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Abstract. The biharmonic operator plays a central role in a wide array of physical models, such as elasticity theory
and the streamfunction formulation of the Navier-Stokes equations. Its spectral theory has been extensively studied.
In particular the one-dimensional case (over an interval) constitutes the basic model of a high order Sturm-Liouville
problem. The need for corresponding numerical simulations has led to numerous works. The present paper relies
on a discrete biharmonic calculus. The primary object of this calculus is a high-order compact discrete biharmonic
operator (DBO). The DBO is constructed in terms of the discrete Hermitian derivative. However, the underlying
reason for its accuracy remained unclear. This paper is a contribution in this direction, expounding the strong
connection between cubic spline functions (on an interval) and the DBO. The first observation is that the (scaled)

fourth-order distributional derivative of the cubic spline is identical to the action of the DBO on grid functions.
It is shown that the kernel of the inverse of the discrete operator is (up to scaling) equal to the grid evaluation

of the kernel of
[(

d

dx

)

4
]

−1

, and explicit expressions are presented for both kernels. As an important application,

the relation between the (infinite) set of eigenvalues of the fourth-order Sturm-Liouville problem and the finite set
of eigenvalues of the discrete biharmonic operator is studied. The discrete eigenvalues are proved to converge (at
an “optimal” O(h4) rate) to the continuous ones. Another consequence is the validity of a comparison principle.

It is well known that there is no maximum principle for the fourth-order equation. However, a positivity result is
derived, both for the continuous and the discrete biharmonic equation, showing that in both cases the kernels are
order preserving.

1. INTRODUCTION

The operator
(

d
dx

)4

on the interval [0, 1] is certainly the simplest conceivable example of a fourth-order elliptic

one-dimensional operator. As such, its spectral theory is very well understood [9, Chapter 5] or [13]. In classical
terminology, its study is labeled as a “fourth-order Sturm-Liouville theory”. More generally, one can consider the

spectral structure of operators of the form
(

d
dx

)4

+ d
dx

(
A(x) d

dx

)
+ B(x). For such operators it was proved in [7]

that the isospectral set (of coefficients A(x), B(x)) is an infinite-dimensional real-analytic manifold (provided the
spectrum is simple).

Fourth-order elliptic operators , and particularly the biharmonic operator, play a significant role in a variety
of physical models, such as elasticity or the streamfunction formulation of the Navier-Stokes equations. This
interest has led to a vast literature devoted to a variety of discrete approximations to the solutions of fourth-order
equations. Since in this paper we focus on the one-dimensional eigenvalue problem, we shall just refer to studies
that are closely related to this issue. The question of stability in such models is fundamentally related to their
spectral structure, leading to extensive research in this direction. The numerical evaluation of the eigenvalues has
been the subject of numerous studies. As representative examples we can mention the “Shannon-type” sampling
method in [6] , the “matrix methods” in [22], the finite element methods in [2] and a 7-diagonal finite difference
method in [8]. The aim of these works was to capture the eigenvalues of the continuous operator by a suitable
approximation procedure.

In this paper we also address the problem of “high order” approximation of the eigenvalues of the one-dimensional
biharmonic operator. However, our approach is based on a “discrete elliptic theory”, as has recently been ex-
pounded in [5]. It involves the construction of discrete elliptic operators that can be shown to possess the classical
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elliptic properties, such as coercvity and regularity. The fundamental discrete operator considered here is the
discrete biharmonic operator (DBO) δ4x (2.9). The idea is to consider this DBO as a finite-dimensional operator

approximation to
(

d
dx

)4

and prove that the eigenvalues of the latter are limits (under mesh refinement) of the

eigenvalues of the former.
It is well known that the convergence of finite-dimensional approximations to an infinite-dimensional, unbounded

differential operator, does not entail the convergence of the respective spectra. Therefore, a deeper connection
between the discrete and continuous operators is required. The bridge between the two operators is achieved by
using the classical cubic spline functions. More specifically we establish the strong connection between the DBO
and differential operations on spline functions.

A basic tool of the discrete elliptic calculus is the discrete Hermitian derivative on an interval, that gives
a fourth-order accurate approximation to the derivative of a smooth function. It has been the cornerstone in
the construction of a fourth-order discrete approximation to the one-dimensional biharmonic operator [14] and
its extension to the full fourth-order Sturm-Liouville problem [5]. In the two-dimensional case, it has been used
in the construction of a compact high-order finite difference scheme for the Navier-Stokes system in the pure
streamfunction formulation [4, Part II]. In this paper the detailed theory of the DBO is exploited in the study of
the discrete spectrum and its asymptotic behavior as the number of grid points increases to infinity.

The structure of the paper is as follows.
In Section 2 we recall the definitions of the discrete finite difference operators, and in particular introduce the

Hermitian derivative and the discrete biharmonic operator δ4x.
In Subsection 3.1 we recall the basic (classical) construction of cubic spline functions on an interval.
In Subsection 3.2 we first establish the equality of the Hermitian derivative and the derivative of the interpolating

cubic spline. This is a fundamental fact connecting the two non-local fourth-order approximations of the derivative.
We were unable to locate this remarkable fact in the literature, even though we are convinced that such a classical
fact is well-known in the “spline function community”.

The connection between the discrete biharmonic operator δ4x and the interpolating cubic spline function is then
studied . It is in fact the main tool of this paper. Recall that cubic splines are C2 functions, with finite jumps of
the third-order derivatives at grid points. The result here (Proposition 3.10) is that the sizes of these jumps are
determined by the DBO acting on the grid values. Once again, we have not been able to locate such a result in
the “spline literature”, perhaps due to the fact that the DBO is not explicitly considered there.

This connection enables us to prove, in Section 4 , positivity results for the continuous and discrete fourth-order
operators (see Proposition 4.1 and Proposition 4.3). Recall that there is no maximum-minimum principle for the
fourth-order operator, so that the “order-preserving” property could serve as a substitute in some cases.

In Section 5 we first give the explicit form of the kernel (Green’s function) of the continuous operator. In the
first instance, this kernel acts in L2(0, 1). We then extend it to the negative Sobolev space H−2(0, 1). This space
includes all finite measures, and in particular all grid functions (identified as linear combinations of delta functions
at the grid points). Using the connection to cubic spline functions we establish the remarkable result that the
discrete resolvent (namely, the kernel of (δ4x)

−1) is just the grid evaluation of the continuous kernel, up to scaling.
Indeed, this can be viewed as an alternative, very natural, definition of the compact discrete biharmonic operator.

Finally, Section 6 is concerned with the eigenvalues of both the continuous and discrete operators. These
eigenvalues (more precisely their inverses) are studied in terms of the “kernel tools” developed in the previous
sections; the established connection between the discrete and continuous kernels implies that the discrete eigenvalues
are actually obtained by a “Nyström method” [24].

The highlight of this section (and one of the main results of the entire paper) is the proof of the convergence of
the discrete eigenvalues to the continuous ones, at an “optimal” fourth-order rate (Theorem 6.14). This result is
obtained by combining two ingredients:

• A suitable adaptation (Lemma 6.12) of a more general abstract convergence theorem [17, 19]. However,
we have chosen to provide a self-contained, much simpler proof, that builds on the analytic theory of
finite-dimensional perturbations, as expounded in Kato’s classical book [16].

• Our ability to study the differences of the continuous and the discrete operators, including the optimal
rates of convergence, in terms of differences of their respective kernels, see Proposition 6.4.

In Appendix A we use the approach of “generating polynomials” in order to give yet another explicit construction
of the kernel of the discrete resolvent (δ4x)

−1. In fact, this classical method enables us to establish a totally different
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point-of-view concerning the compact discrete operators used here, beginning with the Hermitian derivative. This
approach has the advantage of being directly related to the definitions of the discrete operators, avoiding the
“mediation” of spline functions. It is potentially applicable as a computational approach to similar (discrete)
problems.

Let us briefly comment on the possibility of extending the results here to the multi-dimensional case. Clearly,
once the kernel of the inverse of the discrete operator is given by the grid values of the continuous kernel, the conver-
gence of the discrete eigenvalues can be established as in Section 6. Notice that in that section the dimensionality
does not play a significant role. However, in carrying out such a program, one encounters two difficulties.

• Identifying the discrete operator whose inverse is indeed represented by the discrete kernel. In the one-
dimensional case this is the DBO (see Corollary 5.2), which is a key result in our treatment.

• Determining the truncation error incurred in the discretization of the continuous eigenfunctions, as in
Equation (6.16).

It therefore appears that extending our approach and results to higher dimensions will require significant additional
ideas, but the present one-dimensional study gives an indication of what may be possible to achieve in a more general
context. We note that the one-dimensional DBO is a key component in the construction of the two-dimensional
discrete biharmonic operator [4], so that its detailed understanding is of great relevance.

2. SETUP and DEFINITION OF THE DISCRETE OPERATORS

We equip the interval Ω = [0, 1] with a uniform grid

xj = jh, 0 ≤ j ≤ N, h =
1

N
.

The approximation is carried out by grid functions v defined on {xj , 0 ≤ j ≤ N} . The space of these grid functions
is denoted by l2h. For their components we use either vj or v(xj).

For every smooth function f(x) we define its associated grid function

(2.1) f∗
j = f(xj), 0 ≤ j ≤ N.

The discrete l2h scalar product is defined by

(v,w)h = h

N∑

j=0

vjwj ,

and the corresponding norm is

(2.2) |v|2h = h
N∑

j=0

v2j .

For linear operators A : l2h → l2h we use |A|h to denote the operator norm.
The discrete sup-norm is

(2.3) |v|∞ = max
0≤j≤N

{|vj |} .

