesgue surface measure on Γµ, µ ∈ (−δ, 1− δ).

Theorem 1 Let u ∈ L∞
loc(R

m× (0, T ))∩L1
loc(R

m× [0, T )) be a weak solution of (1)
in the sense of Definition 1. Then we have

(i) For every t ∈ [t1, t2], the function g(x; t1, t2) =
∫ t2
t1

f(u(x, t))dt satisfies

∇x · g(x; t1, t2) ∈ L∞
loc(Rm). (10)
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Integral Balance Laws and Regularity of Fluxes 5

(ii) For every smooth domain and the geometric construction {Ωµ} the trace
function defined by

h(µ; t1, t2) =

∫ t2

t1

[∫
Γµ

f(u) · νµdSµ

]
dt, µ ∈ (−δ, 1− δ) (11)

is Lipschitz continuous with respect to µ.

In this case Eq. (7) holds for every 0 ≤ t1 < t2 ≤ T .

Since a considerable part of the theoretical and numerical studies are still
carried out in the one-dimensional case (m = 1), it is useful to state the form
of the theorem in this case.

Theorem 2 Let u(x, t) ∈ L∞
loc(R× (0, T ))∩L1

loc(R× [0, T )) be the weak solution to
one-dimensional conservation laws

ut + f(u)x = 0, x ∈ R, t > 0. (12)

Then we have:

(i) For every fixed [t1, t2], the spacetime flux g(x) =
∫ t2
t1

f(u(x, t))dt is locally
Lipschitz continuous in x ∈ R.

(ii) the spacetime integral balance law holds over a spacetime domain Q =
[x1, x2]× [t1, t2]∫ x2

x1

u(x, t2)dx−
∫ x2

x1

u(x, t1)dx =

∫ t2

t1

f(u(x1, t))dt−
∫ t2

t1

f(u(x2, t))dt.

(13)

The proof can be found in [6] for Theorem 1 and in [5] for Theorem 2, rely-
ing on Sobolev estimates in W 1,p to get Lipschitz continuity. This regularity
property of spacetime fluxes is in sharp contrast to that of the Cauchy flux
[7] since the discontinuous property of solution gives rise to the difficulty in
defining the trace of f(u) on A ⊆ Γ.

4 Finite volume approximation and its
consistency

In view of Theorems 1 and 2 the spacetime flux (8) is indeed continuous, while
the instantaneous Cauchy flux (6), which is formally the time derivative of the
spacetime flux is in general not well defined. We conclude that the spacetime
flux should be used for the approximation, implying that the resulting finite
volume scheme is fully discrete.
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6 Integral Balance Laws and Regularity of Fluxes

4.1 1D finite volume schemes

The integral balance law (7) is at the basis of the finite volume approximation
to the conservation law (1). We first discuss the discretization in the one-
dimensional setting, using a uniform grid. Let τ = ∆t be a fixed time step.
The spatial control volumes (intervals) are Ij = (xj− 1

2
, xj+ 1

2
), j ∈ N, ∆x =

xj+ 1
2
− xj− 1

2
, and the spacetime control volumes are

Qn
j = Ij × (tn, tn+1), tn+1 = tn + τ. (14)

We denote by U the functional space of solutions of (12) and by V k ⊆ U
a finite dimensional subspace of order k when restricted to each Ij . In order
to define the finite volume approximation, we need first to define approxi-
mate fluxes. We assume that there is a unique “entropy” solution, denoted by
u(x, t; ξ) = S(t)ξ ∈ U , 0 < t < τ , subject to the initial data ξ ∈ V k. Due to
the semigroup property of solutions to (12), we can focus our discussion on
the interval [0, τ).

Definition 4 (1-D Approximate flux) Let {Fξ

j+ 1
2

(t), 0 ≤ t < τ}∞j=−∞ be a fam-

ily of D-dimensional functions of t. They are approximate fluxes (in the time
interval [0, τ)) corresponding to the initial function ξ ∈ V k, if the following finite
propagation property is satisfied for all j ∈ N.

