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2 BEN-ARTZI, SOUPLET AND WEISSLER1. Introdu
tion1.1. Statement of the problemThis paper is 
on
erned with vis
ous Hamilton-Ja
obi equations of the form(VHJ) (ut ��u = ajrujp; x 2 RN ; t > 0;u(x; 0) = u0(x); x 2 RN :where a 2 R, a 6= 0 and p � 1.The equation (VHJ) possesses both mathemati
al and physi
al interest. It 
an serveas a typi
al model-
ase in the theory of paraboli
 partial di�erential equations. Indeed,it is the simplest example of a paraboli
 PDE with a nonlinearity depending on the �rstorder spatial derivatives of u, and it 
an be 
onsidered as an analogue of the extensivelystudied equation with zero order nonlinearity ut ��u = ajujp�1u. On the other hand,the equation ut�"�u = ajrujp, whi
h 
an be easily redu
ed to (VHJ) by res
aling, maybe viewed as the vis
osity approximation (as "! 0+) of Hamilton-Ja
obi type equationsfrom sto
hasti
 
ontrol theory (see [Lio℄). Also, equation (VHJ) appears in the physi
altheory of growth and roughening of surfa
es, where it is known as the Kardar-Parisi-Zhang equation (see [KPZ, KS℄).When u0 is a suÆ
iently regular fun
tion, say u0 2 C2b , and p � 1, the existen
e ofa unique lo
al { and a
tually global { 
lassi
al solution of (VHJ) was established in [B1,AB℄. This result was re
ently extended to u0 2 Cb and p > 0 in [GGK℄.Our purpose is to provide a rather extensive investigation of the lo
al Cau
hy prob-lem for (VHJ) for irregular initial data u0, namely for u0 in Lebesgue spa
es Lq =Lq(RN ), 1 � q <1. The 
ase of initial data measures or in Sobolev spa
es will be also
onsidered. We will present various results on existen
e, nonexisten
e, uniqueness andnonuniqueness of solutions. Some of our results will 
on
ern positive solutions, whileothers will apply to solutions of mixed sign. The issue to these questions involve dif-ferent ranges of values of p, q, together with the sign of a. Many of our results areoptimal and we obtain an almost 
omplete 
lassi�
ation regarding lo
al (non-)existen
eand (non-)uniqueness for all 1 � p; q <1.Beside lo
al existen
e/uniqueness, another interesting question regarding equation(VHJ) is the long time behavior of solutions (re
all that all lo
al solutions of (VHJ) existglobally). This question was studied by a number of authors in the past few years, see[AB, BRV1, BRV2, BK, BL1, BGL, GGK, BLS, BGK, BLSS℄. A parti
ular attentionwas given to the question whether solutions de
ay as t!1 when u0 � 0 and a < 0. InTheorem 2.5 below we obtain some de
ay properties without sign restri
tions on a or u0.Results on other aspe
ts of problem (VHJ) and on its generalizations 
an be foundin [BL2, BL3, P, AR1, AR2, AQR℄. Also, let us mention that the related equationut ��u = ajrujp + bup, �rst studied in [ChW℄, has re
eived a lot of attention from thepoint of view of blow-up and global existen
e (see [S2℄ for a re
ent survey).Let us brie
y summarize our main results. Putp0 = p0(N) = N + 2N + 1 and q
 = q
(N; p) = N(p� 1)2� p if p < 2.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 3The 
riti
al exponent q
 plays a 
ru
ial role in this theory. We will say that q is super-
riti
al, 
riti
al or sub
riti
al, a

ording to whether q > q
, q = q
 or q < q
.(i) When p < 2, we prove well-posedness in Lq for super
riti
al and 
riti
al q. Thisholds without sign restri
tion neither on a nor on u0. Well-posedness holds also formeasure data if p < p0(N) and for W 1;q data if 1 � p <1 and q � N(p� 1).We next spe
ialize to the 
ase a > 0 and u0 � 0 (repulsive gradient term) and we obtain:(ii) When p � 2, existen
e fails in general in Lq for any q � 1.(iii) Thus returning to p < 2, we show that both existen
e and uniqueness fail in generalin Lq for sub
riti
al q and in W 1;q if q < N(p � 1). The nonuniqueness result isextended to some more general nonlinearities depending on u and jruj.We then examine the situation when a < 0 and u0 � 0 (absorbing gradient term).(iv) We obtain existen
e in Lq for any q � 1 when p � 2. This even extends to p > 2for u0 � 0 in a large subset of Lq (in
luding u0 2 Lq symmetri
 radially de
reasing,possibly singular at 0). However, the uniqueness of this solution is an open questionin general, ex
ept for p = 2 where uniqueness holds.(v) We introdu
e a notion of p-atomi
 measure, whi
h 
ontains in parti
ular atomi
measures, and we show that the previous existen
e result 
annot be extended tosu
h measure initial data.One of the 
onsequen
es of our study is that a 
riti
al exponent for existen
e in thes
ale of Lq spa
es appears if the gradient term is repulsive, while none o

urs if it isabsorbing. Also, in the absorbing 
ase, it is a rather surprising fa
t that existen
e holdsin L1 while it may fail in measures. A heuristi
 interpretation is that when approa
hingu0 by more regular initial data, one "loses" the initial tra
e in the limiting pro
ess if u0is a singular measure. On the 
ontrary, if u0 is an L1 fun
tion, then it is possible tore
over the initial tra
e, by using suitable monotoni
ity arguments (see Remarks 4.1 and4.2).Let us 
ompare our results with previous work on equation (VHJ) with irregulardata. It was proved in [BL1℄ that if a < 0, p < 2, u0 � 0 and u0 2 L1 \ Lq with q > q
,then (VHJ) admits a unique (mild) solution. Note that, as 
ompared with the result (i)above, the signs of a and u0 seem to be essential in the approa
h of [BL1℄. When u0is a bounded and nonnegative measure, it was proved in [BL1℄ that the existen
e anduniqueness hold if a < 0, 1 < p < p0(N), whereas nonexisten
e was shown if u0 is aDira
 mass and a < 0, p � p0(N). The result (v) extends this to more general singularmeasures.In [An℄, the more general degenerate equation ut � �um = jrur jp (m; r; p � 1)was 
onsidered for initial data measures. Conditions for existen
e and nonexisten
e ofpositive weak solutions were obtained in terms of a 
ertain lo
al regularity property ofthe measure u0. When applied to the spe
ial 
asem = r = 1 (i.e. (VHJ) with a > 0) andu0 2 Lq , the results of [An℄ yield lo
al existen
e of (at least) a solution of (VHJ) whenq > q
 and nonexisten
e if q < q
. Although the 
ontext of [An℄ is more general thanours, it has to be pointed out that, as a 
onsequen
e of the 
ompletely di�erent approa
h,the resulting (weak) solution lies only in some lo
al spa
es and that both existen
e inthe 
riti
al 
ase and uniqueness are left open in this approa
h. Also the assumptiona > 0 seems important in the arguments used for existen
e. On the other hand our



4 BEN-ARTZI, SOUPLET AND WEISSLERnonexisten
e result in (iii) is 
lose to the nonexisten
e result of [An℄ for m = r = 1.However the fun
tional frameworks are di�erent: we work with mild solutions whi
hrequire u 2 C([0; T );Lq(RN )) and jrujp 2 L1(0; T ;Lq(RN )), while [An℄ works withweak solutions whi
h require u 2 C([0; T );L2lo
(RN )) and jruj2 2 L1lo
((0; T )�RN ), andthe two sets of hypotheses are not 
omparable in general for q � 1 and 1 < p < 2. Alsoour method is simpler.Remark 1.1. Let us point out that the situation for the Cau
hy problem is ratherdi�erent from that for the Cau
hy-Diri
hlet problem asso
iated with (VHJ) on a boundeddomain. This is due to the fa
t that solutions of the latter problem may exhibit �nitetime gradient blowup whehever p > 2 (see, e.g., [FL, S3℄), a phenomenon whi
h does noto

ur for the Cau
hy problem. This is the reason { besides simpli
ity { why we haverestri
ted our attention to the Cau
hy problem, although many of the results dis
ussedhere would 
ertainly apply to the bounded domain 
ase (with homogeneous Diri
hlet
onditions) when p < 2. For some related existen
e/nonexisten
e results in the boundeddomain 
ase, let us mention the papers [BMP, Al℄. For results in the 
ase of periodi
boundary 
onditions, see [BGL, GGK, BLSS℄.The outline of the paper is as follows.Se
tion 1.2 of the Introdu
tion 
ontains the ne
essary notation and de�nitions ofsolutions.Se
tion 2 is devoted to well-posedness for super
riti
al and 
riti
al q (a > 0 or < 0).We also 
onsider initial data in measures and in Sobolev spa
es.In Se
tion 3 we spe
ialize to the 
ase a > 0, u0 � 0. After showing nonexisten
ein Lq for p � 2, we prove both nonexisten
e and nonuniqueness results for p < 2 and qsub
riti
al, and we give extensions of the nonuniqueness results to di�erent equations.Then in Se
tion 4, we turn to the 
ase a < 0, u0 � 0. We prove existen
e in all Lqfor all 1 < p < 2 (and for all p > 1 for a large subset of Lq). We then show existen
e anduniqueness in all Lq for p = 2. Finally we study the nonexisten
e for singular measureswhen p > p0(N).Some of the results of this paper have been announ
ed in [BSW℄ and [B3℄.1.2. Notation and de�nitions of solutionsIn what follows, Lq = Lq(RN ), 1 � q � 1, denotes the usual Lebesgue spa
es ofreal valued fun
tions, with norm denoted by k:kq. W 1;q = W 1;q(RN ) is the usual Sobolevspa
e. M = M(RN ) denotes the Bana
h spa
e of bounded Borel measures on RN , thedual spa
e of C0(RN ). Also, throughout the paper, we will denote by C; 
; C1; C2; : : :various positive 
onstants whi
h may vary from line to line. The dependen
e of these
onstants will be made pre
ise when ne
essary.For all t > 0, et� denotes the 
onvolution operator with the standard heat kernel,that is �et�f�(x) = ZRN G(x� y; t)f(y) dy;where G(x; t) = (4�t)�N=2e� jxj24t ; t > 0; x 2 RN