The discrete homogeneous space of grid functions is defined by

(2.4) l2h,0 = {v, v0 = vN = 0} .

Given v ∈ l2h,0 we introduce the basic (central) finite difference operators

(2.5)
(δxv)j =

1

2h
(vj+1 − vj−1), 1 ≤ j ≤ N − 1,

(δ2xv)j =
1

h2
(vj+1 − 2vj + vj−1), 1 ≤ j ≤ N − 1,

The cornerstone of our approach to finite difference operators is the introduction of the Hermitian deriv-

ative [5] of v ∈ l2h,0, that will replace δx. It will serve not only in approximating (to fourth-order of accuracy)
first-order derivatives, but also as a fundamental building block in the construction of finite difference approxima-
tions to higher-order derivatives.

First, we introduce the “Simpson operator”
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(2.6) (σxv)j =
1

6
vj−1 +

2

3
vj +

1

6
vj+1, 1 ≤ j ≤ N − 1.

Note the operator relation (valid in l2h,0)

(2.7) σx = I +
h2

6
δ2x,

so that σx is an “approximation to the identity”.
The Hermitian derivative vx is now defined by

(2.8) (σxvx)j = (δxv)j , 1 ≤ j ≤ N − 1.

Remark 2.1. In the definition (2.8), the values of (vx)j , j = 0, N, need to be provided , in order to make sense of
the left-hand side (for j = 1, N − 1). If not otherwise specified, we shall henceforth assume that vx ∈ l2h,0, namely

(vx)0 = (vx)N = 0.

In particular, the linear correspondence l2h,0 ∋ v → vx ∈ l2h,0 is well defined, but not onto, since δx has a non-trivial
kernel.

The discrete biharmonic (DBO) operator is given by (for v, vx ∈ l2h,0),

(2.9) δ4xv =
12

h2
[δxvx − δ2xv].

The truncation error of the DBO is O(h4) at internal points but only O(h) at near-boundary points [4, Proposition
10.8]. However, the full (“optimal”) fourth-order accuracy is achieved by its inverse (see Equation (2.15) below).
This is a fundamental fact in the present study.

We next introduce a fourth-order replacement to the operator δ2x (see [4, Equation (10.50)(c)]),

(2.10) (δ̃2xv)j = 2(δ2xv)j − (δxvx)j , 1 ≤ j ≤ N − 1.

Note that, in accordance with Remark 2.1 the operator δ̃2x is defined on grid functions v ∈ l2h,0, so that also

vx ∈ l2h,0.
The connection between the two difference operators for the second-order derivative is given by

(2.11) −δ̃x
2
= −δ2x +

h2

12
δ4x.

Remark 2.2. Clearly the operators δx, δ
2
x, δ

4
x depend on h, but for notational simplicity this dependence is not

explicitly indicated.

The fact that the biharmonic discrete operator δ4x is positive (in particular symmetric) is proved in [4, Lemmas

10.9, 10.10]. Therefore its inverse
(
δ4x

)−1

is also positive. In fact, it satisfies a strong coercivity property, that

is also established in the aforementioned reference. In the proofs of Proposition 3.8 and Corollary 3.12 below we

invoke an interpretation of the finite-difference operators δ̃x
2
and δ4x in terms of a “polynomial approach” [4,

Section 10.3], as follows. Let q(x) be a fourth-order polynomial such that

q(xj) = vj , q(xj±1) = vj±1, q′(xj±1) = (vx)j±1.

Then

(2.12) (δ̃x
2
v)j = q′′(xj), (δ4xv)j = q(4)(xj).

The discrete biharmonic operator gives a very accurate approximation to the continuous one (“optimal 4-th order
accuracy”) , as seen in the following claim [4, Theorem 10.19] .

Claim 2.3. Let f(x) ∈ C4(Ω), Ω = [0, 1]. Let u(x) satisfy

(2.13)
( d

dx

)4

u(x) = f(x),

subject to homogeneous boundary conditions

(2.14) u(0) =
d

dx
u(0) = u(1) =

d

dx
u(1) = 0.
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Then

(2.15) |u∗ − (δ4x)
−1f∗|∞ = O(h4).

Remark 2.4. The “O(h4)” here means that there exists a constant C > 0, depending only on f, such that for all
integers N > 1,

|u∗ − (δ4x)
−1f∗|∞ ≤ Ch4, h =

1

N
.

Observe that the grid functions in this estimate are defined on the grid of (the variable) mesh size h.

3. SPLINES , HERMITIAN DERIVATIVES and the DISCRETE BIHARMONIC OPERATOR

3.1. THE BASIC SETUP for CUBIC SPLINES. In this subsection we recall the basic facts about cubic
splines that will be essential in this study.

As in Section 2 we consider the interval Ω = [0, 1] with a uniform grid

xj = jh, 0 ≤ j ≤ N, h =
1

N
.

We fix a vector f = {fj}
N

j=0 so that f0 = fN = 0, namely f ∈ l2h,0 (see (2.4)), and consider the family

A =
{
u ∈ H2

0 (Ω), uj = fj , j = 0, 1, ..., N
}
.

The space H2
0 (Ω) is the space of functions having first and second (distrbutional) derivatives in L2(Ω) and

vanishing, with their first-order derivatives, at the endpoints.
It is well known that the norm in H2

0 (Ω) can be defined by

‖u‖2H2
0(Ω) =

∫ 1

0

|u′′(x)|2dx,

and we shall refer henceforth to this norm.
We consider the functional

I(u) =

1∫

0

|u′′(x)|2dx, u ∈ H2
0 (Ω).

We are interested in a minimizer for this functional, restricted to A.

Claim 3.1. The functional has a unique minimizer on A , which we designate as sf,

I(sf) < I(g), sf 6= g ∈ A.

The proof of this classical fact can be worked out by standard methods of the calculus of variations [12, 21].
A purely algebraic proof can be found in [1, Theorem 3.4.3] or [10, Chapter IV, Cubic Spline Interpolation]. The
reader can also find the proof of the following claim in these latter references.

Claim 3.2. (1) sf is a cubic polynomial in each interval [xj , xj+1], j = 0, 1, ..., N − 1.
(2) sf ∈ C2

0 (Ω).
(3) The previous two properties , supplemented by the constraints sf(xj) = fj , j = 1, ..., N − 1, and sf(x0) =

s′f(x0) = sf(xN ) = s′f(xN ) = 0 determine sf uniquely.

Definition 3.3. The function sf is called the (“type I”) cubic spline corresponding to the constraints

sf(xj) = fj , j = 1, ..., N − 1, sf(x0) = s′f(x0) = sf(xN ) = s′f(xN ) = 0.

Claim 3.4. Consider the vectors f = {fj}
N

j=0 such that f0 = fN = 0, namely f ∈ l2h,0 (see (2.4)). Then the map

f →֒ sf ∈ H2
0 (Ω) is one-to-one and linear.

Proof. The fact that the map is one-to-one is obvious since sf determines f. The linearity follows from the uniqueness

part in Claim 3.2. Indeed, if sf, sg correspond to f, g = {fj , gj}
N

j=0 so that g0 = gN = f0 = fN = 0, respectively, then

sf + sg has properties as in Claim 3.2 and it satisfies the constraints corresponding to f+ g, hence sf+g = sf + sg.
�

Remark 3.5. A positivity property of the cubic spline is stated in Corollary 4.4 below.
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3.2. CUBIC SPLINES MEET the DISCRETE BIHARMONIC OPERATOR. We use the notation of
Section 2.

Let u ∈ l2h,0 be a grid function vanishing at the endpoints and let su ∈ H2
0 (Ω) be the corresponding spline

function (Claim 3.4).
We use interchangeably the notation uj = u(xj).
Let ux be the Hermitian derivative of u, and we set at the endpoints

(3.1) ux(x0) = s′u(x0) = 0, ux(xN ) = s′u(xN ) = 0.

Proposition 3.6. For all interior nodes, s′u(xj) = ux(xj), 1 ≤ j ≤ N − 1.

Proof. To simplify notation we shift xj = 0, so we need to show

(3.2)
1

3
s′u(−h) +

4

3
s′u(0) +

1

3
s′u(h) =

u(h)− u(−h)

h
.

The quadratic part of su is continuous, so the equality for this part follows from Simpson’s rule.
Thus we need only check for su(x) = a±x3 for ±x > 0. But this can be verified directly. �

In addition to u ∈ l2h,0, let v ∈ l2h,0 be a grid function vanishing at the endpoints and let sv be the corresponding

spline function. At the endpoints we impose again the boundary conditions (3.1).

Claim 3.7. The map (u, v) →
1∫
0

s′′u(x)s
′′
v(x)dx is a scalar product on l2h,0.

Proof. In view of Claim 3.4 the map is bilinear. Furthermore , if
1∫
0

|s′′u(x)|
2dx = 0, then s′′u ≡ 0 and since su ∈ H2

0

it follows that also su ≡ 0, which implies u = 0. �

We denote by δ4xu the Stephenson fourth-order derivative of u. It is interesting that the scalar product of the
previous claim can be expressed in terms of this fourth-order derivative.

Proposition 3.8. Let u, ux, v, vx ∈ l2h,0.

The discrete scalar product of δ4xu and v satisfies

(3.3) (δ4xu, v)h =

1∫

0

s′′u(x)s
′′
v(x)dx.