(i) Fξ

j+ 1
2

(t), 0 ≤ t < τ, depends only on the restriction of ξ to Ij ∪ Ij+1.

(ii) If ξ ≡ c = const. in Ij ∪ Ij+1 then Fξ

j+ 1
2

(t) ≡ f(c).

Next we define the consistency of the approximate fluxes.

Definition 5 (Consistency in 1D) The approximate flux Fξ

j+ 1
2

(t) is consistent of

order q > 0 with the balance law (13) if there holds, for any ξ ∈ V k,[∫ τ

0
Fξ

j+ 1
2

(t)dt−
∫ τ

0
Fξ

j− 1
2

(t)dt

]
−

[∫ τ

0
f(u(xj+ 1

2
, t; ξ)dt−

∫ τ

0
f(u(xj− 1

2
, t; ξ))dt

]
= O(τ2+q).

(15)

Remark 4 Observe that the order of consistency strongly depends on the order of
the approximating subspace V k. This is clearly demonstrated in the case of the
fundamental Godunov flux below.

The finite volume approximation to (13) is now presented in terms of the
approximate fluxes.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Springer Nature 2021 LATEX template

Integral Balance Laws and Regularity of Fluxes 7

Definition 6 (1D Finite Volume Approximation) (i) Let {Fξ

j+ 1
2

(t); 0 < t < τ}
be approximate fluxes consistent with (13) of order q > 0 in the sense of
Definition 5.

(ii) Let S̃(τ) : V k → U be an approximate evolution operator associated with
the approximate fluxes such that∫

Ij

S̃(τ)ξdx−
∫
Ij

ξdx+

∫ τ

0

Fξ

j+ 1
2

(t)dt−
∫ τ

0

Fξ

j− 1
2

(t)dt = 0, (16)

for j ∈ N.
(iii) There exists a projection map P k : U → V k such that the average is

preserved ∫
Ij

P kξ(x)dx =

∫
Ij

ξ(x)dx, j ∈ N. (17)

Then a family of maps {Φk : V k → V k} is finite volume scheme for the
conservation law (12) if

Φk = P kS̃(τ). (18)

Thus given initial data u(x, 0) = u0(x) ∈ U to (12), we construct the
sequence of finite volume approximate solutions by taking first u0(x) =
P ku0(x) and then proceed for n = 0, 1, 2 · · · , by

un+1(x) = Φkun(x). (19)

4.2 Practical consistency of flux approximation

It is clear that the error of a finite volume approximation comes from two
parts: the flux approximation and the projection. The literature concerning the
projection error (i,e. slope-limiters) is quite extensive. Here we concentrate on
the flux approximation, which strongly depends on the space of approximation.
In this section, we suppress the dependence of notation on ξ if no confusion
can occur.

Godunov flux. We first assume that the initial data ξ(x) ∈ V 0 is piecewise
constant

u0(x) = ξ(x) = u0
j , x ∈ Ij . (20)

Then (assuming a CFL condition) the solution u(xj+ 1
2
, t; ξ) is constant for

0 < t < τ and can be obtained by solving the local Riemann problem. The
value is denoted by uj+ 1

2
:= R(0; u0

j ,u
0
j+1). The Godunov flux is defined as

[15]
Fj+ 1

2
(t) = f(uj+ 1

2
). (21)

Hence, if ξ ∈ V 0, the Godunov flux fully agrees with the exact flux for the
piecewise constant initial data (20) and no error exists. Formally, it means
that the order of consistency of the Godunov flux is q = ∞!
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8 Integral Balance Laws and Regularity of Fluxes

In general, as ξ(x) ∈ V k, the Godunov flux uses the leading term for the
approximation. To be more precise, the solution u(xj+ 1

2
, t; ξ) is no longer

constant for 0 < t < τ and the solution u(x, t; ξ) along x = xj+ 1
2
can be

expanded as

u(xj+ 1
2
, t; ξ) = u(xj+ 1

2
, 0+; ξ) + t · ∂u

∂t
(xj+ 1

2
, 0+; ξ) +O(t2), (22)

and

f(u(xj+ 1
2
, t; ξ)) = f(u(xj+ 1

2
, 0+; ξ))+f ′(u(xj+ 1

2
, 0+; ξ))

∂u

∂t
(xj+ 1

2
, 0+; ξ)t+O(t2).