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 5and f is either a nonnegative measurable fun
tion, or f 2 Lq for some q 2 [1;1℄. If fis a �nite Borel measure or, more generally, if f 2 S 0, then �et�f�(x) is understood ashf;G(t; x� :)i.Let a 2 R, a 6= 0, 1 � p < 1 and 1 � q < 1 be real numbers. We are primarilyinterested in the existen
e and uniqueness of mild solutions of the equation (VHJ) i.e.,solutions of the integral equation(1:1) u(t) = et�u0 + aZ t0 e(t�s)�jru(s)jp ds; 0 � t < Tfor some T 2 (0;1℄, where u0 2 S 0 and the unknown fun
tion u = u(x; t) is a real valuedmeasurable fun
tion on QT := RN � (0; T ). We will use inter
hangeably u(t) for u(�; t)when there is no risk of 
onfusion. Also, for 1 � p < 2 we putq
 = N(p� 1)2� p :The fun
tion u being a solution of (1.1) 
an be de�ned in several ways. In view ofthe uniqueness and nonexisten
e results that we will develop, it is natural to work withreasonable notions of solutions that are as general as possible.Our basi
 de�nition of solution is the following.De�nition 1.1. Let u0 2 S 0. A pointwise mild solution of (VHJ) is a fun
tion u 2L1lo
(QT ) su
h that ru 2 Lplo
(QT ) and su
h that(1:2) u(x; t) = �et�u0�(x) + aZ t0 ZRN G(x� y; t� s) jru(y;s)jp dy dsfor a.e. (x; t) 2 QT .Note that the time-spa
e integral term in (1.2) makes sense sin
e jru(y; s)jp is anonnegative measurable fun
tion in QT and that sin
e u 2 L1lo
(QT ), (1.2) implies thatthe time-spa
e integral term is �nite for almost every (x; t) 2 QT .We will make use also of the following notion of mild Lq solution.De�nition 1.2. Let q 2 [1;1) and u0 2 Lq . A mild Lq solution of (VHJ) is a fun
tionu 2 C([0; T );Lq) su
h that(1:3) jrujp 2 L1(0; T ;Lq)and(1:4) u(t) = et�u0 + aZ t0 e(t�s)�jru(s)jp ds in Lq for all 0 � t < T .(If T =1, the 
ondition (1.3) is repla
ed by jrujp 2 L1(0; T0;Lq) for all T0 2 (0;1).)It is 
lear that any mild Lq solution is a pointwise mild solution. Conversely, forq = 1, we have:



6 BEN-ARTZI, SOUPLET AND WEISSLERProposition 1.1. Let T 2 (0;1), q = 1 and u0 2 L1 and let u be a pointwise mildsolution of (VHJ). Assume that either(1:5) a < 0; u � 0 a.e. in QT ,or(1:6) ess lim inft!T ku(t)k1 <1Then(1:7) jrujp 2 L1(0; T ;L1)and u is a mild L1 solution.Proof. Using Fubini's theorem and the preservation of the integral by et�, we have(1:8) Z t0 ZRN jru(y; s)jp dy ds = ZRN Z t0 e(t�s)�jru(s)jp dy ds:First assume (1.5). Integrating (1.2) in spa
e and using (1.8), u � 0 and u0 2 L1, we getjajZ t0 ZRN jru(y; s)jp dy ds � ZRN et�u0(y) dy � ku0k1 <1:Sin
e et�u0 2 C([0; T );L1), this easily implies that u 2 C([0; T );L1) and that (1.3) and(1.4) are satis�ed.Now assuming (1.6), we obtain similarly thatjajZ T0 ZRN jru(y; s)jp dy ds � ku0k1 + ess lim inft!Tku(t)k1 <1and we 
on
lude as before.Denote by C2b = C2b (RN ) the spa
e of fun
tions with bounded 
ontinuous partialderivatives up to se
ond order and by C2;1(QT ) the spa
e of fun
tions whi
h are 
ontin-uously di�erentiable in QT up to order two in x and one in t.De�nition 1.3. Let u0 2 Lq. A 
lassi
al solution of (VHJ) in QT is a fun
tion u 2C([0; T );Lq) \ C2;1(QT ) su
h that u(0) = u0,u 2 C((0; T );C2b)and ut ��u = ajrujp for all (x; t) 2 QT .When 
onsidering the issue of lo
al existen
e-uniqueness in M, we will use thefollowing de�nition.De�nition 1.4. Let u0 2M. A mild M solution of (VHJ) is a fun
tion u 2 Cb((0; T );L1) su
h that jrujp 2 L1(0; T ;L1), (1.1) holds in L1 for all t 2 (0; T ) and u(t)� et�u0
onverges to 0 in L1 as t! 0. In parti
ular, u(t)* u0 weak star in M as t! 0.Remark 1.2. If u0 2 M and u is a pointwise mild solution of (VHJ), then u is a mildM solution whenever (1.5) or (1.6) holds. This follows from the proof of Proposition 1.1.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 72. Well-posedness in super
riti
al and 
riti
al Lq spa
es.2.1. Main resultsOur main result on well-posedness is the following theorem.Theorem 2.1. Assume 1 � p < 2. Let 1 � q <1 satisfy q > q
 or q = q
 > 1, and letu0 2 Lq.(i) There exists a global solution(2:1) u 2 C([0;1);Lq) \ C((0;1);W 1;r); q � r � 1of (1.1). The fun
tion u is a mild Lq solution if q > q
 and a pointwise mild solutionif q = q
. Moreover, u is a 
lassi
al solution of (VHJ) in RN � (0;1).(ii) Assume q > q
. For all T > 0, u is the unique lo
al in time (pointwise mild) solutionof (1.1) in the 
lass(2:2) C([0; T );Lq) \ C((0; T );W 1;pq):(iii) Assume q = q
. For all T > 0, u is the unique lo
al in time (pointwise mild) solutionof (1.1) in the 
lass(2:3) C([0; T );Lq
) \ C((0; T );W 1;r);for any r � p su
h that q
 < r < pq
.In the 
ase of initial data measures, we have the following result.Theorem 2.2. Let 1 � p < N+2N+1 hen
e, q
 < 1. For every u0 2 M there exists afun
tion(2:4) u 2 Cb((0;1);L1) \ C((0;1);W 1;r); 1 � r � 1;whi
h is a global mild M solution of (1.1). Moreover, u is a 
lassi
al solution of (VHJ)in RN � (0;1). Furthermore, for all T > 0, u is the unique pointwise mild solution of(1.1) in the 
lass Cb((0; T );L1) \ C((0; T );W 1;p).As a 
orollary to the proof of Theorems 2.1 and 2.2, we obtain that the solutionsgiven there satisfy the following smoothing properties for small t.Proposition 2.3. There exist T , C > 0 su
h that the solution given in Theorems 2.1and 2.2 satisfy(2:5) sup(0;T ℄ tN2 ( 1q� 1r )ku(t)kr � C; q � r � 1



8 BEN-ARTZI, SOUPLET AND WEISSLER(with q = 1 in the 
ase of Theorem 2.2.).(2:6) sup(0;T ℄ tN2 ( 1q� 1r )+ 12 kru(t)kr � C; q � r � 1:Moreover, in the 
ase of Theorem 2.1 with q > q
 (resp., of Theorem 2.2), T and Ca
tually depend only on ku0kq (resp., ku0kM). In the 
ase of Theorem 2.1 with q = q
,if ku0kq is suÆ
iently small, then (2.5) and (2.6) hold with T = 1 and C independentof u0.In the next proposition, we 
onsider the solvability of (1.4) in the Sobolev spa
esW 1;q instead of the Lebesgue spa
es Lq. We will show existen
e and uniqueness of lo
alsolutions to (1.1) for all u0 2 W 1;q where q > N(p� 1) or q = N(p� 1) > 1. Note thatwe no longer need assume p < 2. When 1 � q < N(p� 1), we will show in Se
tion 3 thatlo
al uniqueness is no longer true in general, and some nonexisten
e results will be givenin Se
tion 4.Proposition 2.4. Assume p � 1 and let 1 � q < 1 satisfy q > N(p � 1) or q =N(p� 1) > 1. Let u0 2W 1;q .(i) There exists a global pointwise mild solutionu 2 C([0;1);W 1;q) \ C((0;1);W 1;r); q � r � 1;of (1.1). Moreover, u is a 
lassi
al solution of (VHJ) in RN � (0;1).(ii) Assume q > N(p� 1). For all T > 0, u is the unique lo
al in time (pointwise mild)solution of (1.1) in the 
lassC([0; T );W 1;q) \ C((0; T );W 1;pq):(iii) Assume q = N(p � 1) > 1. For all T > 0, u is the unique lo
al in time (pointwisemild) solution of (1.1) in the 
lassC([0; T );W 1;q) \ C((0; T );W 1;r);for all r � p su
h that N(p� 1) < r < Np(p� 1).(iv) There exist T , C > 0 su
h that the solution given in (i) satis�essup(0;T ℄ tN2 ( 1q� 1r )�ku(t)kr + kru(t)kr� � C; q � r � 1:In parti
ular if N(p� 1) < q < N , then(2:8) jrujp 2 L1(0; T ;Lq�) (q� = Nq=(N � q)):Moreover, if q > N(p� 1), then T and C depend only on ku0kW 1;q .