Proof. Pick j ∈ {1, 2, ..., N − 1} and let Qj(x) be the fourth-order polynomial used in the construction (2.12) of
(δ4xu)j , namely,

Qj(xj) = uj = su(xj), Qj(xj±1) = uj±1 = su(xj±1),

Q′
j(xj) = s′u(xj), Q′

j(xj±1) = s′u(xj±1).

Observe that the second line above follows from Proposition 3.6.
Consider the polynomial Qj − su in the interval [xj , xj+1]. It is a fourth-order polynomial with double zeros at

xj , xj+1, so it must have the form

(3.4) Qj(x)− su(x) = Aj(x − xj)
2(x− xj+1)

2, x ∈ [xj , xj+1],

and similarly

(3.5) Qj(x)− su(x) = Aj−1(x− xj)
2(x− xj−1)

2, x ∈ [xj−1, xj ].

However,

(3.6) Aj−1 = Aj =
1

24
Q

(4)
j (xj) =

1

24
δ4xuj ,

by definition of the discrete biharmonic operator.
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Let us now compute
xj+1∫

xj

s′′u(x)s
′′
v(x)dx = s′′u(xj+1)s

′
v(xj+1)− s′′u(xj)s

′
v(xj)−

xj+1∫

xj

s′′′u (x)s′v(x)dx

= s′′u(xj+1)s
′
v(xj+1)− s′′u(xj)s

′
v(xj)− s′′′u (x−

j+1)sv(xj+1) + s′′′u (x+
j )sv(xj),

since the fourth-order derivative of su vanishes identically in the interval.
By summation, and recalling that su ∈ C2, we get

(3.7)

1∫

0

s′′u(x)s
′′
v(x)dx =

N−1∑

j=0

(s′′′u (x+
j )− s′′′u (x−

j ))sv(xj).

From Equations (3.4), (3.5) we get

(3.8)
Q′′′

j (xj)− s′′′u (x+
j ) = −12hAj,

Q′′′
j (xj)− s′′′u (x−

j ) = 12hAj,

and inserting this in Equation (3.7) yields

(3.9)

1∫

0

s′′u(x)s
′′
v(x)dx = 24h

N−1∑

j=0

Ajsv(xj) = h

N−1∑

j=0

(δ4xu)jvj .

�

Remark 3.9. Note that, in contrast to (3.3), it is not true in general that for any u, v ∈ l2h,0

(u, v)h =

1∫

0

su(x)sv(x)dx.

Proposition 3.10. The jump of the third order derivatives of the cubic splines at the nodes is given by

(3.10) s′′′u (x+
j )− s′′′u (x−

j ) = h(δ4xu)j .

Proof. Combine Equations (3.8) and (3.6). �

Remark 3.11. In the literature (e.g. [1, 10] one can find various expressions for the jump of the third order
derivatives of the cubic spline. However Proposition 3.10 provides a new expression, that can be interpreted as a
“fourth-order derivative” of the function at the node.

We can also interpret the second derivative of su in terms of the finite difference operators. Recall that this
derivative is continuous at the nodes.

Corollary 3.12. The value of s′′u(xj) is given by

(3.11) s′′u(xj) = (δ̃x
2
u)j −

h2

12
(δ4xu)j .

Proof. From Equation (3.4) we get

Q′′
j (xj)− s′′u(xj) = 2Ajh

2.

By definition, Q′′
j (xj) = (δ̃x

2
u)j and from (3.6) we have Aj =

1
24Q

(4)
j (xj) =

1
24 (δ

4
xu)j , hence

s′′u(xj) = Q′′
j (xj)− 2Ajh

2 = (δ̃x
2
u)j −

h2

12
(δ4xu)j .

�

Remark 3.13. Note that invoking the relation (2.11) we obtain from (3.11)

s′′u(xj) = (δ2xu)j −
h2

6
(δ4xu)j .
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3.3. COMPARING THE FEM and DBO APPROACHES to
( d

dx

)4

u(x) = f(x)

. The relation of the DBO to cubic spline functions, as expressed in Proposition 3.8, raises the question about the
connection between the “discrete functional calculus” and the finite-element approaches to the approximation of
the continuous biharmonic equation. In the following discussion we clarify the distinction between them.

If the cubic splines are taken as “basis functions”, the variational formulation via the finite-element methodol-
ogy [18, 21] means that we look for a grid function u that satisfies

(3.12)

∫ 1

0

s′′u(x)s
′′
v(x)dx =

∫ 1

0

sf∗(x)sv(x)dx, for all grid functions v ∈ l2h,0.

On the other hand, the discrete functional approach employed here implies that we look for a grid function u that
satisfies

(3.13) (δ4xu, v)h = (f∗, v)h, for all grid functions v ∈ l2h,0.

While the left-hand sides in Equations (3.12) and (3.13) are equal (Proposition 3.8), this is in general not true for
the right-hand sides (Remark 3.9). This shows that, in spite of the connection between the DBO and cubic splines
expounded above, the DBO scheme is not equivalent to the FEM based on these splines.

It is of interest to evaluate the square of the norm
1∫
0

|s′′u(x)|
2dx in terms of the nodal values of u, ux, by using

the equality (3.3).
We first compute over a grid interval

Bj =

xj+1∫

xj

|s′′u(x)|
2dx, j = 0, 1, ..., N − 1.

To simplify notation, we set y = x− xj , so that s(y) = su(x) is a cubic polynomial in y ∈ [0, h]. Writing

s(y) = ay3 + by2 + cy + d,

we get readily

(3.14) a =
1

h3
[h(s′(h) + s′(0))− 2(s(h)− s(0))].

Since s′(y) is a quadratic polynomial, we have

r := s′′(h/2) =
1

h
(s′(h)− s′(0)),

and

s′′(y) = r + 6a(y −
h

2
), y ∈ [0, h].

Turning now back to the variable x, and taking into account the equalities

su(xj) = u(xj), 0 ≤ j ≤ N − 1,

s′u(xj) = ux(xj), 0 ≤ j ≤ N − 1.

we obtain

(3.15)

Bj =

xj+1∫

xj

|s′′u(x)|
2dx

=
1

h
(ux(xj+1)− ux(xj))

2 +
3

h

[
(ux(xj+1) + ux(xj))− 2

u(xj+1)− u(xj)

h

]2
, j = 0, 1, ..., N − 1,

and

(3.16)

1∫

0

|s′′u(x)|
2dx =

N−1∑

j=0

Bj .
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Remark 3.14. Equation (3.3) can then be used to define the discrete fourth-order derivative δ4xu when u, ux ∈ l2h,0.

From equation (3.16) we obtain (by polarization) an explicit expression for δ4xuj , which is actually the Stephenson
expression.

We also obtain an alternative proof of the coercivity property of the DBO [4, Eq.(10.100)] as follows.

Corollary 3.15. If u, ux ∈ l2h,0 then

(3.17) (δ4xu, u)h ≥ h

N−1∑

j=0

[ux(xj+1)− ux(xj)

h

]2
.

Proof. Take just the first term in the right-hand side of (3.15). �

4. POSITIVITY

It is well known that there is (in general) no maximum principle for elliptic partial differential operators of order
higher than two. For the biharmonic equation in multi-dimensional domains there exist versions of the principle
that involve estimates of the gradient of the solution, see [20] and references therein. Under Dirichlet boundary
conditions (the only ones considered here) the preservation of positivity property means that ∆2u ≥ 0 ⇒ u ≥ 0. It
is actually a property of the domain. The maximum principle implies preservation of positivity but of course not
vice versa. In the one-dimensional case a general study of linear differential inequalities is given in [23]. In the
multi-dimensional case (excluding the one-dimensional case) we refer to [15] and references therein.

In our one-dimensional case we have the following proposition. Besides being of interest in its own right, it
motivates the requirement that discrete approximations possess the same property (satisfied by the DBO, see
Proposition 4.3 below). The proof of this property in the discrete case, in turn, implies a positivity property of
cubic splines (Corollary 4.4 below).

Proposition 4.1. Let ( d

dx

)4

u(x) = f(x),

where u ∈ H4(Ω) ∩H2
0 (Ω). Then the following comparison principle holds.

If f(x) ≥ 0, x ∈ Ω, then also u(x) ≥ 0, x ∈ Ω.

Proof. Suppose to the contrary that for some y ∈ (0, 1) we have u(y) < 0. We can assume that y is a minimum
point for u, so that

u′(y) = 0, u′′(y) ≥ 0.

Since u′ vanishes at the endpoints, we infer that there are points

ξ ∈ (0, y), η ∈ (y, 1),

such that
u′′(ξ) = u′′(η) = 0.

Let

(4.1)
a = inf

{
ξ ∈ Ω, u′′(ξ) = 0

}
,

b = sup
{
η ∈ Ω, u′′(η) = 0

}
.

Consider the function v(x) = u′′(x). It satisfies in the interval [a, b] the inequality

v′′(x) = f(x) ≥ 0,

as well as v(a) = v(b) = 0 and v(y) ≥ 0.
The standard maximum principle now yields

v(x) ≡ 0, x ∈ [a, b],

hence also u′(x) ≡ u′(y) = 0, x ∈ [a, b].
If a > 0 we get a contradiction since there is a point ξ ∈ (0, a) with u′′(ξ) = 0. Similarly if b < 1. We conclude

that u′(x) ≡ 0, x ∈ [0, 1], hence u(x) ≡ u(y) < 0, x ∈ [0, 1]. However this contradicts the boundary condition
u(0) = u(1) = 0.

�
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Remark 4.2. In Section 5 below we derive an expression for the resolvent kernel (5.3). Since it is easy to see that
the kernel is nonnegative, we obtain another proof of Proposition 4.1.

