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Abstract. Let H = −
n∑

j,k=1

∂

∂xj
aj,k(x)

∂

∂xk
be a formally self-

adjoint (elliptic) operator in L2(Rn), n ≥ 2. The real coefficients
aj,k(x) = ak,j(x) are assumed to be bounded and to coincide with
−∆ outside of a ball. The paper deals with two topics: (i) An
eigenfunction expansion theorem, proving in particular that H is
unitarily equivalent to −∆, and (ii) Global spacetime estimates for
the associated inhomogeneous wave equation, proved under suit-
able (”nontrapping”) additional assumptions on the coefficients.
The main tool used here is a Limiting Absorption Principle (LAP)
in the framework of weighted Sobolev spaces, which holds also at
the threshold.

1. Introduction

Let H = −
n∑

j,k=1

∂jaj,k(x)∂k, where aj,k(x) = ak,j(x), be a formally

self-adjoint operator in L2(Rn), n ≥ 2. The notations ∂j = ∂
∂xj

and

∂t =
∂
∂t

are used throughout the paper.
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We assume that the real measurable matrix function a(x) = {aj,k(x)}1≤j,k≤n

satisfies, with some positive constants a1 > a0 > 0, Λ0 > 0,

a0I ≤ a(x) ≤ a1I, x ∈ Rn,(1.1)

a(x) = I for |x| > Λ0.(1.2)

In what follows we shall use the notation H = −∇ · a(x)∇.
We retain the notation H for the self-adjoint (Friedrichs) extension
associated with the form (a(x)∇φ,∇ψ), where (,) is the scalar product
in L2(Rn) . When a(x) ≡ I we set H = H0 = −∆.

Operators of this type appear in geometry (Laplacian on noncompact
Riemannian manifolds) as well as in physics, typically when physical
parameters vary in space (such as the acoustic propagator in a medium
with variable speed of sound).

Under our assumptions (1.1), (1.2) it follows that σ(H), the spectrum
of H, is the half-axis [0,∞), and is entirely continuous. In particular,
the equality (Hu, u) = (a(x)∇u,∇u) shows that H has no eigenvalue
at zero. In addition, if the coefficient matrix a(x) is smooth, the ab-
sence of singular continuous spectrum follows from the classical work
of Mourre [58] . However, it seems that there is no proof in the litera-
ture establishing the absolute continuity of the spectrum in our case of
non-smooth (and even discontinuous) coefficients. This fact is implied
by our Theorem A stated in Section 3 below.

The ”threshold” z = 0 plays a special role in this setting, as we shall
see later.

The mere fact that both H and H0 are spectrally absolutely con-
tinuous over [0,∞) does not imply that they are ”identical”, namely,
in the functional analytic setting, that they are ”unitarily equivalent”.
Thus one question that arises is:

Question 1. Are the operators H and H0 unitarily equivalent, under
the above assumptions on the coefficients?

We next recall the definition of the wave operators related toH,H0 [50,
Chapter X].

Consider the family of unitary operators

W (t) = exp(itH) exp(−itH0), −∞ < t <∞.

The strong limits

(1.3) W±(H,H0) = s− lim
t→±∞

W (t),

if they exist, are called the wave operators (relating H,H0). These
operators play an important role in scattering theory. They are clearly
isometries. If the range of W+ is equal to the absolutely continuous
subspace of H (which here is L2(Rn) itself) , we say that it is complete,
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with a similar definition for W−. If either one is complete, then it
is unitary (in the case at hand) and provides a unitary equivalence
between H and H0. A second question that arises therefore is:

Question 2. Do the wave operators exist and, if so, are they com-
plete?

As noted above, a positive answer to this question entails a positive
answer to the first question.

Another aspect related to the spectral theory of H is its associated
eigenfunction expansion. When available, it serves as an analytic tool
which is sharper than the abstract spectral theorem. In the case of H0,
the Fourier transform

(1.4) Fg(ξ) = ĝ(ξ) = (2π)−
n
2

∫
Rn

g(x)e−iξxdx,

serves to express g(x) as

(1.5) g(x) = (2π)−
n
2

∫
Rn

ĝ(ξ)eiξxdξ,

which can be viewed as an ”expansion” of g in terms of the ”generalized
eigenfunctions” (or ”modes”) exp(iξx), associated with the eigenvalues
|ξ|2. Furthermore , the operator F is unitary and FH0F−1 is just mul-
tiplication by |ξ|2 in Fourier space. Such (”diagonalizing”) expansions
have been used extensively in quantum mechanics (for example, the
Airy transform associated with the Stark Hamiltonian). It is therefore
natural to pose the following question:

Question 3. Can one associate a similar ”eigenfunction expansion”
with the operator H? More specifically, can one replace the exponen-
tials exp(iξx) by some approximating generalized eigenfunctions (”dis-
torted plane waves”) so that the resulting transform remains unitary
and diagonalizes the operator?

As a final topic in this paper, we turn back to the evolution (unitary)
group exp(−itH)u0, which solves the Schrödinger equation

i∂tu = Hu, u(0) = u0.

The last thirty years have seen a very intensive research on the global
(spacetime) properties of these solutions, known as ”Strichartz and
smoothing” estimates. Instead of treating the Schrödinger equation we
choose here to address the generalized wave equation,

(1.6) ∂2t u = −Hu+ f,
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subject to initial conditions u(0) = u0, ∂tu(0) = v0.
The conservation of energy for this equation (in the homogeneous

case, f = 0) is given by

(1.7)∫
Rn

[|Hβ∂tu(x, t)|2+|Hβ+ 1
2u(x, t)|2]dx =

∫
Rn

[|Hβv0(x)|2+|Hβ+ 1
2u0(x)|2]dx,

for any β ∈ R, and any t ∈ R.
In this context, the dispersive character of the equation means that

the solution ”escapes” from any bounded set, as |t| → ∞, in some
average sense. We would like to estimate this decay in terms of the
initial energy norm , namely, the right-hand side of (1.7).

We therefore ask:
Question 4. Can one establish global L2 spacetime estimates for

solutions of (1.6) in terms of the initial energy norm?
In this paper we answer affirmatively the first three ques-

tions. As for Question 4, we provide such estimates by im-
posing restrictive hypotheses on the coeffficient matrix.

The precise statements, as well as discussions of the relevant bibli-
ography for each topic, are given in Section 3.

The main technical tool used here consists of a close study of the
properties of the resolvent R(z) as z approaches the real axis.

To be more specific, we introduce the general notion of the ”conti-
nuity up to the spectrum” of the resolvent.

Definition 1.1. Let [α, β] ⊆ R. We say that H satisfies the ”Limiting
Absorption Principle” (LAP) in [α, β] if R(z), z ∈ C±, can be extended
continuously to Imz = 0, Rez ∈ [α, β], in a suitable operator topology.
In this case we denote the limiting values by R±(λ), α ≤ λ ≤ β.

The precise specification of the operator topology in the above defi-
nition is left open. Typically, it will be the uniform operator topology
associated with weighted-L2 or Sobolev spaces, which are introduced
in Section 2.

Note that the limiting values R−(λ) are, generally speaking, different
from R+(λ). In fact, one has (formally) the ”Stieltjes formula”

A(λ) =
1

2πi
(R+(λ)−R−(λ)) =

d

dλ
E(λ),

where E(λ) is the spectral family associated with H.
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The operator A(λ), λ ∈ [0,∞), known in the physical literature as
the ”density of states” [28, Chapter XIII], plays an important role in
our study.

The paper is organized as follows.
Basic functional spaces and notations are introduced in Section 2.
Our results are stated as Theorems A,B,C in Section 3 . Around each

of the three theorems we discuss some background material as well as
relevant references. Obviously, the large amount of existing literature
excludes any possibility of compiling an exhaustive bibliography.

Section 4 is devoted to revisiting the LAP as applied to the Laplacian
H0, and in particular obtaining uniform ”low energy” estimates.

In Section 5 we prove Theorem A, the LAP for H.
The eigenfunction expansion theorem, Theorem B, is proved in Sec-

tion 6.
The global spacetime estimates for the generalized wave equation (1.6),

as stated in Theorem C, are proved in Section 7.
Some of the results presented here were announced in [9].

2. Functional Spaces and Notation

Throughout this paper we shall make use of the following weighted-
L2 and Sobolev spaces. First, for s ∈ R and m a nonnegative integer
we define.