(23)
The Godunov flux uses the leading term of the expansion (23),

FG
j+ 1

2
(t) = f(uj+ 1

2
), uj+ 1

2
= u(xj+ 1

2
, 0+; ξ). (24)

Then we have∫ τ

0

FG
j+ 1

2
(t)dt−

∫ τ

0

f(u(xj+ 1
2
, t; ξ))dt =

τ2

2
f ′(uj+ 1

2
)
∂u

∂t
(xj+ 1

2
, 0+; ξ)+O(τ3).

(25)
Taking the difference of the two boundary values∫ τ

0

FG
j+ 1

2
(t)dt−

∫ τ

0

FG
j− 1

2
(t)dt−

[∫ τ

0

f(u(xj+ 1
2
, t; ξ))dt−

∫ τ

0

f(u(xj− 1
2
, t; ξ))dt

]
=

[
f ′(uj+ 1

2
)
∂u

∂t
(xj+ 1

2
, 0+; ξ)− f ′(uj− 1

2
)
∂u

∂t
(xj− 1

2
, 0+; ξ)

]
τ2

2
+O(τ3).

(26)
If the solution u(x, t; ξ) is smooth the difference in the right-hand side of (26)
contributes (via the CFL condition) another factor of τ. Otherwise, the error
is O(τ2). We therefore arrive at the following conclusion.

Proposition 3 (Godunov Flux) Assume that ξ(x) ∈ V k, k ≥ 1. Then the Godunov
scheme has first order accuracy for smooth solutions but just zero order if the solution
contains discontinuities.

First order flux approximation. In practice, for the given initial data
ξ(x) ∈ V k, there is an alternative way of defining first order flux approxima-
tions [14],

Fj+ 1
2
(t) =

1

2
(f(u−) + f(u+))−

α

2λ
(u+ − u−), u± := ξ(xj+ 1

2
±), (27)
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for some α > 0, λ = τ/∆x. If we try to obtain its order of consistency as in
Definition 5 we get[ ∫ τ

0

Fj+ 1
2
(t)dt−

∫ τ

0

Fj− 1
2
(t)dt

]
−
[ ∫ τ

0

f(u(xj+ 1
2
, t; ξ))dt−

∫ τ

0

f(u(xj− 1
2
, t; ξ))dt

]
= O(|u+ − u−|)τ.

(28)

Thus the error is estimated in terms of the total variation TV (u). This
is true even for ξ(x) ∈ V 0. In general it cannot be converted to estimates in
terms of τ due to discontinuities. Furthermore, while for scalar conservation
laws the total variation is not increasing [10], this is not true for hyperbolic
systems, where solutions involve very complex wave interactions. We conclude
that for such approximate fluxes the order of consistency (even the notion of
consistency) cannot be addressed in our framework.

High order flux approximations As discussed above, in order to achieve
high order accuracy, we have to adopt high order flux approximation Fj+ 1

2
(t).

It is precisely here that we can use the Lipschitz continuity of fluxes
as expressed in Theorem 2 . Indeed, the theorem guarantees that the difference∫ τ

0

f(u(xj+ 1
2
, t; ξ))dt−

∫ τ

0

f(u(xj− 1
2
, t; ξ))dt

provides (using the CFL condition) a factor O(τ). In view of Definition 5 this
means that we can focus on one endpoint and attempt to obtain a high value
of α in the estimate of∫ τ

0

Fj+ 1
2
(t)dt−

∫ τ

0

f(u(xj+ 1
2
, t; ξ))dt = O(τ1+α), (29)

for some α > 0. The error is measured in terms of the temporal increment τ
or equivalently the spatial grid size ∆x. Thanks to (22) and (23), we have

Fj+ 1
2
(t) = f(u(xj+ 1

2
, 0+; ξ)) +

∂f(u)

∂t
(xj+ 1

2
, 0+; ξ)t+ · · ·+O(tα). (30)

This is equivalent to the Taylor method for ordinary differential equations and
requires the knowledge of the instantaneous values ∂u

∂t , · · · ,
∂αu
∂tα . In numerical

approximations this approach is replaced by multi-stage methods [23], in order
to avoid high order temporal derivatives.