4.1. POSITIVITY of the DISCRETE BIHARMONIC OPERATOR. We now show that the same posi-
tivity property holds also for the discrete biharmonic operator.

Proposition 4.3. Let

δ4xu = f,

where u, ux ∈ l2h,0. Then the following comparison principle holds.
If fj ≥ 0, 0 ≤ j ≤ N, then also uj ≥ 0, 0 ≤ j ≤ N.

Proof. Suppose to the contrary that uj0 < 0 for some index 1 ≤ j0 ≤ N − 1.
Let su ∈ C2

0 (Ω) be the corresponding spline function. Since su(xj0 ) = uj0 < 0 it follows that there exists a
minimum point y ∈ Ω so that

su(y) = min {su(x), x ∈ Ω} < 0.

We have

(4.2) s′u(y) = 0, s′′u(y) ≥ 0.

Since s′u vanishes at the endpoints, we infer that there are points

ξ ∈ (0, y), η ∈ (y, 1),

such that

s′′u(ξ) = u′′(η) = 0.

Let

(4.3)
a = inf

{
ξ ∈ Ω, s′′u(ξ) = 0

}
,

b = sup
{
η ∈ Ω, s′′u(η) = 0

}
.

Let w(x) = s′′u(x). The function w is continuous and linear in grid intervals. In view of Proposition 3.10 we get, in
the sense of distributions,

(4.4) w′′ = h

N−1∑

j=1

fjδxj
≥ 0,

where δy is the Dirac measure at y.
Since w(a) = w(b) = 0, the standard maximum principle yields

w(x) ≡ 0, x ∈ [a, b],

hence

s′u(x) ≡ s′u(y) = 0, x ∈ [a, b],

and in particular s′u(a) = s′u(b) = 0.
As in the proof of Proposition 4.1 we conclude that a = 0 and b = 1, and therefore

su(x) ≡ su(y) < 0, x ∈ [0, 1],

which is a contradiction to the boundary conditions.
�

Corollary 4.4. Let u satisfy the conditions of Proposition 4.3. Let su be the corresponding spline function. Then

su(x) ≥ 0, x ∈ [0, 1].

Proof. The assumption that there exists a point y ∈ (0, 1) such that su(y) < 0 leads to a contradiction; this follows
from the proof of Proposition 4.3 . �
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5. THE CONTINUOUS and DISCRETE RESOLVENT KERNEL

The operator L = d4/dx4, with homogeneous boundary conditions (φ ∈ D(L) ⇒ φ(0) = φ′(0) = φ(1) = φ′(1) =
0) is positive definite (in particular self adjoint) with domain D(L) = H4([0, 1]) ∩H2

0 ([0, 1]. We now consider the
kernel of L−1, namely, Green’s function of the biharmonic problem

(5.1) Lu =
( d

dx

)4

u(x) = f(x),

where u ∈ H4(Ω) ∩H2
0 (Ω). A standard computation leads to the following

Claim 5.1. The solution of (5.1) is given by

(5.2) u(x) =

∫ 1

0

K(x, y)f(y)dy,

where

(5.3) K(x, y) =

{
1
6 (1− x)2y2[2x(1− y) + x− y], y < x
1
6x

2(1 − y)2[2y(1− x) + y − x], x < y
.

Proof. By the general theory, we verify that in the sense of distributions, for each fixed y, as a function of x,
( d

dx

)4

K(x, y) = δy,

where δy is the Dirac measure at y. In addition, K(x, y) is symmetric in x, y and satisfies the homogeneous
boundary conditions (as a function of x). �

5.1. EXTENDING the KERNEL to H−2(Ω). The domain of
(

d
dx

)4

(as a self-adjoint operator in L2(Ω),

subject to homogeneous boundary conditions) is H2
0 (Ω)∩H4(Ω). When extended (in the sense of distributions) to

H2
0 (Ω), it maps it to its dual H−2(Ω) [12, Chapter 5]. On the other hand, the general theory (or a direct inspection

of the expression (5.3)) ensures that, for every fixed x ∈ Ω, we have K(x, ·) ∈ H2
0 (Ω). It follows that Equation (5.2)

can be extended to all u ∈ H2
0 (Ω) (or, alternatively, to all f ∈ H−2(Ω)) as

(5.4) u(x) =< K(x, y), f(y) >,

where < ·, · > is the
(
H2

0 (Ω), H
−2(Ω)

)
coupling.

We now fix a mesh size h = 1
N

and consider the grid functions u ∈ l2h,0 vanishing at the endpoints. As in

Section 3 we let su ∈ H2
0 (Ω) be the corresponding spline function.

Let

SPh =
{
su ∈ H2

0 (Ω), u ∈ l2h,0
}
.

We note that SPh is a finite-dimensional subspace of H2
0 (Ω). However, it is not fully contained in H4(Ω). Therefore,

as observed above, we can extend the differential operator
(

d
dx

)4

to the union
[
H4(Ω) ∩H2

0 (Ω)
]
∪ SPh.

As was shown in Proposition 3.10, the action of the operator on SPh is given by a combination of Dirac
delta-functions at the nodes xj , that can be written as an equality of grid functions

( d

dx

)4

su = hδ4xu.

The right-hand side in this equation is a finite measure, and we recall that, owing to the Sobolev embedding
theorem, all finite measures are contained in H−2(Ω).

Thus, Equation (5.4) takes here the form

(5.5) uj = h
N−1∑

i=1

K(xi, xj)(δ
4
xu)i, j = 1, 2, . . . , N − 1.

Corollary 5.2. The discrete operator (δ4x)
−1 : l2h,0 → l2h,0 is represented by a matrix

{
Kh

i,j

}
1≤i,j≤N−1

, explicitly

given by

(5.6) Kh
i,j = hK(xi, xj), 1 ≤ i, j ≤ N − 1,
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where K(x, y) is the resolvent kernel of
(

d
dx

)4

, as in Equation (5.3).

An alternative proof of the corollary, based on “generating polynomials”, is given below in Appendix A .

6. CONTINUOUS and DISCRETE EIGENVALUES

In this section we reach the main purpose of this paper, namely, establishing the convergence of the discrete

eigenvalues (of the DBO) to the eigenvalues of the continuous operator
(

d
dx

)4

. Continuing the discussion in

Subsection 3.3, it is important to make the distinction between our “discrete functional calculus” approach to
that of the closely related finite-element approach. For the latter, we refer to the extensive survey [3].

In the finite-element methodology, given a mesh size h = 1
N
, an eigenvalue µh and the associated eigenfunction

suh
(x) are obtained by the equation (compare Eq. (3.12))

(6.1)

∫ 1

0

s′′uh
(x)s′′v(x)dx = µh

∫ 1

0

suh
(x)sv(x)dx, for all grid functions v ∈ l2h,0.

On the other hand, in the approach employed here we look for an eigenvalue λh and a grid function uh ∈ l2h,0 that
satisfy

(6.2) (δ4xuh, v)h = λh(uh, v)h, for all grid functions v ∈ l2h,0.

While the left-hand sides are equal, in view of Proposition 3.8, this is not true in general for the right-hand
sides (Remark 3.9). For this reason, we cannot invoke the well-developed theory of spectral approximation in the
finite-element framework [3] in order to obtain the convergence of eigenvalues in our setup.

6.1. THE CONTINUOUS OPERATOR. We now consider the eigenvalues of the operator L, introduced in
Section 5.

The operator has a compact resolvent, and the kernel K of L−1 is given in Claim 5.1. The spectrum of L consists
of an increasing sequence of positive simple eigenvalues, which we designate as {0 < λ1 < λ2 < ... < λk < ...} .

Since these eigenvalues play an important role in the sequel, we provide below the details of their evaluation,
repeating the proof of [9, Lemma 5.5.4].

Let φ ∈ H4([0, 1]) ∩H2
0 ([0, 1]) be a real eigenfunction

d4

dx4
φ = λφ, λ ∈ {0 < λ1 ≤ ... ≤ λk...} .

Clearly, this function must be of the form

(6.3) φ(x) = A cos(βx) +B sin(βx) + C cosh(βx) +D sinh(βx),

where β is real and β4 = λ.
The conditions φ(0) = φ′(0) = 0 clearly imply

A = −C, B = −D,

and φ(1) = 0 yields

(6.4) A(cosβ − coshβ) = −B(sinβ − sinhβ).

The remaining condition φ′(1) = 0 yields

−B(cosβ − coshβ) = A(− sinβ − sinhβ).

Multiplying the two equations and invoking standard identities we get

(6.5) cosβ coshβ = 1,

which is to be considered as the equation determining the discrete eigenvalues.
Changing β → −β we can keep A,C unmodified but reverse the signs of B,D. It therefore follows that for

−β < 0 (solution of (6.5)) we get the same eigenfunction (6.3) as for β > 0, and we can consider only positive β.
We therefore get the full set of eigenfunctions (for β > 0 solving (6.5)),

(6.6) φ(x) = A cos(βx) +B sin(βx) −A cosh(βx)−B sinh(βx),

where A,B satisfy (6.4).
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In order to estimate the location of the eigenvalues it therefore suffices to consider the positive solutions of (6.5).
The following claim is easy to verify.

Claim 6.1. Equation (6.5) has a sequence of positive solutions as follows.

(6.7)





β0 ∈ (3π/2, 2π),

β
(1)
k ∈ (2kπ, (2k + 1/2)π), k = 1, 2, ...

β
(2)
k ∈ ((2k + 3/2)π, (2(k + 1)π), k = 1, 2, ...

The corresponding eigenvalues λ0 = β4
0 , λ

(1)
k = (β

(1)
k )4, λ

(2)
k = (β

(2)
k )4 of L are all simple.