(2.1) L2,s(Rn) := {u(x) / ∥u∥20,s =
∫
Rn

(1 + |x|2)s|u(x)|2dx <∞}

(2.2)

Hm,s(Rn) := {u(x) /Dαu ∈ L2,s, |α| ≤ m, ∥u∥2m,s =
∑
|α≤m

∥Dαu∥20,s}

(we write L2 for L2,0 and ∥u∥0 = ∥u∥0,0).
More generally, for any σ ∈ R, let Hσ ≡ Hσ,0 be the Sobolev space

of order σ, namely,

(2.3) Hσ = {û /u ∈ L2,σ, ∥û∥σ,0 = ∥u∥0,σ}
where the Fourier transform is defined as in (1.4).

For negative indices we denote by
{
H−m,s, ∥·∥−m,s

}
the dual space

of Hm,−s. In particular, observe that any function f ∈ H−1,s can be
represented (not uniquely) as

(2.4) f = f0 +
n∑

k=1

i−1 ∂

∂xk
fk, fk ∈ L2,s, 0 ≤ k ≤ n.
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In the case n = 2 and s > 1, we define

L2,s
0 (R2) = {u ∈ L2,s(R2) /û(0) = 0},

and set H−1,s
0 (R2) to be the space of functions f ∈ H−1,s(R2) which

have a representation (2.4) where fk ∈ L2,s
0 , k = 0, 1, 2.

For any two normed spaces X,Y , we denote by B(X,Y ) the space
of bounded linear operators from X to Y , equipped with the operator-
norm ∥ · ∥B(X,Y ) topology.

3. Statement of Results and Background

3.1. The Limiting Absorption Principle–LAP. We note that the
operator H can be extended in an obvious way (retaining the same
notation) as a bounded operator H : H1

loc ↪→ H−1
loc . In particular,

H : H1,−s ↪→ H−1,−s, for all s ≥ 0. Furthermore, the graph-norm of
H in H−1,−s is equivalent to the norm of H1,−s.

Similarly, we can consider the resolvent R(z) as defined on L2,s , s ≥
0, where L2,s is densely and continuously embedded in H−1,s.

The basic technical tool used in the present paper is given in the
following theorem. It has its own significance, stating that the resol-
vent is continuous up to the spectrum, including the threshold at λ = 0.

THEOREM A. Suppose that a(x) satisfies (1.1),(1.2). Then the op-
erator H satisfies the LAP in R. More precisely, let s > 1 and consider
the resolvent R(z) = (H−z)−1, Im z ̸= 0, as a bounded operator from
L2,s(Rn) to H1,−s(Rn).

Then:
(a) R(z) is bounded with respect to the H−1,s(Rn) norm. Using

the density of L2,s in H−1,s, we can therefore view R(z) as a bounded
operator from H−1,s(Rn) to H1,−s(Rn).

(b) The operator-valued functions, defined respectively in the
lower and upper half-planes,

(3.1) z → R(z) ∈ B(H−1,s(Rn), H1,−s(Rn)), s > 1, ±Im z > 0,

can be extended continuously from
C± = {z/± Im z > 0} to C± = C± ∪

R ( with respect to the operator-
norm topology of B(H−1,s(Rn), H1,−s(Rn)).

In the case n = 2 replace H−1,s by H−1,s
0 .

Notation: We denote the limiting values of the resolvent on the real
axis by

R±(λ) = lim
ϵ→±0

R(λ+ iϵ).
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The spectrum of H is therefore entirely absolutely continuous. In par-
ticular, it follows that the limiting values R±(λ) are continuous at λ = 0
and H has no resonance there.

The main focus of Theorem A is the LAP for H at ”low energies”,
i.e., in intervals [α, β] where α < 0 < β.

However , to review the existing literature, we consider first the LAP
in (0,∞), namely, over the interior of the spectrum.

Under assumptions close to ours here (but also assuming that a(x) is
continuously differentiable) a weaker version (roughly, ”strong” instead
of ”uniform” convergence of the resolvents) was obtained by Eidus [34,
Theorem 4 and Remark 1]. His approach relied on elliptic (kernel)
estimates.

The systematic treatment of the LAP started with the work of Ag-
mon [1]. He established it for operators of the type H0 + V , where V
is a short-range perturbation. To obtain the LAP for H0 he consid-
ered the action of division by symbols with simple zeros in weighted
Sobolev spaces. We therefore label this approach as the ”Fourier ap-
proach” (see [41, Chapter 14]). The short-range potential was treated
by perturbation methods.

Soon thereafter, two other approaches to the LAP were proposed,
first the ”Commutator method” (known as ”Mourre’s method”) pro-
posed in the classical paper [58] and then the ”Spectral method” ,
initiated in joint works of the author with Devinatz [12, 13]. In its
implementation for partial differential operators, this method relies on
estimates of traces of Sobolev functions on characteristic manifolds,
somewhat in analogy to the division by symbols with simple zeros in
the case of the Fourier method. In fact, it implies the Hölder continuity
of the limiting values R±(λ) in a suitable operator topology.

All three approaches yielded simple proofs for the LAP associated
with H = H0+V, where V is short-range, in the interior (0,∞) of the
spectrum.

Using one of the aforementioned approaches, the LAP for H has
later been established , with V being a long-range or Stark-like poten-
tial [45, 5], a potential in Lp(Rn) [36, 47], a potential depending only on
direction (x/|x|) [38] or a perturbation of such a potential [61, 62]. In
these latter cases the condition α > 0 is replaced by α > lim sup

|x|→∞
V (x).

The LAP for operators of the type f(−∆)+ V, for a certain class of
functions f, was derived in [17], using the spectral method .

A remarkable success of Mourre’s method was in its application to
the LAP in the case of the N−body Schrödinger operator (outside of
thresholds) [60].
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As mentioned in the Introduction, if the coefficient matrix a(x) is
smooth, the operator H can be viewed as the Laplace-Beltrami oper-
ator ∆g on noncompact manifolds, where g is a smooth metric that
approaches the Euclidean metric at infinity . The LAP in this case (in
the interior of the spectrum) has already been established by Mourre.
We refer to [65] and references therein for the case of perturbations of
such operators. More recent works that employ the Mourre method for
the derivation of the LAP in the interior of the spectrum, for asymp-
totically Euclidean spaces, are [75, Section 5] and [19, Theorem 2.2].

We now turn back to our topic here, the LAP in intervals containing
the threshold at the bottom of the spectrum . The study of the resol-
vent near the threshold λ = 0 is sometimes referred to as ”low energy
estimates”. The literature in this case is considerably more limited. An
inspection of the aforementioned works shows that the methods they
employ cannot be extended in a straightforward way to our operator
H .

This case has been studied for the Laplacian H0 in [12, Appendix
A] and for H in the one-dimensional case (n = 1) in [8, 10, 27]. The
present paper deals with the multi-dimensional case n ≥ 2.

In recent works Bouclet [21] and Bony and Häfner [20] have applied
the Mourre method in order to establish ”low energy” LAP for ∆g on
noncompact manifolds of dimension n ≥ 3, where the metric g(x) is
smooth but long-range.

The paper [64] deals with the two-dimensional (n = 2) case, but the
resolvent R(z) is restricted to continuous compactly supported func-
tions f , thus enabling the use of pointwise decay estimates of R(z)f
at infinity.

Finally we mention the case of the closely related ”acoustic propaga-
tor” , where the matrix a(x) = b(x1)I is scalar and dependent on a sin-
gle coordinate , has been extensively studied [10, 22, 29, 31, 48, 49, 53],
as well as the ”anisotropic” case where b(x1) is a general positive ma-
trix [11]. The LAP for the periodic case (namely, a(x) is symmetric
and periodic) has recently been established in [59] . Note that in this
case the spectrum is absolutely continuous and consists of a union of
intervals (”bands”).

The proof of Theorem A , based on the spectral approach, is given
in Section 5. It uses an extended version of the LAP for H0, with the
resolvent R0(z) acting on elements of H−1,s, for suitable positive values
of s (see Section 4).

Since L2,s (resp. H1,−s) is densely and continuously embedded in
H−1,s (resp. L2,−s) , we conclude that the resolvents R0(z), R(z) can
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be extended continuously to C± in the B(L2,s(Rn), L2,−s(Rn)) operator
topology. An immediate consequence of this fact is the existence and
completeness of the wave operators.

Using a well-known theorem of Kato and Kuroda [51] , we have the
following immediate corollary concerning the completeness of the wave
operators (see (1.3) for the definition).

Corollary 3.1. The wave operatorsW±(H,H0) exist and are complete.

Indeed, all that is needed is that H,H0 satisfy the LAP in R , with
respect to the same operator topologies.