In Section 5 we will see how the Taylor method can be implemented
by introducing the generalized Riemann problem (GRP) methodology. In a
suitable sense, it can be considered as a Lax-Wendroff approach (normally
associated with analytic setting)) in a discontinuous nonlinear framework. The
evaluation of temporal derivatives is carried out by using spatial slopes on the
two sides of a discontinuity [2] and careful inspection of the propagation of the
solution along characteristics (including shock formation).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Springer Nature 2021 LATEX template

10 Integral Balance Laws and Regularity of Fluxes

4.3 Multi-D extensions

We briefly discuss how the 1 − D methodology can be adopted in order to
establish a finite volume approximation to multidimensional conservation laws
(7). Let Ω be a computational domain covered by a set of closed control volume
Ωj , Ω = ∪j∈JΩj , Ωj ∩ Ωℓ = Γjℓ. They are assumed to be pairwise disjoint
except for common boundaries. Then the spacetime integral balance law (7),
when applied to Ωj , becomes,∫

Ωj

u(x, τ ; ξ)dx−
∫
Ωj

u(x, 0; ξ)dx+
∑
ℓ

∫ τ

0

∫
Γjℓ

f(u) · νjℓdSxdt = 0, (31)

where u(x, 0; ξ) = ξ is the initial data.
The general approach, as in the 1 − D case, emphasizes the role of

approximate fluxes.

Definition 7 (Multi-D approximate flux) The functions of the family {Fξ
jℓ(t), 0 ≤

t < τ}∞j=−∞ are approximate fluxes (in the time interval [0, τ)) corresponding

to the initial function ξ ∈ V k, if the following finite propagation property is
satisfied.

(i) Fξ
jℓ(t), 0 ≤ t < τ, depends only on the restriction of ξ to Ωj ∪ Ωℓ, where

the index ℓ is taken such that Γjℓ ̸= ∅.
(ii) If ξ ≡ c = const. in Ωj ∪ Ωℓ then Fξ

jℓ(t) ≡ f(c)∥Γjℓ∥.

The multi-dimensional case is complicated since the exact flux depends
on x ∈ Γjℓ, and needs to be approximated at every boundary point. Remark

that Fξ
jℓ(t) implicitly contains the approximate integration along the common

boundary Γjℓ.
Numerically, the boundary integrals are handled by using suitably high

order integration formulas, such as Gaussian quadrature:∫ τ

0

∫
Γjℓ

f(u) · νjℓdSxdt ≈
∑
ℓ,r

∫ τ

0

ωrf(u) · νjℓ(xr)dt, (32)

within desired order of accuracy, where ωr is the weight at the Gaussian point
(xr, t) on Γjℓ. Then we can construct the approximate flux at each point xr.

Definition 8 (Consistency in Multi-D) The approximate flux Fξ
jℓ(t) is consistent

of order q > 0 with the balance law (31) if there holds∑
ℓ

∫ τ

0
Fξ
jℓ(t)dt−

∑
ℓ

∫ τ

0

∫
Γjℓ

f(u(x, t; ξ)) · νjℓdSxdt = O(τ2+q). (33)
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Observe that the boundary integral
∫ τ

0

∫
Γjℓ

f(u(x, t; ξ)) · νjℓdSx is

well defined precisely due to Theorem 1. We refer to [6] for more details.