We denote by

{φ1, ..., φk...}

the orthonormal set of the associated eigenfunctions.

6.2. THE DISCRETE OPERATOR. We simplify the notation above and denote by {0 < λ1 < λ2 < . . . < λk < . . .}

the (infinite) sequence of eigenvalues of L =
(

d
dx

)4

.

Given h = 1
N
, let

Λh = {0 < λh,1 ≤ λh,2 ≤ . . . ≤ λh,N−1}

be the finite sequence of eigenvalues of δ4x.
We denote by Γ the sum

Γ =

∞∑

i=1

λ−1
i ,

and let

Γh =

N−1∑

i=1

λ−1
h,i .

Proposition 6.2. There exists a constant C > 0, independent of h, so that

(6.8) |Γ− Γh| ≤ Ch4.

Proof. We introduce the (infinite) set of reciprocals of the eigenvalues of L, namely, the eigenvalues of the kernel
K(x, y) (5.3),

(6.9) Λ−1 =
{
λ−1
1 > λ−1

2 > . . . > λ−1
k . . . > 0

}
,

while

(6.10) Λ−1
h =

{
λ−1
h,1 ≥ λ−1

h,2 ≥ . . . ≥ λ−1
h,N−1 > 0

}

is the set of eigenvalues of (δ4x)
−1, corresponding to the discrete kernel Kh (5.6).

By the standard trace formula, it follows that

(6.11) Γ =

∫ 1

0

K(x, x)dx, Γh = h

N−1∑

i=1

K(xi, xi).

Since K(x, x) = 1
3x

3(1− x)3, the numerical values of Γ and C can easily be calculated, and it turns out that

(6.12) Γ =
1

420
.

On the other hand

(6.13) Γh =
h

3

N−1∑

i=1

(ih)3(1− ih)3 =
1

420
+

1

180
h4 −

1

126
h6,

so that (6.8) is established (and even with an explicit constant). �
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Remark 6.3. Observe that Γh is the discrete trapezoidal approximation to the integral for Γ. By the standard
estimate for the trapezoidal rule, we obtain

(6.14) |Γ− Γh| ≤ Ch2,

with C = 1
12 max

0≤x≤1
|( d

dx
)2K(x, x)| = 1

96 .

The fourth-order estimate (6.8) is clearly a result of special properties of the kernel K.

The “collective” estimate (6.8) does not imply that an estimate of the form λ−1
i −λ−1

h,i = O(h4) is valid, for any
fixed value of the index i. However, the next proposition provides a weaker statement in this direction. It will play
a key role in the final, stronger Theorem 6.14 below.

Proposition 6.4. For any fixed integer i ≥ 1 there exist positive constants C, h0 > 0 such that for any 0 < h =
1
N

< h0 we have

(6.15) dist{λ−1
i , Λ−1

h } ≤ Ch4,

where Λ−1
h is the set of reciprocals introduced in (6.10).

Proof. Let φi(x) ∈ H2
0 (Ω) be a normalized eigenfunction of

(
d
dx

)4

, corresponding to λi. Recall that φi ∈ C∞ and
(

d
dx

)−4

φi = λ−1
i φi. Hence

λ−1
i φi(x) =

∫ 1

0

K(x, y)φi(y)dy, x ∈ Ω.

For simplicity, we denote by {xj = jh, 0 ≤ j ≤ N} the grid points , omitting the obvious dependence on h.
Let φ∗

i = {φi(x0), . . . , φi(xk), . . . , φi(xN )} be the corresponding grid function.
In view of Claim 2.3 and Corollary 5.2 we have for all 0 ≤ k ≤ N,

∣∣∣λ−1
i φi(xk)− h

N∑

j=0

K(xk, xj)φi(xj)
∣∣∣ ≤ Ch4,

where here and below C > 0 is a constant depending only on φi that changes from one estimate to the next. Using
the notation (5.6) this can be rewritten as

(6.16)
∣∣∣λ−1

i φ∗
i (xk)−

N∑

j=0

Kh
k,jφ

∗
i (xj)

∣∣∣ ≤ Ch4,

that is ∣∣∣(λ−1
i − (δ4x)

−1)φ∗
i

∣∣∣
h
≤ Ch4.

On the other hand, the smoothness of the normalized φi yields

|φ∗
i |h ≥ 1− Ch.

The last two estimates imply the following estimate of the operator norm,

(6.17)
∣∣∣
(
λ−1
i − (δ4x)

−1
)−1∣∣∣

h
≥

1− Ch

Ch4
≥ Ch−4,

for h < h0. A standard result concerning resolvents of self-adjoint operators now yields

dist{λ−1
i , Λ−1

h } =
∣∣∣
(
λ−1
i − (δ4x)

−1
)−1∣∣∣

−1

h
,

which concludes the proof of the proposition. �

Remark 6.5. Proposition 6.4 shows that in any neighborhood of λ−1
i there is a discrete eigenvalue λ−1

h,k, provided

h > 0 is sufficiently small. Observe, however, that we cannot infer that, even the largest eigenvalue (of L−1) λ−1
1

is the limit, as h → 0, of the largest discrete eigenvalue λ−1
h,1 (of (δ4x)

−1). This is done in Theorem 6.7 below.
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Remark 6.6. In view of Corollary 5.2 the discrete eigenvalues in Λ−1
h are obtained by a “Nyström method” [24],

namely, eigenvalues of the discretized kernel. The fact that for any fixed integer i ≥ 1

lim
h→0

dist{λ−1
i ,Λ−1

h } = 0,

follows from [24, Theorem 3]. Proposition 6.4 establishes an “optimal” O(h4) rate to this convergence.

6.3. CONVERGENCE OF THE FIRST DISCRETE EIGENVALUE. For the first discrete eigenvalue
λh,1 we can establish its convergence (as h ↓ 0) to λ1 as follows.

Theorem 6.7. The sequence of the discrete first eigenvalues of δ4x converges to the first eigenvalue of the continuous
operator L :

(6.18) lim
h→0

λh,1 = λ1.

Proof. We prove in fact that

(6.19) lim
h→0

λ−1
h,1 = λ−1

1 .

We first prove that

(6.20) lim inf
h→0

λ−1
h,1 ≥ λ−1

1 .

Given ε > 0, it suffices to prove that there exists h0 > 0 so that for any 0 < h < h0,

(6.21) λ−1
h,1 ≥ λ−1

1 − ε.

Since λ−1
1 is the greatest eigenvalue of the kernel K, we have

(6.22) λ−1
1 = max

‖u‖
L2(0,1)=1

∫ 1

0

∫ 1

0

K(x, y)u(x)u(y)dxdy.

Remark that (see the proof of Proposition 6.4) the maximum is attained by φ1, the normalized eigenfunction
corresponding to λ1. However we shall need an approximating compactly supported function.

Now let uε ∈ C∞
0 (0, 1) be a normalized function , ‖uε‖L2(0,1) = 1 and such that

(6.23) λ−1
1 − ε ≤

∫ 1

0

∫ 1

0

K(x, y)uε(x)uε(y)dxdy.

Take h0 > 0 sufficiently small, so that uε vanishes in a neighborhood of the “edge” intervals [0, h0] ∪ [1− h0, 1].
Let h = 1

N
< h0.

For simplicity, we denote by {xj = jh, 0 ≤ j ≤ N} the grid points , omitting the obvious dependence on h.
Define a nonnegative step function

Uε(x)2 =
1

h

∫ xj+
h
2

xj−
h
2

uε(x)2dx, x ∈
(
xj −

h

2
, xj +

h

2

)
, j = 1, 2, . . . , N − 1.

Clearly ‖Uε‖L2(0,1) = 1.
The continuity of K(x, y) implies that (decreasing h0 if necessary)

(6.24)

∫ 1

0

∫ 1

0

K(x, y)uε(x)uε(y)dxdy ≤ h2
N−1∑

i,j=1

K(xi, xj)U
ε(xi)U

ε(xj) + ε.

Let uε = (uε1, . . . , u
ε
N−1) ∈ l2h,0 be the grid function defined by

uεj = Uε(xj), j = 1, 2, . . . , N − 1,

so that |uε|h = 1.
Employing the notation (5.6), the inequality (6.24) can be rewritten as

(6.25)

∫ 1

0

∫ 1

0

K(x, y)uε(x)uε(y)dxdy ≤ h
N−1∑

i,j=1

Kh(xi, xj)u
ε
iu

ε
j + ε = (Khuε, uε)h + ε.
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From the maximum principle (see the notation introduced in Corollary 5.2),

(6.26) λ−1
h,1 = max

|u|h,0=1
((δ4x)

−1u, u)h = h max
|u|h,0=1

N−1∑

i,j=1

Kh
i,juiuj .

we infer that

(6.27) h
N−1∑

i,j=1

Kh(xi, xj)u
ε
iu

ε
j ≤ λ−1

h,1.

Combining (6.23), (6.25) and (6.27) we obtain

(6.28) λ−1
1 ≤ λ−1

h,1 + 2ε.

The estimate (6.20) is therefore established.
We now proceed to establish the reverse inequality

(6.29) lim sup
h→0

λ−1
h,1 ≤ λ−1

1 .

Given ε > 0, it suffices to prove that there exists h0 > 0 so that for any 0 < h < h0,

(6.30) λ−1
h,1 ≤ λ−1

1 + ε.

Let uh ∈ l2h,0, |uh|h,0 = 1, be an eigenvector corresponding to λh,1, so that

(6.31) λ−1
h,1 = h

N−1∑

i,j=1

Kh
i,ju

h
i u

h
j .