We refer to the paper [46] where the existence and completeness of
the wave operatorsW±(H,H0) is established under suitable smoothness
assumptions on a(x) (however, a(x)−I is not assumed to be compactly
supported and H can include also magnetic and electric potentials).

3.2. The Eigenfunction Expansion Theorem. The spectral theo-
rem (for self-adjoint operators) can be viewed as a ”generalized eigen-
function theorem”. In fact, using the result of Theorem A one can
obtain a more refined version in this case as follows.

Let {E(λ), λ ∈ R} be the spectral family associated with H. Let
A(λ) = d

dλ
E(λ) be its weak derivative. More precisely, we use the

well-known formula,

(3.2) A(λ) =
1

2πi
lim
ϵ→0+

(R(λ+ iϵ)−R(λ− iϵ)) = 1

2πi
(R+(λ)−R−(λ)).

By Theorem A we know that A(λ) ∈ B(L2,s(Rn), L2,−s(Rn)). The for-
mal relation (H − λ)A(λ) = 0 can be given a rigorous meaning if,
for example, we can find a bounded operator T such that T ∗A(λ)T is
bounded in L2(Rn) and has a complete set (necessarily at most count-
able) of eigenvectors. These will serve as ”generalized eigenvectors”
for H. We refer to [18, Chapters V,VI] and [23] for a development
of this approach for self-adjoint elliptic operators. Note that by this
approach we have at most a countable number of such generalized
eigenvectors for any fixed λ. In the case of H0 = −∆ they correspond

to |x|−n−3
2 J√κj

(
√
λ|x|)ψj(ω), where κj = λj +

(n−1)(n−3)
4

, λj being the
j−th eigenvalue of the Laplace-Beltrami operator on the unit sphere
Sn−1, ψj the corresponding eigenfunction and Jν is the Bessel function
of order ν.

On the other hand, the Fourier expansion (1.5) can be viewed as ex-
pressing a function in terms of the ”generalized eigenfunctions” exp (iξx)
of H0. Observe that now there is a continuum of such functions corre-
sponding to λ > 0, namely, |ξ|2 = λ.
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From the physical point-of-view this expansion in terms of ”plane
waves” proves to be more useful for many applications. In particular,
replacing −∆ by the Schrödinger operator −∆ + V (x) one can ex-
pect, under certain hypotheses on the potential V , a similar expansion
in terms of ”distorted plane waves”. This has been accomplished, in
increasing order of generality (more specifically, decay assumptions on
V (x) as |x| → ∞) in [63, 44, 1, 68, 2]. See also [74] for an eigenfunction
expansion for relativistic Schrödinger operators.

Here we use the LAP result of Theorem A in order to derive a similar
expansion for the operator H. In fact, our generalized eigenfunctions
are given by the following definition.

Definition 3.2. For every ξ ∈ Rn let

(3.3)
ψ±(x, ξ) = −R∓(|ξ|2)((H − |ξ|2) exp(iξx)) =

R∓(|ξ|2)(
∑n

l,j=1 ∂l(al,j(x)− δl,j)∂j) exp(iξx).

The generalized eigenfunctions of H are defined by

(3.4) φ±(x, ξ) = exp(iξx) + ψ±(x, ξ).

We assume n ≥ 3 in order to simplify the statement of the theorem.
As we show below (see Proposition 6.1) the generalized eigenfunctions
are (at least) continuous in x, so that the integral in the statement
makes sense.

THEOREM B. Suppose that n ≥ 3 and that a(x) satisfies (1.1),(1.2).
For any compactly supported f ∈ L2(Rn) define

(3.5) (F±f)(ξ) = (2π)−
n
2

∫
Rn

f(x)φ±(x, ξ)dx, ξ ∈ Rn.

Then the transformations F± can be extended as unitary transforma-
tions (for which we retain the same notation) of L2(Rn) onto itself.
Furthermore, these transformations ”diagonalize” H in the following
sense.
f ∈ L2(Rn) is in the domain D(H) if and only if |ξ|2(F±f)(ξ) ∈

L2(Rn) and

(3.6) H = F∗
±M|ξ|2F±,

where M|ξ|2 is the multiplication operator by |ξ|2.
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3.3. Spacetime Estimates for a Generalized Wave Equation.
The Strichartz estimates [72] have become a fundamental ingredient
in the study of nonlinear wave equations. They are Lp spacetime esti-
mates that are derived for operators whose leading part has constant
coefficients. We refer to the books [70, 71] and [4] for detailed accounts
and further references.

Here we focus exclusively on spacetime estimates pertinent to the
framework of this paper, namely, weighted L2 estimates. Indeed, once
the ”low energy estimates” of Theorem A are established, the method
of proof here follows a standard methodology.

We recall first some results related to the Cauchy problem for the
classical wave equation

(3.7) �u =
∂2u

∂t2
−∆u = 0,

subject to the initial data

(3.8) u(x, 0) = u0(x), ∂tu(x, 0) = v0(x). x ∈ Rn.

The Morawetz estimate [56] yields

(3.9)

∫
R

∫
Rn

|x|−3|u(x, t)|2dxdt ≤ C(∥∇u0∥20 + ∥v0∥20), n ≥ 4,

while in [7] we gave the estimate
(3.10)∫
R

∫
Rn

|x|−2α−1|u(x, t)|2dxdt ≤ Cα(∥|∇|αu0∥20 + ∥|∇|α−1v0∥20), n ≥ 3,

for every α ∈ (0, 1).
Related results were obtained in [55] (allowing also dissipative terms)

, [42] (with some gain in regularity), [76] (with short-range potentials)
and [39] for spherically symmetric solutions .

Here we consider the equation

(3.11)
∂2u

∂t2
+Hu =

∂2u

∂t2
−

n∑
i,j=1

∂iai,j(x)∂ju = f(x, t),

subject to the initial data (3.8).
We first replace the assumptions (1.1),(1.2) by stronger ones as fol-

lows.

(3.12) (H1) a(x) = g−1(x) = (gi,j(x))1≤i,j≤n.
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where g(x) = (gi,j(x))1≤i,j≤n is a smooth Riemannian metric on Rn

such that

g(x) = I for |x| > Λ0.

(3.13)
(H2) The Hamiltonian flow associated with

h(x, ξ) = (g(x)ξ, ξ) is nontrapping for any (positive) value of h.

Recall that (H2) means that the flow associated with the Hamiltonian
vectorfield H = ∂h

∂ξ
∂
∂x

− ∂h
∂x

∂
∂ξ

leaves any compact set in Rn
x.

Identical hypotheses are imposed in the study of resolvent estimates
in semi-classical theory [24, 25].

In our estimates we use ”homogeneous Sobolev spaces” associated
with the operator H.

We note that since H has no eigenvalue at zero, the operators H−1

and H− 1
2 are well defined self-adjoint operators. Note that ∥H 1

2 θ∥0 is
equivalent to the homogeneous Sobolev norm ∥∇θ∥0.

THEOREM C. Suppose that n ≥ 3 and that a(x) satisfies Hypotheses
(H1)-(H2). Let s > 1.

(a) (local energy decay) Let u0 ∈ D(H
1
2 ) and v0 ∈ L2(Rn). Then

there exists a constant C1 = C1(s, n) > 0 such that the solution to
(3.11),(3.8) satisfies,

(3.14)

∫
R

∫
Rn

(1 + |x|2)−s[|H
1
2u(x, t)|2 + |ut(x, t)|2]dxdt ≤

C1{∥H
1
2u0∥20 + ∥v0∥20 +

∫
R

∫
Rn

|f(x, t)|2dxdt}.

(b) (amplitude decay) Assume f = 0. Let u0 ∈ L2(Rn) and v0 ∈
D(H− 1

2 ). There exists a constant C2 = C2(s, n) > 0 such that the
solution to (3.11),(3.8) satisfies,

(3.15)

∫
R

∫
Rn

(1 + |x|2)−s|u(x, t)|2dxdt ≤

C2[∥u0∥20 + ∥H− 1
2 v0∥20].

These estimates generalize similar estimates obtained for the classical
(g = I) wave equation [7, 55].

Remark 3.3. The estimate (3.14) is an ”energy decay estimate” for
the wave equation (3.11). A localized (in space) version of the estimate
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has served to obtain global (small amplitude) existence theorems for the
corresponding nonlinear equation [25, 40].

Remark 3.4. The referee has pointed out to the author the recent
preprint [19, Theorem 1.3], where a more general result is obtained,
with the metric being long-range.