5 Lax-Wendroff type approach for flux
approximations

The Lax-Wendroff approach was proposed in a finite difference version for
hyperbolic conservation laws [21], assuming very regular solutions. Essentially
it can be viewed as the numerical realization of Cauchy-Kovalevskaya theorem
for partial differential equations [11, Chapter 4]. In this section we place it
in the context of our approximate fluxes with high order of consistency. We
shall do it only in the 1−D setting. We therefore consider the 1−D version
of Equation (1):

ut + f(u)x = 0, x ∈ R. (34)

In general, solutions u(x, t; ξ) are known to develop discontinuities even
for very smooth initial data ξ. In particular, the same is true for the fluxes
f(u(x, t; ξ)). Nevertheless, in light of Theorem 2 the integral

∫ τ

0
f(u(x, t; ξ))dt

is a Lipschitz function of x, hence it is legitimate to consider its point value
at every fixed point, in particular the point x = xj+ 1

2
, that is a point of

discontinuity of the initial data ξ. Then we are led to study the behavior of
f(u(xj+ 1

2
, t; ξ)) as a function of t ∈ (0, τ).

Specifically it boils down to solving the Generalized Riemann Problem
(GRP) [2, 4]) which we proceed to discuss.

Let u(xj+ 1
2
, 0+; ξ) be the instantaneous value of the solution (obtained by

solving a Riemann problem) and let

F ξ

j+ 1
2

(t) = f(u(xj+ 1
2
, 0+; ξ)), (35)

be the approximate flux.
Let ut(xj+ 1

2
, 0+; ξ) be the instantaneous value of the time-derivative of

the solution. From

f(u(xj+ 1
2
, t; ξ))

= f(u(xj+ 1
2
, 0+; ξ)) + f ′(u(xj+ 1

2
, 0+; ξ))ut(xj+ 1

2
, 0+; ξ)t+O(t2),

(36)

it follows that ∫ τ

0

F ξ

j+ 1
2

(t)dt−
∫ τ

0

f(u(xj+ 1
2
, t; ξ))dt

=
1

2
f ′(u(xj+ 1

2
, 0+; ξ))ut(xj+ 1

2
, 0+; ξ)τ2 +O(τ3).
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Hence ∫ τ

0

[
F ξ

j+ 1
2

(t)− F ξ

j− 1
2

(t)
]
dt−

∫ τ

0

[
f(u(xj+ 1

2
, t; ξ))− f(u(xj+ 1

2
, t; ξ))

]
dt

=
1

2
[f ′(u(xj+ 1

2
, 0+; ξ))ut(xj+ 1

2
, 0+; ξ)− f ′(u(xj− 1

2
, 0+; ξ))ut(xj− 1

2
, 0+; ξ)]τ2

+O(τ3).
(37)

If no regularity of the solution u(x, t; ξ) is assumed (in particular, if it is
discontinuous) then the approximate flux is only consistent of order zero (q = 0
in (15)). However, in regions where the solution is smooth the difference

f ′(u(xj+ 1
2
, 0+; ξ))ut(xj+ 1

2
, 0+; ξ)−f ′(u(xj− 1

2
, 0+; ξ))ut(xj− 1

2
, 0+; ξ) = O(τ),

(38)
thus raising the order of consistency to q = 1.

The remedy here is to upgrade the approximate flux (35) by adding the
GRP solution, thus introducing the GRP fluxes.

Definition 9 (GRP Approximate Flux) The GRP approximate flux is given by

F ξ

j+ 1
2

(t) = f(u(xj+ 1
2
, 0+; ξ)) + f ′(u(xj+ 1

2
, 0+; ξ))ut(xj+ 1

2
, 0+; ξ)t. (39)

Now ∫ τ

0

F ξ

j+ 1
2

(t)dt−
∫ τ

0

f(u(xj+ 1
2
, t; ξ))dt = O(τ3),

so that the order of consistency is q = 1 in all cases. For smooth solutions we
obtain second-order consistency (q = 2), since in analogy with (38)

f ′′(u(xj+ 1
2
, 0+; ξ))ut(xj+ 1

2
, 0+; ξ)−f ′′(u(xj− 1

2
, 0+; ξ))ut(xj− 1

2
, 0+; ξ) = O(τ).