Since the kernel Kh is positive, we can assume that uhi ≥ 0, 0 ≤ i ≤ N.
Let uh(x) be the nonnegative piecewise constant function defined by

(6.32) uh(x) = uhi , xi −
h

2
≤ x ≤ xi +

h

2
, i = 0, 1, . . . , N.

Clearly ‖uh‖L2(0,1) = 1 so in view of (6.22)

(6.33) λ−1
1 ≥

∫ 1

0

∫ 1

0

K(x, y)uh(x)uh(y)dxdy.

We now replace the kernel K(x, y) by the piecewise constant kernel

(6.34) Kh(x, y) = K(xi, yj), x ∈
(
xi −

h

2
, xi +

h

2

)
, y ∈

(
yj −

h

2
, yj +

h

2

)
, 0 ≤ i, j ≤ N.

By increasing N if needed, the continuity of K(x, y) implies that

∫ 1

0

∫ 1

0

|K(x, y)−Kh(x, y)|
2dxdy ≤ ε2,

so that, by the Cauchy-Schwarz inequality,

(6.35)
∣∣∣
∫ 1

0

∫ 1

0

K(x, y)uh(x)uh(y)dxdy −

∫ 1

0

∫ 1

0

Kh(x, y)u
h(x)uh(y)dxdy

∣∣∣ ≤ ε.

Observe that when changing N we must also change uh (hence uh), but since they are normalized this change does
not affect the above estimate.

Combining (6.33) and (6.35) we obtain

(6.36) λ−1
1 ≥

∫ 1

0

∫ 1

0

Kh(x, y)u
h(x)uh(y)dxdy − ε.
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Now

(6.37)

∫ 1

0

∫ 1

0

Kh(x, y)u
h(x)uh(y)dxdy =

N∑

i,j=0

K(xi, yj)

∫ xi+
h
2

xi−
h
2

uh(x)dx ·

∫ yj+
h
2

yj−
h
2

uh(y)dy

= h2
N∑

i,j=0

K(xi, yj)u
h
i u

h
j = h

N−1∑

i,j=1

Kh
i,ju

h
i u

h
j = λ−1

h,1.

Thus (6.30) is established and the proof is complete.
�

Theorem 6.7 does not give any convergence rate for the difference |λ1 − λh,1|. In what follows we consider this
issue, using the basic variational tools.

We begin with a more general discussion.
Pick φ ∈ {φ1, ..., φk...} a normalized eigenfunction ofL, with associated eigenvalue λ ∈ {0 < λ1 < λ2 < . . . < λk < . . .} .
Applying the operator L to

Lφ = λφ, λ ∈ {0 < λ1 < ... < λk...} ..,

we get

d8

dx8
φ = λ2φ.

Since φ is normalized, we have

(6.38) ‖
d8

dx8
φ‖L2[0,1] = λ2,

and continuing in this fashion we see that all derivatives of φ are bounded by some power of λ, and therefore in
the estimates below we have a generic constant C > 0 depending only on λ.

Let φ∗ be the corresponding grid function, φ∗(xi) = φ(xi), 0 ≤ i ≤ N.
Let v ∈ l2h,0 satisfy

δ4xv = λφ∗,

where also vx ∈ l2h,0.

By the fourth order accuracy (2.15) we know

(6.39) |v− φ∗|∞ ≤ Ch4,

where C is independent of N = h−1, but depends of course on φ.
It follows that

(6.40) δ4xv = λv+w, |w|h ≤ Ch4.

Since φ is normalized, the truncation error for the trapezoid integration gives

(6.41) |φ∗|2h = h
N−1∑

i=1

[φ∗
i ]

2 = ‖φ‖2L2[0,1] +O(h2) = 1 +O(h2),

hence also

(6.42) |1− |v|2h| ≤ Ch2.

Let v̄ = v
|v|h

, then it follows from (6.40)

(6.43) δ4xv̄ = λv̄+ w̄, |w̄|h ≤ Ch4.

Regarding the first eigenvalue, we can now show that λh,1 can exceed λ1 by at most O(h4).

Claim 6.8. Let λ1 be the first eigenvalue of L ( by (6.7), λ1 = β4
0). Then there exists a constant C > 0, depending

on the eigenfunction φ1, but not on h, such that

(6.44) λh,1 ≤ λ1 + Ch4.
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Proof. Consider (6.43) with λ = λ1. By the variational minimum principle for the first eigenvalue we know that

λh,1 = min
|z|h=1

(δ4xz, z)h,

hence

(6.45) λh,1 ≤ (δ4xv̄, v̄)h ≤ λ1 + Ch4,

which proves the claim.
�

Remark 6.9. The exact first eigenvalue is λ1 = 500.5639017404. Numerical calculations actually show that λh,1 ≤
λ1, and that λh,1 increases as h decreases. This is shown in Figure 1 . We are still unable to prove this monotonicity.

Remark 6.10. Observe that in Claim 6.8 we do not have a corresponding lower limit, namely, that λh,1 is above
λ1 − O(h4). This is evident in the numerical results displayed in Figure 2. The proof of this fact is postponed to
Theorem 6.14 below, where we show that the convergence of all discrete eigenvalues to the corresponding continuous
ones is “optimal”, namely, at an O(h4) rate.

Figure 1. First discrete eigenvalue as a function of the number of grid points in [0, 1].

Figure 2. Log-log graph of the error of first discrete eigenvalue λ1 − λh,1 as function of the
number N of grid points in [0, 1]. The slope is -4, indicating a convergence rate O(N−4) = O(h4).
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6.4. CONVERGENCE OF THE DISCRETE EIGENVALUES λh,k, k > 1.

We now consider the convergence of all discrete eigenvalues to their continuous counterparts.
Numerical simulations indicate that, if we fix an index k, then

|λk − λh,k| ≤ Ch4, as h → 0,

with C > 0 depending on k. This is demonstrated in Figure 3 (for N = 16) and Figure 4 (for N = 64). We thank
Jean-Pierre Croisille for both figures. Thus, even a very coarse resolution produces excellent approximation of the
eigenvalues.
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Figure 3. Graph of eigenvalues in logarithmic scale: k−− Horizontal, log λk (×), logλh,k (◦), h =
1
N

= 1
16 −−Vertical .
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Figure 4. Graph of eigenvalues in logarithmic scale: k−− Horizontal, log λk (×), logλh,k (◦), h =
1
N

= 1
64 −−Vertical .

The convergence result in Theorem 6.7, that dealt with the first eigenvalue, did not yield an “optimal” conver-
gence rate, as noted in Remark 6.10.

Using a very different approach, we shall now extend the convergence to all eigenvalues, and, furthermore, obtain
the optimal O(h4) convergence rate.

Let Kh(x, y) be the piecewise constant (positive definite) kernel introduced in (6.34). We denote by L
−1
h the

operator (on L2[0, 1]) whose kernel is Kh. Clearly this operator is compact and positive definite. In fact, the
following claim asserts that it has only finitely many positive eigenvalues (depending on h, of course).

Claim 6.11. The set of eigenvalues of L−1
h is the finite set Λ−1

h , defined in (6.10).
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Proof. Let u ∈ L2[0, 1] be an eigenfunction of L−1
h . Thus, for some µ > 0,

µu(x) =

1∫

0

Kh(x, y)u(y)dy, x ∈ [0, 1].

In particular, u is piecewise constant

u(x) = u(xi), x ∈
(
xi −

h

2
, xi +

h

2

)
, i = 0, 1, . . . , i = N.

hence (with Kh as in Corollary 5.2)

(6.46) µu(xi) =

N∑

j=0

Kh
i,ju(xj), 0 ≤ i ≤ N,

where the boundary values u(x0) = u(xN ) = 0 are included.
Thus µ is an eigenvalue of (δ4x)

−1, hence µ = λ−1
h,k for some 1 ≤ k ≤ N − 1. �

We now proceed to establish the convergence of all discrete eigenvalues to the corresponding continuous ones.
In fact, the following lemma is a special case of a theorem of Markus [19, Corollary 5.3] concerning differences of
eigenvalues of self-adjoint operators. A similar general theorem was proved (much later) by Kato [17]. However the
generality of Kato’s theorem required an “extended enumeration” of the eigenvalues, adding values of boundary
points of the essential spectra.

For the convenience of the reader we provide here a simple proof of the lemma, following the proof of (the
finite-dimensional) Theorem 6.11 in [16, Section II.6].

Lemma 6.12. Let h = 1
N
, and let

Λ−1 =
{
λ−1
1 > λ−1

2 > . . . > λ−1
k . . . > 0

}
,

Λ−1
h =

{
λ−1
h,1 ≥ λ−1

h,2 ≥ . . . ≥ λ−1
h,N−1 > 0

}
,

be the sets introduced in (6.9), (6.10), respectively.
Then there exists a constant C > 0, independent of h, so that

(6.47)
N−1∑

k=1

|λ−1
k − λ−1

h,k|
2 +

∞∑

k=N

λ−2
k ≤

∫ 1

0

∫ 1

0

|K(x, y)−Kh(x, y)|
2dxdy ≤ Ch2.

Proof. Note that both L
−1, L−1

h , are Hilbert-Schmidt (hence compact) positive operators.
For t ∈ [0, 1] let

L
−1
t,h = (1− t)L−1 + tL−1

h ,

which is also compact, positive self-adjoint operator. In particular, its spectrum (apart from 0) consists of a
descending sequence of positive eigenvalues

{
µ−1
1 (t) ≥ µ−1

2 (t) ≥ . . . ≥ µ−1
N−1(t) ≥ µ−1

N (t) ≥ . . . µ−1
N+p(t) ≥ . . . > 0

}
, 0 ≤ t ≤ 1.