The weighted-L2 spacetime estimates for the dispersive equation

i−1 ∂

∂t
u = Lu,

have been extensively treated in recent years. In general, in this case
there is also a gain of derivatives (so called ”smoothing”) in addition
to the energy decay. For the Schrödinger operator L = −∆ + V (x),
with various assumptions on the potential V, we refer to [3, 6, 7, 15, 16,
42, 52, 67, 69, 77] and references therein. Smoothing estimates in the
presence of magnetic potentials are considered in [30]. The Schrödinger
operator on a Riemannian manifold is considered in [24, 33] . For more
general operators see [14, 17, 26, 43, 57, 66, 73] and references therein.

4. The Operator H0 = −∆

Let
{
E0(λ)

}
be the spectral family associated with H0, so that

(4.1) (E0(λ)h, h) =

∫
|ξ|2≤λ

|ĥ|2dξ, λ ≥ 0, h ∈ L2(Rn).

Following the methodology of [13, 32] we see that the weak derivative
A0(λ) = d

dλ
E0(λ) exists in B(L2,s, L2,−s) for any s > 1

2
and λ > 0.

(Here and below we write L2,s for L2,s(Rn)). Furthermore,

(4.2) < A0(λ)h, h >= (2
√
λ)−1

∫
|ξ|2=λ

|ĥ|2dτ,

where <,> is the (L2,−s, L2,s) pairing (conjugate linear with respect to
the second term) and dτ is the Lebesgue surface measure. Recall that
by the standard trace lemma we have

(4.3)

∫
|ξ|2=λ

|ĥ|2dτ ≤ C∥ĥ∥2Hs , s >
1

2
.

However, we can refine this estimate near λ = 0 as follows.
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Proposition 4.1. Let 1
2
< s < 3

2
, h ∈ L2,s. For n = 2 assume

further that s > 1 and h ∈ L2,s
0 . Then

(4.4)

∫
|ξ|2=λ

|ĥ|2dτ ≤ Cmin(λγ, 1)∥ĥ∥2Hs ,

where

(4.5)
0 < γ = s− 1

2
, n ≥ 3,

0 < γ < s− 1

2
, n = 2,

and C = C(s, γ, n).

Proof. If n ≥ 3, the proof follows as in [16, Appendix], using the ”gener-
alized Hardy inequality” due to Herbst [37], namely, that multiplication
by |ξ|−s is bounded from Hs into L2 (see also [54, Section 9.4]).

If n = 2 and 1 < s < 3
2
we have, for h ∈ L2,s

0 ,

|ĥ(ξ)| = |ĥ(ξ)− ĥ(0)| ≤ Cs,δ|ξ|δ∥ĥ∥Hs ,

for any 0 < δ < min(1, s − 1). Using this estimate in the integral in
the right-hand side of (4.4) the claim follows also in this case. �

Combining Equations (4.2),(4.3) and (4.4) we conclude that,

| < A0(λ)f, g > | ≤< A0(λ)f, f >
1
2< A0(λ)g, g >

1
2(4.6)

≤ Cmin(λ−
1
2 , λη)∥f∥0,s∥g∥0,σ, f ∈ L2,s, g ∈ L2,σ,

where either

(i) n ≥ 3,
1

2
< s, σ <

3

2
, s+ σ > 2 and 0 < 2η = s+ σ − 2,

or(4.7)

(ii) n = 2, 1 < s <
3

2
,

1

2
< σ <

3

2
, s+ σ > 2, 0 < 2η < s+ σ − 2

and f̂(0) = 0.

In both cases, A0(λ) is Hölder continuous and vanishes at 0,∞, so as
in [13] we obtain

Proposition 4.2. The operator-valued function

(4.8) z → R0(z) ∈
{

B(L2,s, L2,−σ), n ≥ 3,

B(L2,s
0 , L2,−σ), n = 2,

where s, σ satisfy (4.7), can be extended continuously from C± to C±,
in the respective uniform operator topologies.
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Remark 4.3. We note that the conditions (4.7) yield the continuity of
A0(λ) across the threshold λ = 0 and hence the continuity property of
the resolvent as in Proposition 4.2. However, for the local continuity
at any λ0 > 0, it suffices to take s, σ > 1

2
, as in [1].

This remark applies equally to the statements below, where the resol-
vent is considered in other functional settings.

We shall now extend this proposition to more general function spaces.
Let g ∈ H1,σ, where s, σ satisfy (4.7). Let f ∈ H−1,s have a represen-
tation of the form (2.4). Equation (4.2) can be extended to yield an
operator (for which we retain the same notation)

A0(λ) ∈ B(H−1,s, H−1,−σ),

defined by (where now <,> is used for the (H−1,s, H1,σ) pairing),

(4.9)

< A0(λ)[f0 + i−1

n∑
k=1

∂

∂xk
fk], g >

= (2
√
λ)−1

∫
|ξ|2=λ

[f̂0(ξ) +
n∑

k=1

ξkf̂k(ξ)]ĝ(ξ)dτ, f ∈ H−1,s, g ∈ H1,σ.

(replace H−1,s by H−1,s
0 if n = 2).

Observe that this definition makes good sense even though the rep-
resentation (2.4) is not unique, since

f = f0 +
n∑

k=1

i−1 ∂

∂xk
fk = f̃0 +

n∑
k=1

i−1 ∂

∂xk
f̃k,

implies

f̂0(ξ) +
n∑

k=1

ξkf̂k(ξ) =
ˆ̃f0(ξ) +

n∑
k=1

ξk
ˆ̃fk(ξ)

(as tempered distributions).
To estimate the operator-norm of A0(λ) in this setting we use (4.9)

and the considerations preceding Proposition 4.2 , to obtain ,instead
of (4.6), for k = 1, 2, ..., n,

(4.10)
| < A0(λ)

∂

∂xk
fk, g > |

≤ Cmin(λ−
1
2 , λη)∥f∥−1,s∥g∥1,σ , f ∈ H−1,s, g ∈ H1,σ,

where s, σ satisfy (4.7) (replace H−1,s by H−1,s
0 if n = 2).
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We now define the extension of the resolvent operator by

(4.11) R0(z) =

∞∫
0

A0(λ)

λ− z
dλ, Im z ̸= 0.

The convergence of the integral (in operator-norm) follows from the
estimate (4.10).

The LAP in this case is given in the following proposition.

Proposition 4.4. The operator-valued function R0(z) is well-defined
(and analytic) for nonreal z in the following functional setting.

(4.12) z → R0(z) ∈
{

B(H−1,s, H1,−σ), n ≥ 3,

B(H−1,s
0 , H1,−σ), n = 2,

where s, σ satisfy (4.7). Furthermore, it can be extended continuously
from C± to C±, in the respective uniform operator topologies. The lim-
iting values are denoted by R±

0 (λ).
The extended function satisfies

(4.13) (H0 − z)R0(z)f = f, f ∈ H−1,s, z ∈ C±,

where for z = λ ∈ R, R0(z) = R±
0 (λ).

Proof. We assume for simplicity n ≥ 3. By Definition (4.11) and the es-
timate (4.10) , we get readily R0(z) ∈ B(H−1,s, H−1,−σ) if Im z ̸= 0, as
well as the analyticity of the map z ↪→ R0(z), Im z ̸= 0. Furthermore,
the extension to Im z = 0 is carried out as in [13].

Equation (4.13) is obvious if Im z ̸= 0 and f ∈ L2,s. By the density
of L2,s in H−1,s , the continuity of R0(z) on H

−1,s and the continuity of
H0−z (in the sense of distributions) , we can extend it to all f ∈ H−1,s.

As z → λ± i · 0 we have R0(z)f → R±
0 (λ)f in H−1,−σ. Applying the

(constant coefficient) operator H0 − z yields, in the sense of distribu-
tions, f = (H0− z)R0(z)f → (H0−λ)R±

0 (λ)f which establishes (4.13)
also for Im z = 0.

Finally, the established continuity of z ↪→ R0(z) ∈ B(H−1,s, H−1,−σ)
(up to the real boundary) and Equation (4.13) imply the continuity of
the map z ↪→ H0R0(z) ∈ B(H−1,s, H−1,−σ).

The stronger continuity claim (4.12) follows since the norm of H1,−σ

is equivalent to the graph-norm of H0 as a map of H−1,−σ to itself. �
Remark 4.5. The main point here is the fact that the limiting values
can be extended continuously to the threshold at λ = 0.

In the neighborhood of any λ > 0 this proposition follows from [68,
Theorem 2.3], where a very different proof is used. In fact, using the
terminology there, the limit functions R±

0 (λ)f are the unique (on either
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side of the positive real axis) radiative functions and they satisfy a
suitable ”Sommerfeld radiation condition”. We recall it here for the
sake of completeness, since we will need it in the next section.