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 9Remarks 2.1. (a) The lo
al Lq theory for (VHJ) with a > 0, that we des
ribe inTheorem 2.1 (and in Theorems 3.1 and 3.2 below), has many 
ommon features with theknown Lq theory of the equation(2:7) ut ��u = jujp�1u:For the latter equation, the 
riti
al exponent is N(p � 1)=2. Well-posedness for q �N(p � 1)=2 (with q > 1 if q = N(p � 1)=2) was proved in [W2℄, Theorem 1. Theuniqueness 
lass was improved in [BC℄. For q < N(p � 1)=2, nonexisten
e results wereobtained in [W2, W4, BP℄) and examples of nonuniqueness in [HW, Ba℄ (see also [NS℄).(b) If q > q
 and u0 2 Lq, the solution given by Theorem 2.1 is a
tually unique inthe larger 
lass L1(0; T ;Lq) \ L1lo
(0; T ;W 1;pq). This follows from slight modi�
ationsof the proofs below (see Remark 2.5).(
) If q > q
, the arguments of the proof of Theorem 2.1 show that for all �nite t0,the solution u on [0; t0℄ depends 
ontinuously in Lq on the initial data (see also Remarks2.3 and 2.6).(d) The 
on
lusions of Theorem 2.1 (i) and (ii) and Proposition 2.3 remain validfor q = 1 and any 1 � p < 2. In this 
ase one has to repla
e (2.1) and (2.2) byu(t)� et�u0 2 C([0;1);L1), u 2 C((0;1);W 1;1).(e) The 
on
lusions of Theorems 2.1 and 2.2 remain true (ex
ept perhaps for u beinga 
lassi
al solution) if the 
oeÆ
ient a is repla
ed by any fun
tion a(x) 2 L1(RN ).We 
on
lude this se
tion by a result 
on
erning the large time behavior of solutionsof (VHJ). In the 
riti
al 
ase q = q
 > 1, one has the following de
ay property for smallinitial data, whi
h shows that u � 0 is a stable and asymptoti
ally stable equilibrium of(VHJ) in Lq
 .Theorem 2.5. Assume q = q
 > 1 (hen
e p0 < p < 2) and u0 2 Lq
 . There exists"0 = "0(p;N) > 0 su
h that the solution of (1.1) given by Theorem 2.1 satis�essup[0;1) ku(t)kq
 � 2ku0kq
 and limt!1 ku(t)kq
 = 0;whenever ku0kq
 � "0. Moreover one also has limt!1 ku(t)kk = 0 for all k 2 (q
;1℄.Remarks 2.2. (a) A similar result was proved in [S1℄ for the nonlinear heat equation(2.7). Namely, if q = N(p� 1)=2 > 1 and the initial data is small in Lq norm, then u isglobal and de
ays in Lq . See also [Ka1℄ for a related result 
on
erning the Navier-Stokesequations.(b) The smallness 
ondition on ku0kq
 in Theorem 2.5 
annot be removed. Indeed,the (self-similar) solution 
onstru
ted in Theorem 3.3 satis�es ku(t)kq
 = ku0kq
 > 0 forall t 2 [0;1).(
) No extension of Theorem 2.5 to q = 1 is possible when a > 0: if u0 � 0 (with,say, u0 2 L1 \ Cb), then ku(t)k1 � ket�u0k1 = ku0k1.



10 BEN-ARTZI, SOUPLET AND WEISSLER2.2 ProofsOur proof of lo
al existen
e and uniqueness of solutions to (1.1) in Lq and in W 1;quses ideas whi
h go ba
k to [KF, W1, W2℄. These arguments have been 
arried out ina number of 
ontexts, in parti
ular for the Navier-Stokes equations. In [ChW℄, in the
ase where the nonlinear part of (1.1) also in
ludes a power term, well-posedness of theCau
hy problem for (1.1) was proved in W 1;q0 (
), where 
 is a smooth bounded domainin RN , under the hypotheses q > N(p� 1) and q � p plus other 
onditions related to thepower term. The proof is based on the abstra
t theory in [W1℄. Also, [ChW℄ in
ludesa brief remark on how the methods of [W2℄ 
an be applied to give well-posedness in
ertain Lq(
) spa
es. Later, in [AW℄ it is observed that the same results 
arry over if
 is repla
ed by RN . More re
ently, in [SnTW1℄ the integral equation (1.1) with aninvariant power term added is studied in the "
riti
al" 
ase (
orresponding to q = q
 inTheorem 2.1 above). Here the ideas are ultimately based on the treatment of the 
riti
al
ase in [W2℄, but follow more 
losely the treatment in [CaW℄ of the pure power nonlinearheat equation. The spa
es X; Y; : : : that we use below are in some sense analogous tothose used in [GMO, Ka2℄ for the treatment of the 2 dimensional Navier-Stokes equationsin vorti
ity formulation.Sin
e both the details of the proofs and the statements of the results for well-posedness of (1.1) in Lq and in W 1;q are di�erent from in the 
ase where a power term ispresent, and sin
e not all of our results 
an be dire
tly dedu
ed from the abstra
t frame-work in [W2℄, we present the proofs in enough detail as to minimize expli
it referen
esto previous results. Moreover, we will improve the result in [ChW℄ on well-posedness inW 1;q by eliminating the requirement that q � p.If u : (0; T ℄! W 1;r, for some r � p, is a 
ontinuous fun
tion, we formally de�ne(2:9) Gu(t) = Z t0 e(t�s)�jru(s)jp ds:Our basi
 approa
h is to prove existen
e of solutions to (1.1) by showing that the appli-
ation F given by Fu(t) = et�u0 + aGu(t)is a stri
t 
ontra
tion on an appropriate 
omplete metri
 spa
e of 
urves.In all Se
tion 2.2, C denotes a generi
 positive 
onstant depending only on N , p, q,r and a.Proof of Theorem 2.1 for q > q
.For 0 < T <1, letX = X(T ) be the Bana
h spa
e of 
ontinuous 
urves u : (0; T ℄!W 1;pq su
h that kukX = max[sup(0;T ℄ t�ku(t)kpq; sup(0;T ℄ t�+ 12 kru(t)kpq℄ <1;where(2:10) � = N2 �1q � 1pq�:



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 11We denote by XK(T ) the 
losed ball of X with radius K.The �rst step (Lemma 2.1) is to use a 
ontra
tion mapping argument to obtainexisten
e and uniqueness of a lo
al (and a
tually global) solution in a more restri
ted
lass than (2.2), namely, u 2 C([0; T ℄;Lq) \XK(T ) for suitable K, T > 0. In a se
ondstep (Lemma 2.2), we will then show that uniqueness a
tually holds in the larger 
lass(2.3).Lemma 2.1. Assume q > q
, q � 1 and u0 2 Lq.(i) Let K, T > 0 satisfy(2:11) K � C1(ku0kq +KpT 
)where C1 = C1(N; p; q; a) > 0 and 
 = 1 � p(� + 12 ) > 0. Then there exists aunique fun
tion u 2 XK(T ) whi
h is a (pointwise mild) solution of (1.1) on (0; T ).Moreover, u 2 C([0; T ℄;Lq) and u is a
tually a mild Lq solution.(ii) For all T 0 > 0, there is at most one (pointwise mild) solution of (1.1) in the 
lassX(T 0).Note that Lemma 2.1 guarantees the existen
e of a unique maximal solution of (1.1)in X(Tmax) for some Tmax 2 (0;1℄, with u 2 X(1) meaning u 2 X(T ) for all T > 0.This solution will be referred to as the solution given by Lemma 2.1. We will see laterthat this solution is a
tually global, i.e. Tmax =1.Proof of Lemma 2.1. (i) If u 2 XK(T ), usingket��kpq � Ct��k�kq and kret��kpq � Ct���1=2k�kq;we have, for all t 2 [0; T ℄,kGu(t)kpq � C Z t0 (t� s)��kjru(s)jpkq ds = C Z t0 (t� s)��kru(s)kppq ds� CKp Z t0 (t� s)��s�p(�+ 12 )ds = CKpt1���p(�+ 12 ) Z 10 (1� s)��s�p(�+ 12 ) ds� CKpt��T 1�p(�+ 12 );and krGu(t)kpq � C Z t0 (t� s)��� 12 kjru(s)jpkq ds = C Z t0 (t� s)��� 12 kru(s)kppq ds� CKp Z t0 (t� s)��� 12 s�p(�+ 12 ) ds= CKpt��� 12+1�p(�+ 12 ) Z 10 (1� s)��� 12 s�p(�+ 12 ) ds� CKpt��� 12 T 1�p(�+ 12 ):



12 BEN-ARTZI, SOUPLET AND WEISSLERIn parti
ular, it follows that(2:12) kGukX � CKpT 1�p(�+ 12 )(where C is independent of T , and in fa
t depends only on p and q). The fa
t that q > q
guarantees that all the integrals above are 
onvergent and that 1� p(�+ 12 ) > 0.Moreover, we note that u0 2 Lq implies(2:13) max � sup(0;T ℄ t�ket�u0kpq; sup(0;T ℄ t�+ 12 kret�u0kpq� � Cku0kq:Choose K, T > 0 su
h that (2.11) holds. It follows from (2.12) and (2.13) that F mapsXK(T ) into itself.Now using(2:14) kjrujp � jrvjpkr=p � p(krukp�1r + krvkp�1r )kru�rvkr (valid for r � p)with r = pq, we obtain for all t 2 [0; T ),kFu(t)�Fv(t)kpq � C Z t0 (t� s)��kjru(s)jp � jrv(s)jpkq ds� CKp�1 Z t0 (t� s)��s�(�+ 12 )(p�1)kru(s)�rv(s)kpq ds� CKp�1ku� vkX Z t0 (t� s)��s�(�+ 12 )p ds� CKp�1t��T 1�p(�+ 12 )ku� vkX ;and similarly krFu(t)�rFv(t)kpq � CKp�1t���1=2T 1�p(�+ 12 )ku� vkX :Therefore, kFu�FvkX � CKp�1T 1�p(�+ 12 )ku� vkXand assuming (2.11) (with C1 perhaps repla
ed by a slightly larger value), it follows thatF is indeed a stri
t 
ontra
tion on XK , and thus has a unique �xed point u. This �xedpoint is a (pointwise mild) solution of (1.1).Finally, if m � q, we 
an modify the 
al
ulation leading to (2.12) as follows. (Thiswas not needed for the 
ontra
tion argument, but will be useful to obtain additionalproperties of the solution, in parti
ular Proposition 2.3.)kGu(t)km � C Z t0 (t� s)�N2 ( 1q� 1m )kjru(s)jpkq ds = C Z t0 (t� s)�N2 ( 1q� 1m )kru(s)kppq ds� CKp Z t0 (t� s)�N2 ( 1q� 1m )s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m )+1�p(�+ 12 ) Z 10 (1� s)�N2 ( 1q� 1m )s�p(�+ 12 ) ds:



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 13Thus, if 1q � 2N < 1m � 1q ;then Gu : (0; T ℄! Lm is 
ontinuous and(2:15) tN2 ( 1q� 1m )kGu(t)km � CKpt1�p(�+ 12 ) � CKpT 1�p(�+ 12 ):In parti
ular, Gu : (0; T ℄ ! Lq is 
ontinuous and limt!0 kGu(t)kq = 0. Sin
e et�u0 2C([0; T ℄;Lq), it follows that Fu 2 C([0; T );Lq) hen
e,(2:16) u 2 C([0; T );Lq):Also we note that sin
e p(�+ 1=2) < 1, u 2 X(T ) implies that jrujp 2 L1(0; T ;Lq), sothat u is indeed a mild Lq solution. Moreover,krGu(t)km � C Z t0 (t� s)�N2 ( 1q� 1m )� 12 kjru(s)jpkq ds= C Z t0 (t� s)�N2 ( 1q� 1m )� 12 kru(s)kppq ds� CKp Z t0 (t� s)�N2 ( 1q� 1m )� 12 s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m )� 12+1�p(�+ 12 ) Z 10 (1� s)�N2 ( 1q� 1m )� 12 s�p(�+ 12 ) ds:Thus, if(2:17) 1q � 1N < 1m � 1q ;then rGu : (0; T ℄! Lm is 
ontinuous and(2:18) tN2 ( 1q� 1m )+ 12 krGu(t)km � CKpt1�p(�+ 12 ) � CKpT 1�p(�+ 12 ):(ii) Let u and v be two solutions of (1.1) in X(T 0) for some T 0 > 0. It followsfrom (2.16) that u, v 2 C([0; T 0℄;Lq). Sin
e u and v both belong to XK0(T 0) for someK 0 > C1ku0kq, by taking T0 2 (0; T 0) so small thatK 0 � C1(ku0kq +K 0pT 
0 );we 
an invoke the above �xed point argument to 
on
lude that u and v 
oin
ide on [0; T0℄.Letting T1 = supft 2 (0; T 0℄; u = v on [0; t℄g 2 (0; T 0℄, then ne
essarily T1 = T 0. Indeed,otherwise, sin
e u(T1) = v(T1) 2 Lq and u(T1 + :), v(T1 + :) 2 X(T 0 � T1), one 
ouldreprodu
e the same argument on [T1; T1 + "℄ for " > 0 small. We 
on
lude that u = v on[0; T 0℄. The proof of Lemma 2.1 is 
omplete.



14 BEN-ARTZI, SOUPLET AND WEISSLERRemark 2.3. The time t maps of the semi
ow generated by these solutions satisfyvarious 
ontinuity properties, whi
h 
an be proved by modi�
ations to the 
ontra
tionmapping argument, as is done for example in [W2, CaW, SnTW1, SnTW2℄. For example,assuming (2.11), if u0, v0 2 Lq , and if u, v denote the 
orresponding solutions of (1.1) inXK(T ), thenmax � sup(0;T ℄ t�ku(t)� v(t)kpq ; sup(0;T ℄ t�+ 12 kr(u(t)� v(t))kpq� � Cku0 � v0kqand sup(0;T ℄ k(u(t)� v(t))kq � Cku0 � v0kq;where C = C(p; q;N; a) > 0.Remark 2.4. The existen
e and uniqueness result of Lemma 2.1 (i) remains validfor more general initial data, namely for all u0 2 S 0 su
h that (2.13) holds (ex
ept, of
ourse, for the 
ontinuity of u in Lq at t = 0).The next step is to improve the uniqueness 
lass for lo
al solutions using ideas from[B2, Br, BC℄.Lemma 2.2. Assume q > q
 and let u0 2 Lq . Let(2:19) u 2 C([0; T ℄;Lq) \ C((0; T );W 1;pq)be a (pointwise mild) solution of (1.1) on (0; T ). Then u 
oin
ides with the solution givenby Lemma 2.1.Proof of Lemma 2.2. Let M = supt2(0;T ) ku(t)kq and �x K1 > 0, T1 2 (0; T=2) su
hthat (with the notation of Lemma 2.1) K1 � C1(M + Kp1T 
1 ). It follows from Lemma2.1 that for every � 2 (0; T=2), there is a unique solution v� 2 XK1(T1) ofv� (t) = et�u(�) + aZ t0 e(t�s)�jrv� (s)jp ds; 0 � t � T1:Letting u� (t) = u(� + t) for t 2 [0; T1), the fa
t that u 2 C((0; T );W 1;pq) impliesu� 2 X(T1). By uniqueness in X(T1) (Lemma 2.1 (ii)), we dedu
e that(2:20) u(� + t) = v� (t); 0 � t < T1; 0 < � < T=2:Using the fa
t that v� 2 XK1(T1), we see that, for all � 2 (0; T=2),max � sup(0;T1) t�ku(� + t)kpq; sup(0;T1) t�+ 12 kru(� + t)kpq� � K1:Letting � ! 0, it follows that u 2 XK1(T1), hen
e u 2 X(T ). By uniqueness in X(T )(using Lemma 2.1 (ii) again), we 
on
lude that u 
oin
ides with the solution given byLemma 2.1.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 15Remark 2.5. The 
on
lusion and the proof of Lemma 2.2 are still valid if one onlyassumes L1(0; T ;Lq) \ L1lo
(0; T ;W 1;pq). Alternatively, under the assumption (2.19) ofLemma 2.2, one 
an 
on
lude the proof of Lemma 2.2 after (2.20) as follows. Denoteby v0 the solution of (1.1) given by Lemma 2.1. For ea
h �xed t 2 (0; T1), upon letting� ! 0, we get u(� + t) ! u(t) in Lq (by 
ontinuity of u) and v� (t) ! v0(t) in Lq (by
ontinuous dependen
e in X(T ) { see Remark 2.3). Therefore u(t) = v0(t) on (0; T1).Before 
ompleting the proof of Theorem 2.1, it will be useful to obtain the higherregularity and smoothing properties of the solution (Proposition 2.3).Proof of Proposition 2.3 for u0 2 Lq, q > q
. The proof is based on similar argumentsin [SnTW2℄.Let us �rst note that (1.1) implies that(2:21) u(t) = e(t��)�u(�) + aZ t� e(t�s)�jru(s)jp ds; 0 < � < t < T:Fix m and r with p � m < r � 1. Suppose we know that, for some L > 0,(2:22) max � sup(0;T ℄ tN2 ( 1q� 1m )ku(t)km; sup(0;T ℄ tN2 ( 1q� 1m )+ 12 kru(t)km� � L:Using (2.21) with � = t=2, we see thatku(t)kr � ke t2�u(t=2)kr + C Z tt2 (t� s)�N2 ( pm� 1r )kjru(s)jpkm=p ds� Ct�N2 ( 1m� 1r )ku(t=2)km + C Z tt2 (t� s)�N2 ( pm� 1r )kru(s)kpm ds� CLt�N2 ( 1q� 1r ) + CLp Z tt2 (t� s)�N2 ( pm� 1r )s�p(N2 ( 1q� 1m )+ 12 ) ds= CLt�N2 ( 1q� 1r ) + CLpt�N2 ( 1q� 1r )+1�p(�+ 12 )� Z 112 (1� s)�N2 ( pm� 1r )s�p(N2 ( 1q� 1m )+ 12 ) dsand kru(t)kr � ke t2�ru(t=2)kr + C Z tt2 (t� s)�N2 ( pm� 1r )� 12 kjru(s)jpkm=p ds� Ct�N2 ( 1m� 1r )kru(t=2)km + C Z tt2 (t� s)�N2 ( pm� 1r )� 12 kru(s)kpm ds� CLt�N2 ( 1q� 1r )� 12 + CLp Z tt2 (t� s)�N2 ( pm� 1r )� 12 s�p(N2 ( 1q� 1m )+ 12 ) ds= CLt�N2 ( 1q� 1r )� 12 + CLpt�N2 ( 1q� 1r )� 12+1�p(�+ 12 )� Z 112 (1� s)�N2 ( pm� 1r )� 12 s�p(N2 ( 1q� 1m )+ 12 ) ds:



16 BEN-ARTZI, SOUPLET AND WEISSLERThe �niteness of the integrals is guaranteed if pm � 1N < 1r . (The power of s in theintegrand is of no importan
e for 
onvergen
e sin
e the interval of integration stays awayfrom 0. Also, q > q
 implies that 1 � p(� + 12 ) > 0:) If this 
ondition is met, then wemay 
on
lude that(2:23) max � sup(0;T ℄tN2 ( 1q� 1r )ku(t)kr; sup(0;T ℄ tN2 ( 1q� 1r )+ 12 kru(t)kr�� L0(L; p; q)T 1�p(�+ 12 ) = L00(L; p; q; T ):Note that one 
an 
hoose r > m su
h that pm � 1N < 1r if and only if m > N(p � 1).One may then prove (2.5) and (2.6) in Proposition 2.3 for all pq � r � 1 by an iterativepro
edure. Indeed, start with r = m = pq, for whi
h (2.22) is a 
onsequen
e of the
ontra
tion mapping argument used in Lemma 2.1 (i) to prove existen
e. Then use the
al
ulations above to prove (2.22) for larger and larger values of r. One 
an easily 
he
kthat r =1 is rea
hed in a �nite number of iterations.Next, the properties (2.5) and (2.6) for q � r � pq follow from (2.15), (2.18) andthe fa
t that u0 2 Lq (note that q > q
 and q � r � pq imply that (2.17) is satis�ed withm = r).The proof of Proposition 2.3 for u0 2 Lq , q > q
 is thus 
omplete.Completion of proof of Theorem 2.1 for q > q
. The lo
al existen
e and uniquenesspart follows from Lemmas 2.1 and 2.2. Moreover, from Proposition 2.3, one easily dedu
esthat u 2 C((0; Tmax);W 1;r) for q � r � 1. It only remains to show that u is 
lassi
al andglobal. By standard arguments using interior paraboli
 regularity theory (see, e.g., [Lie,Theorem 7.13℄), along with u 2 C((0; Tmax);W 1;1), one easily obtains that u 2 C2;1(QT )and u 2 C((0; T );C2b), so that that u is a 
lassi
al solution of (VHJ) on RN � (0; Tmax).It then follows from [AB, Theorem A and estimate (2.14)℄ that u satis�es(2:24) sup(t0;Tmax) ku(t)k1 + kru(t)k1 � ku(t0)k1 + kru(t0)k1 <1; 0 < t0 < Tmax:But (1.1) then implies that(2:25) u(t0 + t) = et� u(t0) + Z t0 e(t�s)� b(s; y)jru(t0 + s)j ds;where b is bounded on RN � (t0; Tmax). From (2.25), one easily dedu
es that kru(t)kq,and then ku(t)kq, remain bounded on (t0; T 0) for all �nite T 0 � Tmax. It follows fromthe 
ontra
tion mapping argument of Lemma 2.1 (i) that u 
an be extended to a globalsolution of (1.1), with u 2 C([0;1);Lq)\C((0;1);W 1;pq), and so u is a 
lassi
al solutionof (VHJ) in RN � (0;1). The proof of Theorem 2.1 in the 
ase q > q
 is thus 
omplete.We turn to well-posedness in Lq, where q = q
 > 1. Our proofs are very 
loselymodeled on [SnTW1, SnTW2℄ for existen
e, uniqueness and regularity, and on [BC℄ forextending the uniqueness 
lass.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 17Proof of Theorem 2.1 for q = q
. Let us �rst remark that we 
an no longer workin the spa
e X(T ) that we used in the 
ase q > q
. Indeed taking q = q
 would lead top(� + 1=2) = 1 and the integrals involved in the proof of Lemma 2.1 would be in�nite.Instead of this, we �x r su
h that(2:26) 1 � rp < q
 < r:Su
h an r is 
ertainly not unique, and what follows is valid for any 
hoi
e of r, whi
h wefor the moment 
onsider as �xed. For 0 < T <1, let Y = Y (T ) be the Bana
h spa
e of
ontinuous 
urves u : (0; T ℄!W 1;r su
h thatkukY = max � sup(0;T ℄ t�ku(t)kr; sup(0;T ℄ t�+ 12 kru(t)kr� <1;where � = N2 � 1q
 � 1r�:We denote by YK(T ) the 
losed ball of Y (T ) with radius K.As in the super
riti
al 
ase q > q
, the �rst step (Lemma 2.3) is to use a 
ontra
tionmapping argument to obtain existen
e and uniqueness of a lo
al solution in a morerestri
ted 
lass than (2.3), namely, u 2 C([0; T ℄;Lq) \ YK(T ) for suitable K, T > 0. Itwill sometimes be possible to 
arry out the 
ontra
tion mapping argument all at on
efor all t > 0. Thus, if T =1, we interpret the interval (0; T ℄ as (0;1). In a se
ond step(Lemma 2.4), we will then show that uniqueness a
tually holds in the larger 
lass (2.2).Lemma 2.3. Assume q = q
 > 1 and let u0 2 Lq. For all T > 0, de�ne(2:27) M0(u0; T ) = max � sup(0;T ) t�ket�u0kr; sup(0;T ) t�+ 12 kret�u0kr� � Cku0kq
 :(i) We have(2:28) limT!0M0(u0; T ) = 0:(ii) There exists C0 = C0(p; q; r; a) > 0, su
h that for all K, T > 0 satisfying(2:29) K > M0(u0; T ) + C0Kp;there exists a unique fun
tion u 2 YK(T ) whi
h is a (pointwise mild) solution of(1.1) on (0; T ). Moreover u 2 C([0; T ℄;Lq). (Note that K, T satisfying (2.29) existin view of (i).)(iii) Let K;T > 0 satisfy (2.29). Then, for all T 0 > 0, there is at most one solution of(1.1) in the 
lass C((0; T 0℄;Lq \W 1;r) \ YK(T ).It follows from Lemma 2.3 that there exists a maximal existen
e time Tmax 2 (0;1℄and a unique maximal solution u of (1.1) in the 
lassC([0; Tmax);Lq) \ C((0; Tmax);W 1;r) \ YK(T );



18 BEN-ARTZI, SOUPLET AND WEISSLERwhere K, T satisfy (2.29) (u does not depend on the 
hoi
e of K, T ). This solution willbe referred to as the solution given by Lemma 2.3.Proof of Lemma 2.3. (i) The family of operators t�et� and t�+1=2ret�, t > 0, areuniformly bounded from Lq into Lr. Moreover, (2.28) is true for all u0 in the densesubset W 1;r \ Lq of Lq. It follows that (2.28) holds for all u0 2 Lq .(ii) If u 2 YK(T ), we have, for all t 2 [0; T ℄,kGu(t)kr � C Z t0 (t� s)�N(p�1)2r kjru(s)jpkr=p ds = C Z t0 (t� s)�N(p�1)2r kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r s�p(�+ 12 )ds= CKpt�� Z 10 (1� s)�N(p�1)2r s�p(�+ 12 )ds = CKpt�� ;and thatkrGu(t)kr � C Z t0 (t� s)�N(p�1)2r � 12 kjru(s)jpkr=p ds= C Z t0 (t� s)�N(p�1)2r � 12 kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r � 12 s�p(�+ 12 )ds= CKpt��� 12 Z 10 (1� s)�N(p�1)2r � 12 s�p(�+ 12 )ds = CKpt��� 12 :In parti
ular, it follows that(2:30) kGukY � C0Kp;where C0 = C0(p; r; a) > 0 (note that C0 is independent of T ). The relation (2.26)guarantees that all the integrals above are 
onvergent.Moreover, 
hoosing K 2 (0; C�1=(p�1)0 ), (2.29) is then satis�ed for T > 0 smallenough in view of (2.29). It follows that F maps YK(T ) into itself.Now using (2.14), we obtain for all t 2 [0; T ),kFu(t)� Fv(t)kr � C Z t0 (t� s)�N(p�1)2r kjru(s)jp � jrv(s)jpkr=p ds� CKp�1 Z t0 (t� s)�N(p�1)2r s�(�+ 12 )(p�1)kru(s)�rv(s)kr ds� CKp�1ku� vkY Z t0 (t� s)�N(p�1)2r s�(�+ 12 )p ds� CKp�1t��ku� vkY ;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 19and similarly(2:31) krFu(t)�rFv(t)kr � CKp�1t���1=2ku� vkY :Therefore, kFu� FvkY � C0Kp�1ku� vkY(with C0 = C0(p; r; a) perhaps repla
ed by a slightly larger value than in (2.30)). As-suming (2.29), it follows that F is indeed a stri
t 
ontra
tion on XK , and thus has aunique �xed point u. This �xed point is a (pointwise mild) solution of (1.1).Finally, if m � r=p, we 
an modify the 
al
ulation leading to (2.30) as follows.(Again, this was not needed for the 
ontra
tion argument, but will be useful to obtainadditional properties of the solution, in parti
ular Proposition 2.3.)kGu(t)km � C Z t0 (t� s)�N2 ( pr� 1m )kjru(s)jpkr=p ds = C Z t0 (t� s)�N2 ( pr� 1m )kru(s)kpr ds� CKp Z t0 (t� s)�N2 (pr� 1m )s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m ) Z 10 (1� s)�N2 (pr� 1m )s�p(�+ 12 ) ds:Thus, if pr � 2N < 1m � pr ;then Gu : (0; T ℄! Lm is 
ontinuous and(2:32) tN2 ( 1q� 1m )kGu(t)km � CKp:In parti
ular, limt!0 kGu(t)km = 0 if r=p � m < q
 .Moreover,krGu(t)km � C Z t0 (t� s)�N2 (pr� 1m )� 12 kjru(s)jpkr=p ds= C Z t0 (t� s)�N2 (pr� 1m )� 12 kru(s)kpr ds� CKp Z t0 (t� s)�N2 ( pr� 1m )� 12 s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m )� 12 Z 10 (1� s)�N2 ( pr� 1m )� 12 s�p(�+ 12 ) ds:Thus, if pr � 1N < 1m � pr ;then rGu : (0; T ℄! Lm is 
ontinuous and(2:33) tN2 ( 1q� 1m )+ 12 krGu(t)km � CKp:



20 BEN-ARTZI, SOUPLET AND WEISSLERIn parti
ular, limt!0 krGu(t)km = 0 if r=p � m < N(p� 1) .Among the various additional properties of the �xed point u, we note right away, asa 
onsequen
e of (2.32), that u(t)� et�u0 2 C([0; T ℄;Lm);if r=p � m < q
 . To prove 
ontinuity in Lq
 , note that as T ! 0, in view of (2.28), onemay 
hoose K in (2.29) as small as we wish. Thus, again by (2.32), sup(0;T ℄ kGu(t)kq
 !0, as T ! 0. This proves u 2 C([0; T ℄;Lq
).(iii) Let u and v be two solutions of (1.1) in YK(T )\C((0; T 0℄;Lq \W 1;r) for someT 0 > 0. By part (ii), they 
oin
ide on [0; T ℄. LettingT1 = sup�t 2 (0; T 0℄; u = v on [0; t℄	 2 (0; T 0℄;then ne
essarily T1 = T 0. Indeed, otherwise, sin
e u(T1) = v(T1) 2 Lq and sin
e u(T1+ :)and u(T1 + :) 2 C([0; T 0 � T1℄;W 1;r) � YK̂(T̂ ) for some K̂; T̂ > 0 satisfyingK̂ > M0(u(T1); T̂ ) + C0K̂p;we would dedu
e from part (ii) that u = v on [0; T1 + T̂ ℄.Remark 2.6. (a) A straightforward modi�
ation of the above 
ontra
tion mappingargument 
an be used to show that if u0, v0 2 Lq
 both satisfy (2.29) for the same K,T > 0, and if the 
orresponding solutions of (1.1) are given by u, v 2 YK(T ), thenmax � sup(0;T ℄ t�ku(t)� v(t)kr ; sup(0;T ℄ t�+ 12 kr(u(t)� v(t))kr� � C2ku0 � v0)kq
 ;where C2 = C2(p; r;N; a) > 0. Further 
al
ulations show thatsup(0;T ℄ ku(t)� v(t)kq
 � C2ku0 � v0kq
(see Step 1 in the proof of Theorem 2.5 for details).(b) If ku0kq
 is suÆ
iently small, then, in view of (2.27), one 
an 
hoose T =1 inLemma 2.3 and in Remark (a) above.(
) Denote by Y the spa
e 
orresponding to another value r satisfying (2.26). Thenthe solution 
onstru
ted in Lemma 2.3 (for the value of r that we have �xed) also belongsto Y K0(T 0) for some K 0, T 0 > 0 satisfying the analogue of (2.29), and it is the uniquesolution of (1.1) in that 
lass. This follows from the observation that the 
ontra
tionargument 
an be 
arried out in the interse
tion YK(T ) \ Y K0(T 0).(d) The existen
e and uniqueness result of Lemma 2.3 (ii) remains valid for moregeneral initial data, namely for all u0 2 S 0 su
h that M0(u0; T ) is suÆ
iently small forsome T > 0 (ex
ept, of 
ourse, for the 
ontinuity of u in Lq
 at t = 0).Next, we turn to the stronger uniqueness results, as in the sub
riti
al 
ase, modeledafter the work of [B2, Br, BC℄.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 21Lemma 2.4. Assume q = q
 > 1 and let u0 2 Lq . Let u 2 C([0; T ℄;Lq)\C((0; T );W 1;r)be a pointwise mild solution of (1.1) on (0; T ). Then u 
oin
ides with the solution givenby Lemma 2.3.Following [B2, BC℄, in view of the proof of Lemma 2.4, we prepare the followingLemma.Lemma 2.5. Let 1 < q <1. Let K be a 
ompa
t subset of Lq and de�neÆ(t;K) = sup�2KM0(�; t); t > 0;where M0 is de�ned in Lemma 2.3. ThenÆ(t;K)! 0; as t! 0+:Proof of Lemma 2.5. First we note that the families of operators, t�et� andt�+ 12ret�, for t > 0, are uniformly bounded from Lq
 into Lr. Moreover, they 
on-verge pointwise to 0 as t ! 0 in view of (2.28). Thus, they 
onverge uniformly to 0 onany 
ompa
t subset of Lq. The 
on
lusion follows.Proof of Lemma 2.4. Sin
e the image K of [0; T=2℄ under the 
ontinuous fun
tion uis 
ompa
t in Lq
 , Lemma 2.5 implies thatÆ(t;K) = sup�2[0;T=2℄M0(u(�); T1)! 0; as T1 ! 0.Therefore there exist K > 0 and T1 2 (0; T=2) su
h that(2:34) K �M0(u(�); T1) + C0Kp; 0 < � < T=2:It follows from Lemma 2.3 (ii) that for every � 2 (0; T=2), there is a unique solutionv� 2 YK(T1) of v� (t) = et�u(�) + aZ t0 e(t�s)�jrv� (s)jp ds; 0 � t < T1:Moreover, v� 2 C([0; T1℄;Lq). Let u� (t) = u(� + t) for t 2 [0; T1℄. Sin
e u� 2C([0; T1℄;W 1;r), it follows that ku�kY (t) ! 0 as t! 0. Therefore, there exists T� 2 (0; T1℄su
h that u� 2 YK(T tau). Moreover, sin
e T� � T1, (2.34) implies thatK �M0(u(�); T� ) + C0Kp; 0 < � < T=2and v� 2 YK(T� ). Sin
e u� (0) = v� (0) = u(�) 2 Lq and u� ; v� 2 C([0; T1℄;W 1;r \ Lq),we may apply Lemma 2.3 (iii) to dedu
e that u� = v� on [0; T1℄ that is,u(� + t) = v� (t); 0 � t � T1; 0 < � < T=2:



22 BEN-ARTZI, SOUPLET AND WEISSLERUsing the fa
t that v� 2 YK(T1), we see that, for all � 2 (0; T=2),max � sup(0;T1) t�ku(� + t)kr; sup(0;T1) t�+ 12 kru(� + t)kr� � K:Letting � ! 0, it follows that u 2 YK(T1). Applying Lemma 2.3 (iii) again, one 
on
ludesthat u and v 
oin
ide on [0; T ℄.As in the super
riti
al 
ase, before 
ompleting the proof of Theorem 2.1, we establishthe higher regularity and smoothing properties of the solution (Proposition 2.3).Proof of Proposition 2.3 for u0 2 Lq, q = q
. Instantaneous smoothing of solutionsinto W 1;m for m > r is proved exa
tly as in the 
ase q > q
. Start with m = r, thevalue used in the 
ontra
tion mapping argument whi
h veri�es (2.26), and then followthe same iterative pro
edure used in the 
ase q > q
. The only di�eren
e is that sin
ehere q = q
, the fa
tor T 1�p(�+ 12 ) does not appear in formula (2.23) i.e., L00 does notdepend on T . As a result, the iterative step is independent of T . Of 
ourse, as in the
ase q > q
, if u0 2 Lq
 , thenmax � sup(0;T ℄ tN2 ( 1q
� 1m )ku(t)km; sup(0;T ℄ tN2 ( 1q
� 1m )+ 12 kru(t)km� <1:for q
 � m < r by the properties (2.32) and (2.33) of Gu(t). Finally, if ku0kq
 issuÆ
iently small, then the previous inequality is valid with T = 1 by Remark 2.6 (b).Thus (2.5) and (2.6) are valid with T =1.Completion of proof of Theorem 2.1 for q = q
. The solution given by Lemma 2.3 was
onstru
ted for a parti
ular value of r, say r0, �xed in (2.26). However, the uniquenessresult of Lemma 2.4 holds not only in the 
lass C([0; T ℄;Lq) \ C((0; T );W 1;r0), buta
tually in C([0; T ℄;Lq) \ C((0; T );W 1;r) for any r su
h that q
=p < r < q
. Indeed, inview of Remark 2.6 (
), the proof of Lemma 2.4 works for all su
h r. The lo
al existen
eand uniqueness statements of Theorem 2.1 in the 
ase q = q
 are thus proved.Arguing exa
tly as in the 
ase q > q
, we obtain that u is 
lassi
al on (0; Tmax) andsatis�es (2.24) and sup(t0;T 0) ku(t)kq+ kru(t)kq <1 for all �nite T 0 � Tmax. Therefore,we have sup(t0;T 0) ku(t)kW 1;r < 1 for all �nite T 0 � Tmax and q � r � 1. It followsfrom the 
ontra
tion mapping argument of Lemma 2.1 (i) that u 
an be extended to aglobal solution of (1.1), with u 2 C([0;1);Lq) \ C((0;1);W 1;r), q � r � 1, and so uis a 
lassi
al solution of (VHJ) in RN � (0;1). The proof of Theorem 2.1 in the 
aseq = q
 is 
omplete.Remark 2.7. Note that one 
an also use the spa
e YK to prove lo
al existen
e anduniqueness of solutions to (1.1) in the 
ase q > q
. Of 
ourse, in that 
ase, one has torepla
e q
 by q in (2.26) and in the de�nition of �. This gives slightly better uniquenessresults.Proof of Theorem 2.2. It follows along the lines of proof of Theorem 2.2 for q =1 > q
. In parti
ular one works with the same spa
e X and uses (2.11) and (2.13) withku0kM instead of ku0kq and one gets u(t)� et�u0 2 C([0; T );L1) instead of (2.16).



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 23Finally, we turn to well-posedness in W 1;q, with q > N(p� 1) or q = N(p� 1) > 1.Proof of Proposition 2.4 for q > N(p � 1). Let Z = Z(T ) be the Bana
h spa
e of
ontinuous 
urves u : (0; T ℄!W 1;pq su
h thatkukZ = max � sup(0;T ℄ t�ku(t)kpq; sup(0;T ℄ t�kru(t)kpq� <1;where � = N2 �1q � 1pq�:Note the di�eren
e between Z and X: both terms in the norms of Z have the same powerof t. We denote by ZK = ZK(T ) the 
losed ball of Z with radius K. If u 2 ZK(T ), itfollows thatkGu(t)kpq � C Z t0 (t� s)��kjru(t)jpkq ds = C Z t0 (t� s)��kru(t)kppq ds� CKp Z t0 (t� s)��s�p� ds= CKpt1�(p+1)� Z 10 (1� s)��s�p� ds � CKpt��T 1�p�;and thatkrGu(t)kpq � C Z t0 (t� s)��� 12 kjru(t)jpkq ds� CKp Z t0 (t� s)��� 12 s�p� ds = CKpt1� 12�(p+1)� Z 10 (1� s)��� 12 s�p� ds� CKpt��T 12�p�:In parti
ular, it follows thatkGukZ � CKpmax[T 12�p�; T 1�p�℄(where C is independent of T , and in fa
t depends only on p and q). The fa
t thatq > N(p� 1) guarantees that all the integrals above are 
onvergent and that 12 � p� > 0.Turning now to the 
ontra
tion mapping argument, sin
e u0 2W 1;q , we havemax � sup(0;T ℄ t�ket�u0kpq; sup(0;T ℄ t�kret�u0kpq� �M:Choose K > M and T > 0 so thatM + CKpmax[T 12�p�; T 1�p�℄ � K:It follows that F maps ZK into itself. As in Lemma 2.1, an easy modi�
ation of theabove 
al
ulations shows that, with C perhaps repla
ed by a slightly larger value, F is



24 BEN-ARTZI, SOUPLET AND WEISSLERindeed a stri
t 
ontra
tion on ZK , and thus has a unique �xed point u. This �xed pointis a solution of (1.1). Moreover, sin
e �p < 1=2, u 2 ZK implies jrujp 2 L1(0; T ;Lq)and u 2 C([0; T );W 1;q).The rest of the proof, in parti
ular the uniqueness statement (ii) and the regularity(iv), is very similar to the 
orresponding proof in Theorem 2.1 and Proposition 2.3 andis thus omitted.Proof of Proposition 2.4 for q = N(p� 1) > 1. Fix r su
h that(2:26) 1 � rp < N(p� 1) < r:For 0 < T < 1, let W = W (T ) be the Bana
h spa
e of 
ontinuous 
urves u : (0; T ℄ !W 1;r su
h that kukW = max � sup(0;T ℄ t�ku(t)kr; sup(0;T ℄ t�kblau(t)kr� <1;where � = N2 � 1q
 � 1r�:We denote by WK(T ) the 
losed ball of W (T ) with radius K.If u 2WK(T ), we have, for all t 2 [0; T ℄,kGu(t)kr � C Z t0 (t� s)�N(p�1)2r kjru(s)jpkr=p ds = C Z t0 (t� s)�N(p�1)2r kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r s�p�ds= CKpt 12�� Z 10 (1� s)�N(p�1)2r s�p�ds = CKpt 12�� ;and that krGu(t)kr � C Z t0 (t� s)�N(p�1)2r � 12 kjru(s)jpkr=p ds= C Z t0 (t� s)�N(p�1)2r � 12 kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r � 12 s�p�ds= CKpt�� Z 10 (1� s)�N(p�1)2r � 12 s�p�ds = CKpt�� :In parti
ular, it follows that kGukW � C0Kpmax(1; T 1=2);