(40)
Thus, when reduced to the smooth setting, the common statement about the
second order consistency of this approximate flux (as well as the MUSCL flux
) is recovered.

In the following, we clarify the methodology by two types of equations. The
first is the simplest of all hyperbolic equations(scalar, linear, constant speed)
while the second deals with Euler’s system for compressible, nonisentropic
flows, sort of a “flagship” representing nonlinear systems of conservation laws.

5.1 Linear advection equation

We consider one-dimensional linear advection equations

ut + aux = 0, a > 0, (41)
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as example for the flux approximation. The finite volume formula takes the
form∫ x

j+1
2

x
j− 1

2

u(x, τ)dx−
∫ x

j+1
2

x
j− 1

2

u(x, 0)dx+ a

∫ τ

0

u(xj+ 1
2
, t)dt− a

∫ τ

0

u(xj− 1
2
, t)dt.

(42)
The initial data ξ(x) consists of piecewise polynomials of degree k,

ξ(x) = pkj (x), x ∈ [xj− 1
2
, xj+ 1

2
]. (43)

We use the Taylor approach for the flux computation

u(xj+ 1
2
, t) = u(xj+ 1

2
, 0+) +

∂u

∂t
(xj+ 1

2
, 0+)t+ · · ·+ ∂ku

∂tk
(xj+ 1

2
, 0+)

tk

k!
, (44)

thanks to the linearity. As the Lax-Wendroff approach is applied to this case,
we have

∂u

∂t
(xj+ 1

2
, 0+) = −a

∂u

∂x
(xj+ 1

2
, 0+), · · · , ∂

ku

∂tk
(xj+ 1

2
, 0+) = (−a)k

∂ku

∂xk
(xj+ 1

2
, 0+).

(45)
Then we use the initial data pkj (x) to upwind (for a > 0) obtain the value
∂αu
∂xα (xj+ 1

2
, 0+) = dα

dxα p
k
j (xj+ 1

2
−), α = 1, · · · , k, and obtain the approximate

flux

Fj+ 1
2
(t) = a

[
u(x, 0+) +

∂u

∂t
(x, 0+) · t+ · · ·+ ∂αu

∂tα
(x, 0+) · t

q

q!

]
x=x

j+1
2

, (46)

where 1 ≤ q ≤ k. It is evident that the truncation error is∫ τ

0

Fj+ 1
2
(t)dt−

∫ τ

0

au(xj+ 1
2
, t)dt = O(τ q+2). (47)

If pk(x) consists of piecewise polynomials of degree k, the linearity of (41)
implies ∫ τ

0

Fj+ 1
2
(t)dt−

∫ τ

0

au(xj+ 1
2
, t)dt ≡ 0 (48)

if q > k. In particular, as k = 1, we have∫ τ

0

au(xj+ 1
2
, t)dt = au(xj+ 1

2
, τ/2) · τ = a

[
u(x, 0+) +

∂u

∂t
(x, 0+) · τ

2

]
τ. (49)

Let us now remark about the corresponding two dimensional equation,

ut + aux + buy = 0, (50)
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where a, b are constant and (x, y) are spatial variables, the flux approxima-
tion becomes harder. Consider structural (rectangular) meshes [xj− 1

2
, xj+ 1

2
]×

[yℓ− 1
2
, yℓ+ 1

2
] and approximate the flux on the interface {(x, y); x =

xj+ 1
2
, yj− 1

2
< y < yj+ 1

2
}∫ τ

0

∫ y
j+1

2

y
j− 1

2

au(xj+ 1
2
, y, t)dydt ≈

∑
q

ωq

∫ τ

0

au(xj+ 1
2
, yq, t)dt, (51)

where yq ∈ [yℓ− 1
2
, yℓ+ 1

2
] are Gaussian points and ωq are weights. We use

the Lax-Wendroff approach replacing the temporal derivatives by spatial
derivatives,

∂qu

∂tq
(xj+ 1

2
, yq, 0+) =

[
−a

∂

∂x
− b

∂

∂y

]q
u(xj+ 1

2
, yq, 0+), 1 ≤ q ≤ k, (52)

and then carry out the Taylor expansion at each Gaussian point in the same
way as for one dimensional cases. Thus, the numerical fluxes are obtained.