Let z = k2 ∈ C \ {0}, Im k ≥ 0. For f ∈ H−1,s let u = R0(z)f ∈
H1,−σ be as defined above. Then

(4.14) Ru =

∫
|x|>Λ0

|r−
n−1
2
∂

∂r
(r

n−1
2 u)− iku|2dx <∞,

where r = |x|.
We shall refer to Ru as the radiative norm of u.
Furthermore, we can take 1

2
< s, σ, as in Remark 4.3.

5. The Operator H

Fix [α, β] ∈ R and let

(5.1) Ω =
{
z ∈ C+ / α < Re z < β, 0 < Imz < 1

}
.

Let z = µ+ iε ∈ Ω and consider the equation

(5.2) (H − z)u = f ∈ H−1,s, u ∈ H1,−σ, (f ∈ H−1,s
0 if n = 2).

(Observe that in the case n = 2 also u ∈ L2,σ
0 ).

With Λ0 as in (1.2), let χ(x) ∈ C∞(Rn) be such that

(5.3) χ(x) =

{
0, |x| < Λ0 + 1,
1, |x| > Λ0 + 2.

Equation (5.2) can be written as

(5.4) (H0 − z)(χu) = χf − 2∇χ · ∇u− u∆χ.

Letting ψ(x) = 1 − χ(x
2
) ∈ C∞

0 (Rn) and using Proposition 4.4 and
standard elliptic estimates, we obtain from (5.4)

(5.5) ∥u∥1,−σ ≤ C[∥f∥−1,s + ∥ψu∥0,−s],

where s, σ satisfy (4.7), and C > 0 depends only on Λ0, σ, s, n.
We note that since ψ is compactly supported, the term ∥ψu∥0,−s can

be replaced by ∥ψu∥0,−s′ for any real s′.
In fact, the second term in the right-hand side can be dispensed with,

as is demonstrated in the following proposition.

Proposition 5.1. The solution to (5.2) satisfies,

(5.6) ∥u∥1,−σ ≤ C∥f∥−1,s,

where s, σ satisfy (4.7) and C > 0 depends only on σ, s, n,Λ0.
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Proof. In view of (5.5) we only need to show that

(5.7) ∥ψu∥0,−s ≤ C∥f∥−1,s.

Since L2,s(Rn) is dense in H−1,s(Rn) it suffices to prove this inequality
for f ∈ L2,s(Rn) ∩H−1,s(Rn) (using the norm of H−1,s).

We argue by contradiction. Let{
zk
}∞
k=1

⊆ Ω,
{
fk
}∞
k=1

⊆ L2,s(Rn) ∩H−1,s(Rn)

(with f̂k(0) = 0 if n = 2) and{
uk = R(zk)fk

}∞
k=1

⊆ H1,−σ(Rn)

be such that,

(5.8)
∥ψuk∥0,−s = 1, ∥fk∥−1,s ≤ k−1, k = 1, 2, ...

zk → z0 ∈ Ω as k → ∞.

By (5.5)
{
uk
}∞
k=1

is bounded in H1,−σ. Replacing the sequence by a
suitable subsequence (without changing notation) and using the Rellich
compactness theorem we may assume that there exists a function u ∈
L2,−σ′

, σ′ > σ, such that,

(5.9) uk → u in L2,−σ′
as k → ∞.

Furthermore, by weak compactness we actually have (restricting again
to a subsequence if needed)

(5.10) uk
w−→ u in H1,−σ as k → ∞.

Since H maps continuously H1,−σ into H−1,−σ we have

Huk
w−→ Hu in H−1,−σ as k → ∞,

so that from (H − zk)uk = fk we infer that

(5.11) (H − z0)u = 0.

In view of (5.4) and Remark 4.5 the functions χuk are ”radiative
functions” . Since they are uniformly bounded inH1,−σ their ”radiative
norms” (4.14) are uniformly bounded.

Suppose first that z0 ̸= 0. In view of Remark 4.5 we can take s, σ >
1
2
. Then the limit function u is a radiative solution to (H0 − z0)u =

0 in |x| > Λ0 + 2 and hence must vanish there (see [68]). By the
unique continuation property of solutions to (5.11) we conclude that
u ≡ 0. Thus by (5.9) we get ∥ψuk∥0,−σ′ → 0 as k → ∞, which
contradicts (5.8).

We are therefore left with the case z0 = 0. In this case u ∈ H1,−σ

satisfies the equation

(5.12) ∇ · (a(x)∇u) = 0.
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In particular, ∆u = 0 in |x| > Λ0 and

(5.13)

∞∫
Λ0

∫
|x|=r

r−2σ
(
|u|2 + |∂u

∂r
|2
)
dτdr <∞.

Consider first the case n ≥ 3. We may then use the representation of
u by spherical harmonics, so that, with x = rω, ω ∈ Sn−1,

(5.14) u(x) = r−
n−1
2

{ ∞∑
j=0

bjr
µjhj(ω) +

∞∑
j=0

cjr
−νjhj(ω)

}
, r > Λ0,

where,

(5.15) µj(µj − 1) = νj(νj + 1) = λj +
(n− 1)(n− 3)

4
,

0 = λ0 < λ1 ≤ λ2 ≤ ...

being the eigenvalues of the Laplace-Beltrami operator on Sn−1, and
hj(ω) the corresponding spherical harmonics. Since λ1 = n − 1, it
follows that

(5.16) µ0 =
n− 1

2
, µ0 + 1 ≤ µ1 ≤ µ2...

n− 3

2
= ν0 < ν1 ≤ ν2...

We now observe that (5.13) forces

b0 = b1 = . . . = 0.

Also, by (5.14)

(5.17)

∫
|x|=r

∂u

∂r
dτ = −(n− 2)|Sn−1|c0, r > Λ0,

(|Sn−1| is the surface measure of Sn−1),
while integrating (5.12) we get

(5.18)

∫
|x|=r

∂u

∂r
dτ = 0, r > Λ0.

Thus c0 = 0. It now follows from (5.14) that, for r > Λ0,

(5.19)

∫
|x|=r

(
|u|2 + |∂u

∂r
|2
)
dτ ≤

( r
Λ0

)−2ν1

∫
|x|=Λ0

(
|u|2 + |∂u

∂r
|2
)
dτ.

Multiplying (5.12) by u and integrating by parts over the ball |x| ≤ r ,
we infer from (5.19) that the boundary term vanishes as r → ∞. Thus
∇u ≡ 0, in contradiction to (5.8)-(5.9).
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It remains to deal with the case n = 2. Instead of (5.14) we now
have
(5.20)

u(x) = r−
1
2

{
b̃0r

1
2 log r +

∞∑
j=0

bjr
µjhj(ω) +

∞∑
j=1

cjr
−νjhj(ω)

}
, r > Λ0,

where µ0 =
1
2
, µ1 =

3
2
, ν1 =

1
2
.

As in the derivation above, the condition (5.13) yields b0 = b1 = . . . =

0. Also, we get b̃0 = 0 in view of (5.18). It now follows that

(5.21)

∫
|x|=r

u
∂u

∂r
dτ = −2π

∞∑
j=1

(νj +
1

2
)|cj|2r−2νj−1, r ≥ Λ0,

from which, as in the argument following (5.19), we deduce that u ≡ 0,
again in contradiction to (5.8)-(5.9). �
Proof of Theorem A. Part (a) of the theorem is actually covered by
Proposition 5.1. Moreover, the proposition implies that the operator-
valued function

z → R(z) ∈ B(H−1,s(Rn), H1,−σ(Rn)), s > 1, z ∈ Ω,

is uniformly bounded, where s, σ satisfy (4.7). Here and below replace
H−1,s by H−1,s

0 if n = 2.
We next show that the function z → R(z) can be continuously ex-

tended to Ω in the weak toplogoy of B(H−1,s(Rn), H1,−σ(Rn)). To this
end, we take f ∈ H−1,s(Rn) and g ∈ H−1,σ(Rn) and consider the func-
tion

z →< g,R(z)f >, z ∈ Ω,

where <,> is the (H−1,σ, H1,−σ) pairing. We need to show that it can
be extended continuously to Ω.

In view of the uniform boundedness established in Proposition 5.1,
we can take f, g in dense sets (of the respective spaces). In particular,
we can take f ∈ L2,s(Rn) and g ∈ L2,σ(Rn), so that the continuity
property in Ω is obvious.

Consider therefore a sequence {zk}∞k=1 ⊆ Ω such that zk −−−→
k→∞

z0 ∈
[α, β]. The sequence {uk = R(zk)f}∞k=1 is bounded inH1,−σ(Rn). There-
fore there exists a subsequence

{
ukj

}∞
j=1

which converges to a function

u ∈ L2,−σ′
, σ′ > σ.