In view of the discussion in [16, Chapter VII.3.2] the functions µ−1
k (t), 1 ≤ k < ∞, are continuous, piecewise

analytic functions of t, and satisfy

(6.48) µ−1
k (0) = λ−1

k , 1 ≤ k < ∞,

and

(6.49) µ−1
k (1) =

{
λ−1
h,k, 1 ≤ k < N,

0, k ≥ N.

In addition, there exists (for every fixed t ∈ [0, 1]) a corresponding set of orthonormal functions (in L2(0, 1))

{φ1(x; t), φ2(x; t), . . . , φN (x; t), . . . , φk(x; t), . . .} , 0 ≤ t ≤ 1.
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Pick an index k ≥ 1. The eigenvalue µ−1
k (t) is continuous (in t ∈ [0, 1]) and piecewise analytic, with finitely

many singularities. The associated eigenfunction φk(x; t) is piecewise analytic in t, with the same (finitely many)
singularities. Thus, the equation

(6.50)
[
(1− t)L−1 + tL−1

h − µ−1
k (t)

]
φk(x; t) = 0

can be differentiated with respect to t (excluding the singularities) and we obtain

(6.51)
[
L

−1
h − L

−1 −
d

dt
µ−1
k (t)

]
φk(x; t) +

[
(1− t)L−1 + tL−1

h − µ−1
k (t)

] d

dt
φk(x; t) = 0.

Taking the scalar product with φk(x; t) we conclude that

(6.52)
d

dt
µ−1
k (t) =

(
(L−1

h − L
−1)φk(x; t), φk(x; t)

)

L2(0,1)
, t ∈ [0, 1].

Integrating this equation and taking (6.48) and (6.49) into account we get

(6.53)

∫ 1

0

(
(L−1

h − L
−1)φk(x; t), φk(x; t)

)

L2(0,1)
dt =





λ−1
h,k − λ−1

k , 1 ≤ k < N,

−λ−1
k , k ≥ N.

The self-adjoint operator A = L
−1
h − L

−1 is Hilbert-Schmidt, hence compact. Let {γ1, γ2, . . .} be the sequence
of its non-zero eigenvalues (repeated according to multiplicity) with a corresponding orthonormal sequence of
eigenfunctions {χ1(x), χ2(x), . . .} ⊆ L2(0, 1).

Since φk(x; t) =
∞∑
j=1

(φk(x; t), χj(x))L2(0,1)χj(x), Equation (6.53) entails

(6.54)

∞∑

j=1

σj,kγj =






λ−1
h,k − λ−1

k , 1 ≤ k < N,

−λ−1
k , k ≥ N,

where σj,k =
∫ 1

0 (φk(x; t), χj)
2
L2(0,1)dt, 1 ≤ j, k < ∞.

By the orthonormality of the functions (in x)

0 ≤ σj,k ≤ 1,
∞∑

j=1

σj,k ≤ 1,
∞∑

k=1

σj,k ≤ 1.

Let Φ be a real convex function on the real line, with Φ(0) = 0. From Jensen’s inequality we get

Φ
( ∞∑

j=1

σj,kγj

)
≤

∞∑

j=1

σj,kΦ(γj), k = 1, 2, . . . ,

and summation over k yields

(6.55)

∞∑

k=1

Φ
( ∞∑

j=1

σj,kγj

)
≤

∞∑

j=1

Φ(γj).

In particular , taking Φ(ξ) = ξ2 and noting (6.54) we obtain

N−1∑

k=1

|λ−1
k − λ−1

h,k|
2 +

∞∑

k=N

λ−2
k ≤

∞∑

j=1

γ2
j .

The sum on the right-hand side is the square of the Hilbert-Schmidt norm of A, which is
∫ 1

0

∫ 1

0 |K(x, y) −

Kh(x, y)|
2dxdy, thus proving (6.47).

�



22 MATANIA BEN-ARTZI AND GUY KATRIEL

k=1 k=2 k=3 k=4
true
eigenvalue

500.563902 3803.537080 14617.630131 39943.799006

N=10 500.521885 3800.689969 14567.617771 39493.816015
N=20 500.561614 3803.398598 14615.468848 39926.599754
N=30 500.563462 3803.511145 14617.236978 39940.722654
N=40 500.563764 3803.529031 14617.509451 39942.881883
N=50 500.563845 3803.533813 14617.581402 39943.430972
N=60 500.563874 3803.535512 14617.606815 39943.623511

Table 1. First 4 eigenvalues (top row) and their numerical approximations using a grid of N =
10− 60 nodes.

Remark 6.13. Note that (6.47) yields in particular the uniform estimate

(6.56)

N−1∑

k=1

|λ−1
k − λ−1

h,k|
2 ≤ Ch2.

This estimate is valid simultaneously for all N − 1 eigenvalues. Fixing an index k, we get in particular

(6.57)
|λk − λh,k|

λh,k

≤ Cλkh.

In view of Claim 6.1 we have λk ≈ k4. Thus (6.57) yields only an O(h) convergence.
However it is seen in Table 1, that even with a small number of grid points, the first discrete eigenvalues

approximate very well the continuous ones. We shall prove below that indeed the convergence is “optimal”.

We now proceed to prove the “optimal” estimate. Compare (6.45) and Remark 6.10 in what concerns the first
eigenvalue.

Theorem 6.14 (Optimal rate of convergence of discrete eigenvalues). Fix an integer k ≥ 1 and consider
the discrete eigenvalue λh,k as a function of h = 1

N
, N = k + 1, k + 2, . . . . Then there exists a constant C > 0,

depending only on k, such that

(6.58) |λk − λh,k| ≤ Ch4.

Proof. Fix k. If j 6= k then we have, by (6.56)

|λ−1
h,j − λ−1

k | ≥
∣∣λ−1

j − λ−1
k

∣∣−
∣∣∣λ−1

j − λ−1
h,j

∣∣∣ ≥
∣∣λ−1

j − λ−1
k

∣∣ − C
1
2h.

Therefore, if η = minj 6=k

∣∣λ−1
j − λ−1

k

∣∣, then for h < h0 = 1
2ηC

− 1
2 we have

j 6= k ⇒ |λ−1
h,j − λ−1

k | ≥
1

2
η.

Combined with Proposition 6.4 we infer that the only element of Λ−1
h that can be “close” to λ−1

k is λ−1
h,k, and that

|λ−1
k − λ−1

h,k| ≤ Ch4,

thus concluding the proof of the theorem.
�

Remark 6.15. Observe that in the proof of Theorem 6.14 we relied on special properties of the kernel, via Propo-
sition 6.4. Without using such information we obtain “sub-optimal” estimates. For example, (6.47) implies

∞∑

k=N

λ−2
k ≤ CN−2,

which is not optimal, in view of Claim 6.1. Compare also to the estimate in (6.8) which can be written as

|
∞∑

i=1

λ−1
i −

N−1∑

i=1

λ−1
h,i | ≤ Ch4.
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Remark 6.16. The O(h4) rate of convergence, as stated in Theorem 6.14, can be compared to the method of
collocation approximation [11]. In the case of the latter , achieving a similar rate of convergence requires the
construction of an interpolating C3 piecewise fifth-order polynomial function, and then using collocation at Gaussian
points. The results here were obtained by using the discretized kernel (of the inverse operator). Owing to the
observed connection between this kernel and the classical (C2) cubic splines, the approximating eigenvalues are
in fact those of the fourth-order (distributional) derivative of the interpolating cubic spline at the grid points
(Proposition 3.10).

Appendix A. THE DISCRETE BIHARMONIC OPERATOR: GENERATING POLYNOMIALS

Consider again the discrete fourth-order equation

(A.1) δ4xu = f,

where u, ux ∈ l2h,0. In this section we obtain a direct proof of Corollary 5.2. In other words, we compute the matrix

corresponding to the operator (δ4x)
−1, without recourse to the theory of cubic spline functions involved in the

previous proof. In fact, an expression for this matrix has already been given in [4, Section 10.6, Eq. (10.137)] and
was used as the main tool in proving Claim 2.3. However, the expression there was a product of three matrices,
based on the matrix representation of the Hermitian derivative. Thus, while allowing to obtain the aforementioned
estimates, it did not yield an “explicit” form (such that can be used in a computer code in a straightforward way).

Remarkably, the methodology expounded here uses the discrete operators in a totally different way; it employs
generating functions, and is a systematic approach that can also be applied to other problems. Although the
computations involved require some work, it has the advantage of being a straightforward application of the
definitions of the discrete operators. It should be mentioned that we first carried out the computation here, and it
motivated our search for a parallel “functional interpreation”, as expressed in Corollary 5.2.

By (2.9), Equation (A.1) can be rewritten as

(A.2)
12

h2

[
(ux)j+1 − (ux)j−1

2h
−

uj+1 + uj−1 − 2uj
h2

]
= fj , 1 ≤ j ≤ N − 1,

where by (2.8),

(A.3)
1

6
(ux)j−1 +

2

3
(ux)j +

1

6
(ux)j+1 =

uj+1 − uj−1

2h
, 1 ≤ j ≤ N − 1,

(A.4) u0 = uN = (ux)0 = (ux)N = 0.

The system (A.2), (A.3) must be solved for {uj, (ux)j}
N−1
j=1 .

To do this, we introduce generating functions, which are polynomials of degree N − 1 in the variable z:

p(z) =
N−1∑

j=1

ujz
j, q(z) =

N−1∑

j=1

(ux)jz
j, φ(z) =

N−1∑

j=1

fjz
j.