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 25where C0 = C0(p; r; a) > 0 (note that C0 is independent of T ). The relation (2.26)guarantees that all the integrals above are 
onvergent.Let M1(u0; T ) = max � sup(0;T ) t�ket�u0kr; sup(0;T ) t�kret�u0kr�:One easily shows that limT!0M1(u0; T ) = 0 for all all u0 2 W 1;q . Therefore, 
hoosingK 2 (0; C�1=(p�1)0 ), we have K > M1(u0; T ) + C0Kp for 0 < T < 1 suÆ
iently small. Itfollows that F maps WK(T ) into itself. As in Lemma 2.3, an easy modi�
ation of theabove 
al
ulations shows that, with C0 perhaps repla
ed by a slightly larger value, F isindeed a stri
t 
ontra
tion on WK , and thus has a unique �xed point u. This �xed pointis a solution of (1.1). The rest of the proof, in parti
ular the uniqueness statement (iii)and the regularity (iv), is very similar to the 
orresponding proof in Theorem 2.1 andProposition 2.3 and is thus omitted.Proof of Theorem 2.5. We follow the ideas of the proof of Theorem 3.1 (i) in [S1℄(see also [Ka1, p. 480℄).Denote UM = �u0 2 Lq
 ; ku0kq
 �M	. For all t � 0, de�ne the mapWt : u0 7! u(t)from Lq
 into itself.Step 1. We prove that theWt are Lips
hitz 
ontinuous on UM for some smallM > 0,uniformly for all t 2 [0;1). Let r and � be as in the proof of Theorem 2.1 (q = q
).Let u0, v0 2 UM and u(t) = Wtu0, v(t) = Wtv0. By Remarks 2.6 (a) and (b), if M issuÆ
iently small, then(2:35) sup(0;1) t�+ 12 kru(t)kr � Cku0kq; sup(0;1) t�+ 12 krv(t)kr � Ckv0kqand(2:36) sup(0;1) t�+ 12 kru(t)�rv(t)kr � Cku0 � v0kq:Now, from (2.35), (2.36) and N2 (pr � 1q ) + (� + 12 )p = 1, we dedu
e thatku(t)� v(t)kq� ku0 � v0kq + jajZ t0 (t� s)�N2 (pr� 1q )kjrujp � jrvjpkr=p ds� ku0 � v0kq + jajpZ t0 (t� s)�N2 (pr� 1q )��kru(s)kp�1r + jrv(s)kp�1r �kru(s)�rv(s)kr ds:� ku0 � v0kq + C�ku0kp�1q + kv0kp�1q �ku0 � v0kq Z t0 (t� s)�N2 (pr� 1q )s�(�+ 12 )p ds= ku0 � v0kq + C�ku0kp�1q + kv0kp�1q �ku0 � v0kq Z 10 (1� �)�N2 (pr� 1q )��(�+ 12 )p d�� (1 + CMp�1)ku0 � v0kq:



26 BEN-ARTZI, SOUPLET AND WEISSLERThe 
laim is proved.Step 2. We 
laim that ku(t)kq de
ays to 0 for u0 2 UM and small M > 0 providedu0 also belongs to Lm for m 2 (r=p; q).Let m 2 (r=p; q), � = �(m) = N2 � 1m � 1r � and assume u0 2 UM \ Lm. Then, by(2.35), kru(t)kr � Ct��� 12 ku0km + jajZ t0 (t� s)�N(p�1)2r � 12 kru(s)kpr ds� Ct��� 12 ku0km + C Z t0 (t� s)�N(p�1)2r � 12�ku0kp�1q s�(p�1)(�+ 12 )s��� 12 �sup(0;t) ��+ 12 kru(�)kr� ds:Observing that N(p�1)2r < 12 , �N(p�1)2r + 12 � (p� 1)(� + 12 ) = 0 and that �(p � 1)(� +12 )� � � 12 > �1 for m 2 (r=p; q), it follows thatt�+ 12 kru(t)kr � Cku0km + CMp�1t�N(p�1)2r + 12�(p�1)(�+ 12 )��sup(0;t) ��+ 12 kru(�)kr� Z 10 (1� �)�N(p�1)2r � 12 ��(p�1)(�+ 12 )��� 12 d�= Cku0km + CMp�1�sup(0;t) ��+ 12 kru(�)kr�;hen
e(2:37) sup(0;1) t�+ 12 kru(t)kr � Cku0km(for M possibly smaller, independent of ku0k). Next using (2.35) (2.37), we 
omputeku(t)kq � Ct�N2 ( 1m� 1q )ku0km + jajZ t0 (t� s)�N2 (pr� 1q )krukpr ds� Ct�N2 ( 1m� 1q )ku0km + C Z t0 (t� s)�N2 ( pr� 1q )ku0kp�1q s�(p�1)(�+ 12 )ku0kms��� 12 dsso that tN2 ( 1m� 1q )ku(t)kq � Cku0km + Cku0kp�1q ku0km:The 
laim follows.Step 3. Sin
e the maps Wt : UM 7! Lq are Lips
hitz 
ontiuous, uniformly for t � 0,and sin
e Wtu0 de
ays to 0 in Lq for ea
h u0 in the dense subset UM \ Lm, it followsthat u(t) = Wtu0 de
ays to 0 in Lq for all u0 2 UM . The fa
t that u(t) de
ays also inLk for q < k � 1 was proved in Proposition 2.3. The proof is 
omplete.
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e and nonuniqueness results for a > 0, u0 � 03.1. Nonexisten
e in Lq for p � 2The following result shows that lo
al existen
e fails in all Lq spa
es (q < 1) whenp � 2 and a > 0. We have been able to dis
ard only the existen
e of solutions whi
hare 
lassi
al for t > 0. However we note that the solutions 
onstru
ted in Se
tion A forp < 2 and q � q
 are indeed 
lassi
al for t > 0.Proposition 3.1. Let p � 2, a > 0 and u0 2 L1lo
. Assume that there exist T > 0 anda fun
tion u 2 C1;2(QT ), QT = RN � (0; T ), whi
h is a solution of (VHJ)1 in QT , su
hthat limt!0 u(t) = u0 in L1lo
. Then exp(au0) 2 L1lo
.Proof. Assume that su
h T and u exist. Then u satis�esut ��u � a(jruj2 � 1) in QT :Letting v(x; t) = exp(a(u(x; t) + t)), we see thatvt ��v � 0 in QT :Fix R > 0 and t0 2 (0; T ), and denote by GR+1 = GR+1(x; y; t) the heat kernel inBR+1(0) with homogeneous Diri
hlet 
onditions. Sin
e v > 0, for all " 2 (0; t0=2), wehave v(t0; 0) � Zjyj<R+1GR+1(0; y; t0 � ") v(y; ") dy � C(t0; R)Zjyj<R v(y; ") dy;for some C(t0; R) > 0. But the assumptions imply the existen
e of a sequen
e "n # 0su
h that u("n) 
onverges to u0 a.e. Passing to the limit in the above inequality with" = "n and using Fatou's Lemma, we obtainZjxj<R exp(au0(y)) dy <1;and the 
on
lusion follows.Remark 3.1. When p = 2, existen
e is true for u0 2 L1, as 
an be seen easily byusing the transformation v = eu (a = 1). Also, existen
e (of a mild solution) is true foru0 2 W 1;N , N � 2, by Proposition 2.4. (Re
all that W 1;N 6� L1 (N � 2) but thatu0 2 W 1;N implies eju0j 2 L1lo
.) Interestingly, for p > 2, existen
e is true for u0 2 Cb(see [GGK℄) while this seems to be an open problem for u0 2 L1.3.2. Nonexisten
e in sub
riti
al Lq spa
es for p < 2Theorem 3.2. Assume a > 0 and p < 2.(i) Let 1 = q < q
 and N � 2 and setu0(x) = jxj�N+Æ 1fjxj<1g



28 BEN-ARTZI, SOUPLET AND WEISSLERwith Æ > 0 suÆ
iently small (note that u0 2 L1). Then (1.1) does not admit anylo
al pointwise mild solution, su
h that u(t) 2 L1 on a set of positive measure of t.(ii) Let 1 < q < q
 and set(3:1) u0(x) = jxj�(N=q)+Æ 1fjxj<1gwith Æ > 0 suÆ
iently small (note that u0 2 Lq). Assume in addition that N > pq.Then (1.1) does not admit any lo
al mild Lq solution.Also, for initial data in Sobolev spa
es, we have the following nonexisten
e results.Although we had to pla
e some additional restri
tions on the solution in Proposition 3.3,these results indi
ate that the existen
e part of Proposition wo is in some sense sharp(
f. property (2.8) in Proposition 2.4).Proposition 3.3. Assume a > 0 and 1 � q < N(p� 1). Letu0(x) = jxj1�(N=q)+Æ (2� jxj)+with Æ > 0 suÆ
iently small (note that u0 2 W 1;q). If p > p2, assume in addition thatN > (p+ 1)q. Then (1.1) does not admit any pointwise mild solution satisfying (2.8).Proposition 3.4. Assume a = 1, p � 2 and 1 � q < N (= N(p� 1) when p = 2). Letu0(x) = �N(log jxj) 1fjxj<1g(note that u0 2 W 1;q). Then for any T > 0, there exists no solution of (VHJ), 
lassi
alon RN � (0; T ), su
h that limt!0 u(t) = u0 in L1lo
.Remarks 3.2. (a) The nonexisten
e result of Theorem 3.2 (ii) remains true forpointwise mild solutions satisfying the additional 
ondition(3:2) jrujp 2 L1(0; T ;Lr); q � " < r < q; for some " > 0.We note that in the 
riti
al 
ase q = q
, the pointwise mild solution 
onstru
ted inTheorem 2.1 does satisfy (3.2) (see (2.6)). The same remark holds for Proposition 3.3 inthe 
riti
al 
ase q = N(p� 1), with q� instead of q in formula (3.2).(b) The restri
tions N > pq (resp. N > (p+ 1)q) in Theorem 3.2 (resp. in Propo-sition 3.3) seem te
hni
al. Note that they are automati
ally satis�ed when q < q
 (resp.q < N(p� 1)) if p � p2.In of the proofs of Theorem 3.2 and Proposition 3.3, we shall need the following twolemmata.Lemma 3.1. Let k 2 R, " > 0, let u0(x) = jxj�k+Æ 1fjxj<1g and de�ne U(t) := et�u0.Then for Æ > 0 suÆ
iently small, it holdsZfjxj<ptg U(x; t) dx � C" tN�k2 +";