We can further assume that ukj
w−−−→

j→∞
u in H1,−σ. It follows that

< g, ukj >−−−→
j→∞

< g, u > .
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Passing to the limit in (H − zkj)ukj = f we see that the limit function
satisfies

(H − z0)u = f.

We now repeat the argument employed in the proof of Proposi-
tion 5.1. If z0 ̸= 0 we note that the functions {χuk}∞k=1 are radia-
tive functions with uniformly bounded ”radiative norms” (4.14) in
|x| > Λ0 + 2. The same is therefore true for the limit function u.

If z0 = 0 the function u ∈ H1,−σ solves Hu = f.
In both cases this function is unique and we get the convergence

< g,R(zk)f >=< g, uk >−−−→
k→∞

< g, u > .

We can now define

(5.22) R+(z0)f = u,

with an analogous definition for R−(z0).
At this point we can readily deduce the following extension of the

resolvent R(z) as the inverse of H − z.

(5.23) (H − z)R(z)f = f, f ∈ H−1,s, z ∈ C±,

where R(z) = R±(λ) when z = λ ∈ R.
Indeed, observe that if Im z ̸= 0 then (H − z)R(z)f = f for f ∈

L2,s(Rn) and (H − z)R(z) ∈ B(H−1,s, H−1,−σ), so the assertion follows
from the density of L2,s(Rn) in H−1,s(Rn). For z = λ ∈ R we use the
(just established) weak continuity of the map z ↪→ (H − z)R(z) from
H−1,s into H−1,−σ in C±.

The passage ”from weak to uniform continuity” (in the operator
topology) is a classical argument due to Agmon [1]. In [8] we have
applied it in the case n = 1. Here we outline the proof in the case
n > 1.

We establish first the continuity of the operator-valued function
z → R(z), Ω, in the uniform operator topologoy ofB(H−1,s(Rn), L2,−σ(Rn)).

Let
{
zk
}∞
k=1

⊆ Ω and
{
fk
}∞
k=1

⊆ H−1,s(Rn) be sequences such that

zk −−−→
k→∞

z ∈ Ω and fk converges weakly to f in H−1,s(Rn). It suffices to

prove that the sequence uk = R(zk)fk, which is bounded in H1,−σ(Rn),
converges strongly in L2,−σ(Rn). Since this is clear if Im z ̸= 0, we can
take z ∈ [α, β].

Note first that we can take 1
2
< σ′ < σ so that s, σ′ satisfy (4.7).

Then the sequence {uk}∞k=1 is bounded in H1,−σ′
(Rn) and there exists

a subsequence
{
ukj

}∞
j=1

which converges to a function u ∈ L2,−σ.



22 MATANIA BEN-ARTZI

We can further assume that ukj
w−−−→

j→∞
u in H1,−σ.

It follows that the limit function satisfies (see Eq. (5.23))

(H − z)u = f.

Once again we consider separately the cases z ̸= 0 and z = 0.
In the first case, in view of (5.23) and Remark 4.5 the functions χuk

are ”radiative functions” . Since they are uniformly bounded in H1,−σ

their ”radiative norms” (4.14) are uniformly bounded, and we conclude
that also Ru <∞.

In the second case, we simply note that u ∈ H1,−σ solves Hu = f.
As in the proof of Proposition 5.1 we conclude that in both cases the

limit is unique, so that the whole sequence {uk}∞k=1 converges to u in
L2,−σ(Rn).

Thus, the continuity in the uniform operator topologoy of
B(H−1,s(Rn), L2,−σ(Rn)) is proved.

Finally, we claim that the operator-valued function z → R(z) is con-
tinuous in the uniform operator toplogoy of B(H−1,s(Rn), H1,−σ(Rn)).
Indeed, if we invoke Eq. (5.23) we get that also z → HR(z) is contin-
uous in the uniform operator topology of B(H−1,s(Rn), H−1,−σ(Rn)).

Since the domain ofH inH−1,−σ(Rn) isH1,−σ(Rn), the claim follows.
The conclusion of the theorem follows by taking σ = s. �
Remark 5.2. In view of (5.4) and Remark 4.5 it follows that for
λ > 0 the functions R±(λ)f, f ∈ H−1,s, are ”radiative”, i.e., satisfy a
Sommerfeld radiation condition.

6. The Eigenfunction Expansion Theorem

In this section we prove Theorem B stated in Section 3. We first
collect some basic properties of the generalized eigenfunctions in the
following proposition.

Proposition 6.1. The generalized eigenfunctions

φ±(x, ξ) = exp(iξx) + ψ±(x, ξ)

(see (3.4)) are in H1
loc(Rn) for each fixed ξ ∈ Rn and satisfy the equation

(6.1) (H − |ξ|2)φ±(x, ξ) = 0.

In addition, these functions have the following properties:
(i) The map

Rn ∋ ξ ↪→ ψ±(·, ξ) ∈ H1,−s(Rn), s > 1,

is continuous.
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(ii) For any compactK ⊆ Rn the family of functions
{
φ±(x, ξ), ξ ∈

K
}
is uniformly bounded and uniformly Hölder continuous in x ∈ Rn.

Proof. Since (H−|ξ|2) exp(iξx) ∈ H−1,s, s > 1, Equation (6.1) follows
from the definition (3.3) in view of Equation (5.23).

Furthermore, the map

Rn ∋ ξ ↪→ (H − |ξ|2) exp(iξx) ∈ H−1,s(Rn), s > 1,

is continuous, so the continuity assertion (i) follows from Theorem A.
For s > 1 the set of functions {ψ±(·, ξ), ξ ∈ K} is uniformly bounded

in H1,−s. Thus, in view of (6.1), it follows from the De Giorgi-Nash-
Moser Theorem [35, Chapter 8] that the set

{
φ±(x, ξ), ξ ∈ K

}
is

uniformly bounded and uniformly Hölder continuous in {|x| < R} for
every R > 0. In particular, we can take R > Λ0 (see Equation (1.2)).
In the exterior domain {|x| > R} the set {ψ±(x, ξ), ξ ∈ K} is bounded
in H1,−s, s > 1, and we have (H0 − |ξ|2)ψ±(x, ξ) = 0.

In addition the boundary values {ψ±(x, ξ), |x| = R, ξ ∈ K} are uni-
formly bounded. From well-known properties of solutions of the Helmholtz
equation we conclude that this set is uniformly bounded and therefore,
invoking once again the De Giorgi-Nash-Moser Theorem , uniformly
Hölder continuous. �

Proof of Theorem B. We use the LAP proved in Theorem A, adapting
the methodology of Agmon’s proof [1] for the eigenfunction expansion
in the case of Schrödinger operators with short-range potentials. To
simplify notation, we prove for F+.

Let u ∈ H1 be compactly supported. For any z such that Imz ̸= 0
we can write its Fourier transform as

û(ξ) = (2π)−
n
2

∫
Rn

u(x) exp(−iξx)dx =
(2π)−

n
2

|ξ|2 − z

∫
Rn

u(x)(H0−z) exp(−iξx)dx.

Let θ ∈ C∞
0 (Rn) be a (real) cutoff function such that θ(x) = 1 for x in

a neighborhood of the support of u.
We can rewrite the above equality as

û(ξ) =
(2π)−

n
2

|ξ|2 − z
< (H0 − z)u(x), θ(x) exp(iξx) >,

where < ·, · > is the (H−1,s, H1,−s) bilinear pairing (conjugate linear
with respect to the second term).
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We have therefore, with f = (H − z)u,

û(ξ) =(6.2)

(2π)−
n
2

|ξ|2 − z
(< (H − z)u(x), θ(x) exp(iξx) > +< (H0 −H) exp(iξx), u(x) >)

=
(2π)−

n
2

|ξ|2 − z
(< f(x), θ(x) exp(iξx) > + < f(x), R(z̄)(H0 −H) exp(iξx) >).

Introducing the function

f̃(ξ, z) = f̂(ξ) + (2π)−
n
2 < f(x), R(z̄)(H0 −H) exp(iξx) >,

we have

(6.3) û(ξ) = R̂(z)f(ξ) =
f̃(ξ, z)

|ξ|2 − z
, Im z ̸= 0,

We now claim that this equation is valid for all compactly supported
f ∈ H−1.

Indeed, let u = R(z)f ∈ H1,−s, s > 1. Let ψ(x) = 1 − χ(x), where
χ(x) is defined in (5.3).