We know φ(z) and want to find p(z), q(z).
Equations (A.2) can be encoded as the following equality of polynomials,

(A.5)
1

2h

[
(z−1 − z)q(z)− (ux)1 + (ux)N−1z

N
]
−

1

h2

[
(z + z−1 − 2)p(z)− u1 − zNuN−1

]
=

h2

12
φ(z).

Similarly, Equations (A.3) are equivalent to the following polynomial equality

(A.6)

(
1

6
z−1 +

2

3
+

1

6
z

)
q(z)−

1

6
(ux)1 −

1

6
zN(ux)N−1 =

1

2h

[
(z−1 − z)p(z)− u1 + zNuN−1

]
.

Multiplying (A.5),(A.6) by z, and rearranging, we have

(A.7)

1

h2
(z2 − 2z + 1)p(z) +

1

2h
(z2 − 1)q(z)

= −
h2

12
zφ(z) +

1

h2

[
u1z + zN+1uN−1

]
+

1

2h

[
−(ux)1z + (ux)N−1z

N+1
]
,

(A.8)
1

2h
(z2 − 1)p(z) +

(
1

6
z2 +

2

3
z +

1

6

)
q(z) =

1

2h

[
−u1z + zN+1uN−1

]
+

1

6
(ux)1z +

1

6
zN+1(ux)N−1.
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We now solve the system of two linear equations (A.7),(A.8) for p(z), q(z). It suffices to write the solution for p(z),
which is

(A.9) p(z) =
12h2

(z − 1)4
· r(z),

where

r(z) =

(
1

6
z2 +

2

3
z +

1

6

)
·
h2

12
· zφ(z)(A.10)

−

(
1

6
z2 +

2

3
z +

1

6

)(
1

h2

[
u1z + zN+1uN−1

]
+

1

2h

[
−(ux)1z + (ux)N−1z

N+1
])

+
1

2h
(z2 − 1)

[
1

2h

[
−u1z + zN+1uN−1

]
+

1

6
(ux)1z +

1

6
zN+1(ux)N−1

]

It should be noted that the expression (A.10) contains the unknown quantities u1, uN−1, (ux)1, (ux)N−1. Once
we determine these quantities, (A.9) will give us the solution to the system (A.2),(A.3). To find these quantities,
we exploit the following fact: since p(z) is a polynomial, while the expression (A.9) contains (z − 1)4 in the
denominator, it must be the case that z = 1 is a root of r(z) of multiplicity 4, that is

(A.11) r(1) = r′(1) = r′′(1) = r′′′(1) = 0.

By differentiating r(z) three times and then substituting z = 1, we obtain 4 equations for u1, uN−1, (ux)1, (ux)N−1.

(A.12) r(1) =
h2

12
· φ(1)−

1

h2
[u1 + uN−1]−

1

2h
[−(ux)1 + (ux)N−1] = 0

r′(1) = h2 · φ(1) +
h2

12
· φ′(1)(A.13)

−
1

h2

[
5

2
u1 +

(
N +

3

2

)
uN−1

]
−

1

2h

[
−
7

3
(ux)1 +

(
N +

5

3

)
(ux)N−1

]
= 0

r′′(1) =
7h2

36
· φ(1) +

h2

3
· φ′(1) +

h2

12
· φ′′(1)(A.14)

−
1

h2

[
23

6
u1 +

(
5

6
+ 2N +N2

)
uN−1

]

−
1

2h

[
−
10

3
(ux)1 +

(
4

3
+

7

3
N +N2

)
(ux)N−1

]
= 0

r′′′(1) =
h2

12
· φ(1) +

7h2

12
· φ′(1) +

h2

2
· φ′′(1) +

h2

12
· φ′′′(1)(A.15)

−
1

h2

[
5

2
u1 +

(
−
1

2
+

3

2
N2 +N3

)
uN−1

]

−
1

2h

[
−2(ux)1 +

(
N + 2N2 +N3

)
(ux)N−1

]
= 0.

We set

m0 = φ(1), m1 = φ′(1), m2 = φ′′(1), m3 = φ′′′(1),
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solve the linear system (A.12)-(A.15) for u1, uN−1, (ux)1, (ux)N−1, and then substitute these values into (A.10),(A.9),
to obtain the expression

p(z) =
1

6N4

[z(z2 + 4z + 1)

(z − 1)4
· φ(z)(A.16)

+
z

(z − 1)4

(
(−m0 + 3m1)−

1

N
(6m1 + 6m2)

+
1

N2
(6m1 + 12m2 + 3m3)−

1

N3
(2m1 + 6m2 + 2m3)

)

+
4z2

(z − 1)4

(
−m0 +

1

N2
(3m1 + 3m2)−

1

N3
(2m1 + 6m2 + 2m3)

)

+
z3

(z − 1)4

(
− (m0 + 3m1) +

1

N
(6m1 + 6m2)

−
1

N2
(6m2 + 3m3)−

1

N3
(2m1 + 6m2 + 2m3)

)

+
zN+1

(z − 1)4

(
−

1

N
(3m1 + 3m2) +

1

N2
(6m2 + 3m3) +

1

N3
(2m1 + 6m2 + 2m3)

)

+
zN+2

(z − 1)4

( 1

N2
(−12m1 − 12m2) +

1

N3
(8m1 + 24m2 + 8m3)

)

+
zN+3

(z − 1)4

( 1

N
(3m1 + 3m2)−

1

N2
(6m1 + 12m2 + 3m3)

+
1

N3
(2m1 + 6m2 + 2m3)

)]
.

Note that since p(z) is a polynomial of degree N − 1, all terms zj (j ≥ N) in fact cancel. We explicitly compute
the coefficient of the term zj (1 ≤ j ≤ N − 1) in p(z), which gives us uj . Using

1

(z − 1)4
=

1

6

∞∑

j=0

(j + 1)(j + 2)(j + 3)zj,
z

(z − 1)4
=

1

6

∞∑

j=0

j(j + 1)(j + 2)zj,

z2

(z − 1)4
=

1

6

∞∑

j=0

(j − 1)j(j + 1)zj,
z3

(z − 1)4
=

1

6

∞∑

j=0

(j − 2)(j − 1)jzj,

z(z2 + 4z + 1)

(z − 1)4
=

∞∑

j=0

j3zj ,

we have

z(z2 + 4z + 1)

(z − 1)4
φ(z) =

N−1∑

j=1

zj
j−1∑

l=1

(j − l)3fl + (terms of order ≥ N),

so that the coefficient of zj (1 ≤ j ≤ N − 1) in p(z) is

uj =
j

6N4

[1
j

j−1∑

l=1

(j − l)3fl

+
1

6
(j + 1)(j + 2)

(
(−m0 + 3m1)−

1

N
(6m1 + 6m2)

+
1

N2
(6m1 + 12m2 + 3m3)−

1

N3
(2m1 + 6m2 + 2m3)

)

+
2

3
(j − 1)(j + 1)

(
−m0 +

1

N2
(3m1 + 3m2)−

1

N3
(2m1 + 6m2 + 2m3)

)

+
1

6
(j − 2)(j − 1)

(
− (m0 + 3m1) +

1

N
(6m1 + 6m2)−

1

N2
(6m2 + 3m3)−

1

N3
(2m1 + 6m2 + 2m3)

)]
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=
j

6N4

[1
j

j−1∑

l=1

(j − l)3fl + j (−jm0 + 3m1)−
1

N
· 6j(m1 +m2)

+
3j

N2
((j + 1)m1 + (j + 3)m2 +m3)−

2j2

N3
(m1 + 3m2 +m3)

]
.

We now note that

m0 = φ(1) =
N−1∑

k=1

fk, m1 = φ′(1) =
N−1∑

k=1

kfk,

m2 = φ′′(1) =

N−1∑

k=2

k(k − 1)fk, m3 = φ′′′(1) =

N−1∑

k=2

k(k − 1)(k − 2)fk,

so that

m1 +m2 =

N−1∑

k=1

[k + k(k − 1)]fk =

N−1∑

k=1

k2fk

m1 + 3m2 +m3 =
N−1∑

k=1

k3fk,

and using these results the expression for uj simplifies to

uj =
1

6N

[ j−1∑

k=1

(
j

N
−

k

N

)3

fk −

(
j

N

)2

·

N−1∑

k=1

(
1−

k

N

)(
2
k

N
·
j

N
+

j

N
− 3

k

N

)
fk

]

=
1

6N

[ j−1∑

k=1

(xj − xk)
3
fk + x2

j ·
N−1∑

k=1

(1− xk)
2 (2(1− xj)xk + xk − xj) fk

]

=
1

6N

[
(1− xj)

2 ·

j−1∑

k=1

x2
k (2xj(1− xk) + xj − xk) fk + x2

j ·

N−1∑

k=j

(1− xk)
2 (2xk(1 − xj) + xk − xj) fk

]
.

We have thus obtained

Proposition A.1. Defining the matrix elements

Kh
j,k =

{
1

6N · (1− xj)
2 · x2

k (2xj(1− xk) + xj − xk) , 1 ≤ k ≤ j ≤ N − 1,
1

6N · (1− xk)
2 · x2

j (2xk(1− xj) + xk − xj) , 1 ≤ j ≤ k ≤ N − 1,

we have that the solution of (A.1) is given by

uj =

N−1∑

k=1

Kh
j,kfk.

This expression is seen to be identical to (5.5), so that Proposition A.1 is a re-statement of Corollary 5.2.
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