Remark 5 The replacement of temporal derivatives by the corresponding spatial
derivatives includes the transversal effect ∂u

∂y in the numerical flux, which is very

crucial in multidimensional numerical schemes [22].

5.2 Euler equations of compressible inviscid flow

As the prototype of hyperbolic conservation laws, the system of compressible
Euler equations 

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv ⊗ v + p) = 0,

(ρE)t +∇ · (v(ρE + p)) = 0,

(53)

plays an important role in the development of theory, numerics and applica-
tions, where ρ, v, p, E = |v|2/2+e are the density, velocity, pressure and total
energy, e is the internal energy.

As ξ(x) ∈ V 1, i,e., ξ(x) is piecewise linear, the generalized Riemann prob-
lem (GRP) method was developed in [1, 2] and then improved in the direct
Eulerian version [3]. As ξ(x) ∈ V k, k ≥ 2, the GRP method was extended in
[17] to achieve high order approximate fluxes in the sense of (29).

Some remarks are in order.

(i) There are acoustic versions of GRP methods provided that waves involved
are weak so that the equations (53) could be linearized. The popular ADER
solvers were developed along this line [27]. Hence the GRP method could
be regarded as a nonlinear version of discontinuous Lax-Wendroff method.
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(ii) It is amazing to find that the GRP method effectively reflects the
thermodynamics of compressible flows [26].

(iii) There are extensions to various systems, e.g., the relativistic fluid dynamics
[29] and the blood model [30]

6 Lax-Wendroff type Convergence

The notion of high order consistency of an approximate scheme (Definition 5)
is crucial in the study of the convergence of the approximate solutions to a
solution of the balance law. We discuss it in the 1−D case.

Applying the finite volume approximation (19), we construct the discrete
sequence

θ̃n+1(x) = Φk(θ̃n) ∈ V k, n = 0, 1, 2, . . . , N − 1. (54)

The initial data is given by taking the projection of the initial function u0 ∈ U
on the subspace V k

θ0 = θ̃0 = P ku0 ∈ V k. (55)

Observe that at each step θ̃n ∈ V k is discontinuous at cell boundaries
x = xj+ 1

2
since the element of V k should preserve the average over Ij .

We shall further assume that these fluxes are consistent of order q > 0
(Definition 5).

It follows from Definition 6 (see Equation (16)) that for all grid intervals
Ij , ∫

Ij

[θ̃n+1(x)− θ̃n(x)]dx

= −
∫ tn+1

tn

[F θ̃n

j+ 1
2
(t− tn)− F θ̃n

j− 1
2
(t− tn)]dt, −∞ < j < ∞.

(56)

We now construct an interpolation function (in spacetime) Υ̃k(x, t) as
follows.

Υ̃τ (x, t) =
1

τ
[(tn+1 − t)θ̃n(x) + (t− tn)θ̃n+1(x)], t ∈ [tn, tn+1],

n = 0, 1, . . . , N − 1.
(57)

Observe that tn = nτ depends on τ.
Instead of the classical Lax-Wendroff theorem [14, Section 3.1] we get here

the following theorem. We refer to [5] for the proof.

Theorem 4 Assume that the FVS (54) is consistent of order q > 0. Let {τm ↓ 0}
be a decreasing sequence of time steps. Let u0 ∈ U and let {Υ̃τm(x, t)}∞m=1 be the
corresponding functions defined in (57).

Suppose that
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(i) The sequence {Υ̃τm(x, t)}∞m=1 is uniformly bounded in L∞([0, T ], L∞(R)).
(ii) The sequence {Υ̃τm(x, t)}∞m=1 converges in C([0, T ], L1

loc(R)) to a function
v(x, t) (in particular it is uniformly bounded in this space).

Then v(x, t) is a solution of the balance law (13) in the sense of Theorem 2.
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