We set

uk(x) = ψ(k−1x)u(x), fk(x) = (H − z)(ψ(k−1x)u(x)), k = 1, 2, 3...

The equality (6.3) is satisfied with u, f replaced, respectively, by uk, fk.
Since

ψ(k−1x)u(x) −−−→
k→∞

u(x)

in H1,−s, we have

(H − z)(ψ(k−1x)u(x)) −−−→
k→∞

(H − z)u = f(x)

in H−1,−s, where in the last step we have used Equation (5.23).
In addition, since (H0 −H) exp(iξx) is compactly supported

< fk(x), R(z̄)(H0 −H) exp(iξx) >= < (H0 −H) exp(iξx), R(z)fk(x) >

−−−→
k→∞

< (H0 −H) exp(iξx), R(z)f > =< f,R(z̄)(H0 −H) exp(iξx) > .

Combining these considerations with the continuity of the Fourier
transform (on tempered distributions) we establish that (6.3) is valid
for all compactly supported f ∈ H−1.

Let {E(λ), λ ∈ R} be the spectral family associated with H. Let
A(λ) = d

dλ
E(λ) be its weak derivative. More precisely, we use the
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well-known formula,

A(λ) =
1

2πi
lim
ϵ→0+

(R(λ+ iϵ)−R(λ− iϵ)),

to get (using Theorem A), for any f ∈ H−1,s, s > 1,

< f,A(λ)f >=
1

2πi
< f, (R+(λ)−R−(λ))f > .

We now take f ∈ L2 and compactly supported. From the resolvent
equation we infer

R(λ+ iϵ)−R(λ− iϵ) = 2iϵR(λ+ iϵ)R(λ− iϵ), ϵ > 0,

so that
< f,A(λ)f >= lim

ϵ→0+

ϵ

π
∥R(λ+ iϵ)f∥20, ϵ > 0.

Using Equation (6.3) and Parseval’s theorem we therefore have,

(6.4)
< f,A(λ)f >

= lim
ϵ→0+

ϵ

π
∥(|ξ|2 − (λ+ iϵ))−1f̃(ξ, λ+ iϵ)∥20, ϵ > 0.

Note that f̃(ξ, z) can be extended continuously as z → λ+ i · 0 by

(6.5) f̃(ξ, λ) = f̂(ξ) + (2π)−
n
2 < f(x), R−(λ)(H0 −H) exp(iξx) > .

In order to study properties of f̃(ξ, z) as a function of ξ we compute
(6.6)

f̃(ξ, z) = f̂(ξ) + (2π)−
n
2< (

n∑
l,j=1

∂l(al,j(x)− δl,j)∂j) exp(iξx), R(z)f(x) >

= f̂(ξ) + (2π)−
n
2 i

n∑
l,j=1

ξj

∫
Rn

(al,j(x)− δl,j)∂l(R(z)f(x)) exp(−iξx)dx,

where in the last step we have used that both ∂l(R(z)f(x)) and (al,j(x)−
δl,j) exp(−iξx) are in L2.

Consider now the integral

g(ξ, z) =

∫
Rn

(al,j(x)− δl,j)∂l(R(z)f(x)) exp(−iξx)dx, z ∈ Ω,

where Ω is as in (5.1).
In view of Theorem A the family {∂lR(z)f(x)}z∈Ω is uniformly

bounded in L2,−s, s > 1, so by Parseval’s theorem we get

∥g(·, z)∥0 < C, z ∈ Ω,

where C only depends on f.
This estimate and (6.6) imply that, if f ∈ L2 is compactly supported:
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(i) The function

Rn × Ω ∋ (ξ, z) → f̃(ξ, z)

is continuous. For real z it is given by (6.5).
(ii)

lim
k→∞

∫
|ξ|>k

(|ξ|2 − z)−1|f̃(ξ, z)|2dξ = 0,

uniformly in z ∈ Ω.
As z → |ξ|2 + i · 0, we have by Theorem A and Equation (3.4),

(6.7) lim
z→|ξ|2+i·0

f̃(ξ, z) = (2π)−
n
2

∫
Rn

f(x)φ+(x, ξ)dx = F+f(ξ),

so that , taking (i) and (ii) into account we obtain from (6.4), for any
compactly supported f ∈ L2,

(6.8) < f,A(λ)f >=
1

2
√
λ

∫
|ξ|2=λ

|F+f(ξ)|2dσ, λ > 0,

where dσ is the surface Lebesgue measure.
It follows that for any [α, β] ⊆ [0,∞),

(6.9)

((E(β)− E(α))f, f) =

∫ β

α

< f,A(λ)f > dλ

=

∫
α≤|ξ|2≤β

|F+f(ξ)|2dξ.

Letting α → 0, β → ∞, we get

(6.10) ∥f∥0 = ∥F+f∥0.

Thus f → F+f ∈ L2(Rn) is an isometry for compactly supported
functions, which can be extended by density to all f ∈ L2(Rn).

Furthermore, since the spectrum of H is entirely absolutely contin-
uous, it follows that for every f ∈ L2, Equation (6.8) holds for almost
all λ > 0 (with respect to the Lebesgue measure).

Let f ∈ D(H). By the spectral theorem

< Hf,A(λ)Hf >= λ2 < f,A(λ)f >=
1

2
√
λ

∫
|ξ|2=λ

||ξ|2F+f(ξ)|2dσ, λ > 0.
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In particular,

(6.11) ∥Hf∥20 =
∫
Rn

||ξ|2F+f(ξ)|2dξ.

Conversely, if the right-hand side of (6.11) is finite, then∫∞
0
λ2 < f,A(λ)f > dλ <∞, so f ∈ D(H).

The adjoint operator F∗
+ is a partial isometry (on the range of F+).

If f(x) ∈ L2(Rn) is compactly supported and g(ξ) ∈ L2(Rn) is likewise
compactly supported then

(F+f, g) = (2π)−
n
2

∫
Rn

(

∫
Rn

f(x)φ+(x, ξ)dx)g(ξ)dξ

= (2π)−
n
2

∫
Rn

f(x)(

∫
Rn

g(ξ)φ+(x, ξ)dξ)dx,

where in the change of order of integration Proposition 6.1 was taken
into account.

It follows that for a compactly supported g(ξ) ∈ L2(Rn),

(6.12) (F∗
+g)(x) = (2π)−

n
2

∫
Rn

g(ξ)φ+(x, ξ)dξ,

and the extension to all g ∈ L2(Rn) is obtained by the fact that F∗
+ is

a partial isometry.
Now if f ∈ D(H), g ∈ L2(Rn), we have

(Hf, g) =

∫
Rn

|ξ|2F+f(ξ)F+g(ξ)dξ =

∫
Rn

F∗
+(|ξ|2F+f(ξ))g(ξ)dξ,

which is the statement (3.6) of the theorem.
It follows from the spectral theorem that for every interval J =

[α, β] ⊆ [0,∞) and for every f ∈ L2(Rn) we have, with EJ = E(β) −
E(α) and χJ the characteristic function of J,

EJf(x) = F∗
+(χJ(|ξ|2)F+f(ξ)),

or
F+EJf(ξ) = χJ(|ξ|2)F+f(ξ).

It remains to prove that the isometry F+ is onto (and hence unitary).
So, suppose to the contrary that for some nonzero g(ξ) ∈ L2(Rn)

(F∗
+g)(x) = 0.

In particular, for any f ∈ L2(Rn) and any interval J as above,

0 = (EJf,F∗
+g) = (F+EJf, g) = (χJ(|ξ|2)F+f(ξ), g(ξ)) = (F+f(ξ), χJ(|ξ|2)g(ξ)),



28 MATANIA BEN-ARTZI

so that F∗
+(χJ(|ξ|2)g(ξ)) = 0.

By Equation (6.12) we have, for any 0 ≤ α < β,∫
α<|ξ|2<β

g(ξ)φ+(x, ξ)dξ = 0,

so that, in view of the continuity properties of φ+(x, ξ) (see Proposi-
tion 6.1) , for a.e. λ ∈ (0,∞),

(6.13)

∫
|ξ|2=λ

g(ξ)φ+(x, ξ)dσ = 0.

From the definition (3.4) we get,
(6.14)∫

|ξ|2=λ

g(ξ) exp(iξx)dσ −
∫

|ξ|2=λ

g(ξ)R−(λ)((H − λ) exp(iξx))dσ = 0.

Since (H − λ) exp(iξx) is compactly supported (when |ξ|2 = λ), the
continuity property of R−(λ) enables us to write∫
|ξ|2=λ

g(ξ)R−(λ)((H−λ) exp(iξx))dσ = R−(λ)

∫
|ξ|2=λ

g(ξ)(H−λ) exp(iξx)dσ,

which, by Remark 5.2, satisfies a Sommerfeld radiation condition. We
conclude that the function

G(x) =

∫
|ξ|2=λ

g(ξ) exp(iξx)dσ ∈ H1,−s, s >
1

2
,

is a radiative solution (see Remark 4.5) of (−∆− λ)G = 0, and hence
must vanish. Since this holds for a.e. λ > 0, we get ĝ(ξ) = 0, hence
g = 0. �

7. Global Spacetime Estimates

Proof of Theorem C. .

(a) Define , with G = H
1
2 ,

(7.1) u± =
1

2
(Gu± i∂tu).

Then

(7.2) ∂tu± = ∓iGu± ± i

2
f.
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Defining

(7.3) U(t) =

(
u+(t)
u−(t)

)
we have

(7.4) i−1U ′(t) = −KU + F,

K =

(
G 0
0 −G

)
, F (t) =

(
1
2
f(·, t)

−1
2
f(·, t)

)
.

Note that, as is common when treating evolution equations, we write
U(t), F (t)... for U(x, t), F (x, t)... when there is no risk of confusion.

The operatorK is a self adjoint operator onD = L2(Rn)⊕L2(Rn). Its
spectral family EK(λ) is given by EK(λ) = EG(λ)⊕ (I−EG(−λ)), λ ∈
R, where EG is the spectral family of G.

Let E(λ) be the spectral family of H, and let A(λ) = d
dλ
E(λ) be its

weak derivative (3.2). By the definition of G we have

EG(λ) = E(λ2),

hence its weak derivative is given by

(7.5) AG(λ) =
d

dλ
EG(λ) = 2λA(λ2), λ > 0.

In view of the LAP (Theorem A) we therefore have that the operator-
valued function

AG(λ) ∈ B(L2,s(Rn), L2,−s(Rn)),

is continuous for λ ≥ 0.
Denoting Ds = L2,s(Rn)⊕ L2,s(Rn), it follows that

AK(λ) =
d

dλ
EK(λ) = AG(λ)⊕ AG(−λ), λ ∈ R,

is continuous with values in B(Ds,D−s) for s > 1.
Making use of Hypotheses (H1)-(H2), we invoke [65, Theorem 5.1] to

conclude that lim sup
µ→∞

µ
1
2∥A(µ)∥B(L2,s,L2,−s) <∞, so that by (7.5) there

exists a constant C > 0, such that

(7.6) ∥AG(λ)∥B(L2,s,L2,−s) < C, λ ≥ 0.

It follows that also

(7.7) ∥AK(λ)∥B(Ds,D−s) < C, λ ∈ R, s > 1, λ ∈ R.

Let <,> be the bilinear pairing between D−s and Ds (conjugate
linear with respect to the second term).
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For any ψ, χ ∈ Ds we have, in view of the fact that AK(λ) is a weak
derivative of a spectral measure,

(7.8)

(i)
∣∣ < AK(λ)ψ, χ >

∣∣2 ≤< AK(λ)ψ, ψ > · < AK(λ)χ, χ >,

(ii)

∞∫
−∞

< AK(λ)ψ, ψ > dλ = ∥ψ∥2L2(Rn)⊕L2(Rn).

We first treat the pure Cauchy problem, i.e., f ≡ 0.
To estimate U(x, t) = e−itKU(x, 0) we use a duality argument. Some

of the following computations will be rather formal, but they can easily
be justified by a density argument, as in [7, 17]. We shall use ((, )) for
the scalar product in L2(Rn+1)⊕ L2(Rn+1).

Take w(x, t) ∈ C∞
0 (Rn+1)⊕ C∞

0 (Rn+1). Then,

((U,w)) =

∞∫
−∞

e−itKU(x, 0) · w(x, t)dxdt

=

∞∫
−∞

< AK(λ)U(x, 0),

∞∫
−∞

eitλw(·, t)dt > dλ

= (2π)1/2
∞∫

−∞

< AK(λ)U(x, 0), w̃(·, λ) > dλ,

where

w̃(x, λ) = (2π)−
1
2

∫
R

w(x, t)eitλdt.

Noting (7.8) , (7.7) and using the Cauchy-Schwartz inequality

|((U,w))| ≤ (2π)1/2∥U(x, 0)∥0 ·

 ∞∫
−∞

< AK(λ)w̃(·, λ), w̃(·, λ) > dλ

1/2

≤ C∥U(x, 0)∥0 ·

 ∞∫
−∞

∥w̃(·, λ)∥2Ds dλ

 1
2

.

It follows from the Plancherel theorem that

|((U,w))| ≤ C∥U(x, 0)∥0

∫
R

∥w(·, t)∥2Ds dt

1/2

.
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Let ϕ(x, t) ∈ C∞
0 (Rn+1)⊕C∞

0 (Rn+1), and take w(x, t) = (1+|x|2)− s
2ϕ(x, t),

so that∣∣(((1 + |x|2)−
s
2U, ϕ))

∣∣ ≤ C · ∥U(x, 0)∥0 · ∥ϕ∥L2(Rn+1).

This concludes the proof of the part involving the Cauchy data in (3.14),
in view of (7.3).

To prove the part concerning the inhomogeneous equation, it suffices
to take u0 = v0 = 0.

In this case the Duhamel principle yields, for t > 0,

U(t) =

∫ t

0

e−i(t−τ)KF (τ)dτ,

where we have used the form (7.4) of the equation.
Integrating the inequality

∥U(t)∥D−s ≤
∫ t

0

∥e−i(t−τ)KF (τ)∥D−sdτ,

we get ∫ ∞

0

∥U(t)∥D−s dt ≤
∫ ∞

0

∫ ∞

τ

∥e−i(t−τ)KF (τ)∥D−s dt dτ.

Invoking the first part of the proof we obtain∫ ∞

0

∥U(t)∥D−s dt ≤ C

∫ ∞

0

∥F (τ)∥0 dτ,

which proves the part related to the inhomogeneous term in (3.14).
(b) Define

v±(x, t) = exp(±itG)ϕ±(x),

where

ϕ±(x) =
1

2
[u0(x)∓G−1v0(x)].

Then clearly

(7.9) u(x, t) = v+(x, t) + v−(x, t).

We establish the estimate (3.15) for v+.
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Taking w(x, t) ∈ C∞
0 (Rn+1) we proceed as in the first part of the

proof. Let <,> be the L2,−s(Rn), L2,s(Rn) pairing. Then

(v+, w) =

∞∫
−∞

eitGϕ+(x) · w(x, t)dxdt

=

∞∫
0

< AG(λ)ϕ+,

∞∫
−∞

e−itλw(·, t)dt > dλ

= (2π)1/2
∞∫
0

< AG(λ)ϕ+, w̃(·, λ) > dλ,

where

w̃(x, λ) = (2π)−
1
2

∫
R

w(x, t)e−itλdt.

Noting (7.6) as well as the inequalities (7.8) (with AG replacing AK)
and using the Cauchy-Schwartz inequality

|(v+, w)| ≤ (2π)1/2∥ϕ+∥0 ·

 ∞∫
0

< AG(λ)w̃(·, λ), w̃(·, λ) > dλ

1/2

≤ C∥ϕ+∥0 ·

 ∞∫
0

∥w̃(·, λ)∥20,s dλ

 1
2

.

The Plancherel theorem yields

|(v+, w)| ≤ C∥ϕ+∥0

∫
R

∥w(·, t)∥20,s dt

1/2

.

Let ω ∈ C∞
0 (Rn+1), and take w(x, t) = (1 + |x|2)− s

2ω(x, t), so that∣∣((1 + |x|2)−
s
2 v+, ω)

∣∣ ≤ C · ∥ϕ+∥0 · ∥ω∥L2(Rn+1).

This (with the similar estimate for v−) concludes the proof of the esti-
mate (3.15). �
Remark 7.1 (optimality of the requirement s > 1). A key point in
the proof was the use of the uniform bound (7.6). In view of the rela-
tion (7.5), this is reduced to the uniform boundedness of λA(λ2), λ ≥ 0,
in B(L2,s, L2,−s). By [65, Theorem 5.1] the boundedness at infinity,
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lim sup
µ→∞

µ
1
2∥A(µ)∥ < ∞, holds already with s > 1

2
. Thus the further re-

striction s > 1 is needed in order to ensure the boundedness at λ = 0
(Theorem A).

Remark 7.2. Clearly we can take [0, T ] as the time interval, instead
of R, for any T > 0.
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