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 29for t > 0 small.Proof. Let � = k � Æ. For jxj < pt and t > 0 small, we haveU(x; t) � Zfpt=2<jyj<ptg(4�t)�N=2e�jx�yj2=4tjyj�� dy � Ct��=2:Therefore Zfjxj<ptg U(x; t) dx � C t(N��)=2; for t > 0 small,whi
h implies the Lemma.Lemma 3.2. Let 1 � p, q < 1, pq < N , T > 0, and assume that u : (0; T ) ! Lq(
)satis�es jrujp 2 L1(0; T ;Lq):Then there exists a sequen
e tj # 0 su
h thatZfjxj<ptjg u(x; tj) dx � C t 12� 1p+N2 (1� 1pq )j :Proof. >From the assumption, there exists tj # 0 su
h thatkru(tj)kppq = 

jru(tj)jp

q � t�1j :Therefore, by Sobolev's inequality, we haveku(tj)k(pq)� � Ckru(tj)kpq � Ct�1=pj ;with (pq)� = Npq=(N � pq). By H�older's inequality, we dedu
e thatZfjxj<ptjg u(x; tj) dx � C tN2 (1� 1(pq)� )j 0ku(tj)k(pq)� � C t 12� 1p+N2 (1� 1pq )j :Proof of Theorem 3.2. Assume that (1.1) admits a lo
al solution. First note thatin 
ase (i), there exists T > 0 su
h that ess lim inft!T� <1 for some T > 0. It followsfrom Proposition 1.1 that jrujp 2 L1(0; T ;L1) and that u is a mild L1 solution. We arethus redu
ed to proving the result in 
ase (ii) (a
tually for 1 � q < q
).>From Lemma 3.1, we see that, for t > 0 small,(3:3) Zfjxj<ptg u(x; t) dx � Zfjxj<ptg et�u0(x) dx � C" tN2 (1� 1q )+":On the other hand, by Lemma 3.2, there exists a sequen
e tj # 0 su
h that(3:4) Zfjxj<ptjg u(x; tj) dx � C" t 12� 1p+N2 (1� 1pq )�"j :
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omparing (3.3) and (3.4) and letting j !1 and then "! 0, we dedu
e thatN2 �1� 1q� � 12 � 1p + N2 �1� 1pq�hen
e N(p� 1)q � 2� p:The 
on
lusion follows.Proof of Proposition 3.3. Let fu0(x) = jxj1�(k=N)+Æ 1fjxj<1g. >From Lemma 3.1, wesee that, for t > 0 small,(3:5) Zfjxj<ptg u(x; t) dx � Zfjxj<ptg et�u0(x) dx� Zfjxj<ptg et�fu0(x) dx � C" tN2 (1� 1q )+ 12+":On the other hand, the 
urrent assumptions imply q < N and pq� = Nqp=(N � q) < N(this follows from q < N(p� 1) if p � p2). Assume (2.8), that is,jrujp 2 L1(0; T ;Lq�):By Lemma 3.2, there exists a sequen
e tj # 0 su
h that(3:6) Zfjxj<ptjg u(x; tj) dx � C" t 12� 1p+N2 (1� 1pq� )�"j :By 
omparing (3.5) and (3.6) and letting j !1 and then "! 0, we dedu
e that12 + N2 �1� 1q� � 12 � 1p + N2 �1� 1pq��hen
e q � N(p� 1). The 
on
lusion follows.Proof of Theorem 3.4. This is a dire
t 
onsequen
e of Proposition 3.1 and the fa
tthat for all jxj < 1, eu0(x) = 1jxjN 62 L1(B1(0)).3.3. Nonuniqueness in sub
riti
al Lq spa
es for p < 2Theorem 3.5. Let a > 0, N � 1. Assume N+2N+1 < p < 2, so that q
 > 1. There exists apositive self-similar solution u of (3.7) on RN � (0;1), of the formu(x; t) = t�kU(jxjt�1=2); k = 2� p2(p� 1) ;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 31where U 2 C2b , with the following properties:u 2 C((0;1);W 1;q); 1 � q � 1;limt!0u(t) = 0 in Lq for 1 � q < q
.In parti
ular, the initial value problem for (3.7) in Lq , 1 � q < q
, with initial data 0 hasat least two solutions, the 0 solution and u.This theorem will be proved in the subse
tion 3.5, together with results valid fordi�erent nonlinear terms. In parti
ular, it will be proved that the pro�le U an its deriva-tive U 0 both have exponential de

ay (see Proposition 3.14). We have the following
onsequen
e 
on
erning nonuniqueness in W 1;q.Corollary 3.6. Let a > 0, N > 1. Assume N+1N < p < 2, so that N(p � 1) > 1. Thenthe initial value problem for (3.7) in W 1;q, 1 � q < N(p� 1), with initial data 0 has atleast two solutions in C([0;1);W 1;q)\C((0;1);W 1;pq), the 0 solution and the solutionu given by Theorem 3.5.Remark 3.3. One easily 
he
ks that u is a mild Lq solution of (VHJ) for q < q
. Inparti
ular we have jrujp 2 L1(0; T ;Lq) for all T > 0.Remark 3.4. For u0 � 0 with, say, u0 2 L1 \ C2b , it is easy to see that ku(t)k1is a nonin
reasing (resp. nonde
reasing) fun
tion if a < 0 (resp. a > 0). LettingI1 = limt!1 ku(t)k1, it was proved in [BK℄ (see also [AB, BL1, BGK, BLSS℄) thatwhen a < 0,(i) I1 = 0 if 1 � p � p0 = (N + 2)=(N + 1);(ii) I1 > 0 if p > p0.In the 
ase a > 0, the question whether I1 is �nite or not seems to be open. For theself-similar solution 
onstru
ted in Theorem 3.5 for p0 < p < 2, one has I1 =1.3.4. Nonuniqueness for other equationsLet us 
onsider the following equation:(3:7) ut ��u = F (u; jruj); x 2 RN ; t > 0:Theorem 3.7. Let N � 1, N+2N+1 < p < 2. Let F : R � R ! R, lo
ally Lips
hitz
ontinuous, satisfy the homogeneity 
ondition(3:8) F (�2�px; �y) = �pF (x; y); for all �; x; y � 0.Assume that there exists a > 0 su
h that either(i) N = 1 and F (x; y) � ajyjpor(ii) N = 1 and F (x; y) � ajyjrjxj p�r2�p for some 1 � r � 2(p� 1)



32 BEN-ARTZI, SOUPLET AND WEISSLERor(iii) N � 2; p < NN � 1 ; and F (x; y) � a(jyjp + jxj p2�p ):Then there exists a positive self-similar solution u of (3.7) on RN � (0;1), of the formu(x; t) = t�kU(jxjt�1=2); k = 2� p2(p� 1) ;where U 2 C2b (R), with the following properties:u 2 C((0;1);W 1;q); 1 � q <1;limt!0u(t) = 0 in Lq for 1 � q < q
.In parti
ular, the initial value problem for (VHJ) in Lq, 1 � q < q
, with initial data 0has at least two solutions, the 0 solution and u.Corollary 3.8. Assume that either(i) F (u; jruj) = ajujm + bjruj 2mm+1 with N � 1, N+2N < m < N(N�2)+ , a, b > 0or(ii) F (u; jruj) = ajujmjrujr with N = 1, 1 � r < 2, m � 1, mr > 1, a > 0:Then there exists a positive self-similar solution u of (3.7) as des
ribed in Theorem 3.7(with k = 1m�1 in 
ase (i) and k = 2�r2(r+m�1) in 
ase (ii)). In parti
ular, the initial valueproblem for (VHJ) in Lq , 1 � q < q
, with initial data 0 has at least two solutions, the0 solution and u.Remark 3.5. A similar result was obtained in [T℄ for F � jujm + bjruj 2mm+1 underdi�erent assumptions on b, m. We point out that the result of [T℄ does not apply to theequation (VHJ). On the other hand, the result of Theorem 3.7 applies e.g. to sums ofnonlinearities like those in (i) or (ii) of Corollary 3.8.3.5. Proof of nonuniqueness results: 
onstru
tion of forward selfsimilarsolutionsSin
e Eqn. (3.7) involves only the values of the fun
tion F (x; y) for y � 0, we mayassume that F is even with respe
t to y (i.e., 
onsider the fun
tion F (x; jyj) instead ofF ). Looking for a radial self-similar solution u(x; t) = t�kU(jxjt�1=2) of (3.7), we arethen redu
ed to the following equation for the pro�le U :(3:9) (U 00 + �N�1r + r2�U 0 + kU + F (U;U 0) = 0; r > 0U 0(0) = 0; U(0) = � > 0:The basi
 idea, in the spirit of [HW, PTW, T℄ is to use a suitable shooting argumentto �nd � > 0 su
h that the solution of (3.9) is positive, de�ned for all r > 0, and has
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iently ni
e de
ay properties as r !1 to guarantee the belonging of u(:; t) to all Lqspa
es. However, due to the di�erent nature of the nonlinearity, many of the argumentsin [HW, PTW, T℄ do not apply and some new ideas are required (in parti
ular for provingnonemptyness of I� below).Throughout Se
tion 3.5, we assume that k > 0, N � 1 (not ne
essarily an integer)and that F : R2 ! R is lo
ally Lips
hitz 
ontinuous. Eqn. (3.9) is equivalent to theintegral equation(3:10) U 0(r)rN�1er2=4 = �Z r0 �kU(s) + F (U(s); U 0(s))�sN�1es2=4 ds; U(0) = �:It is well known that for all � > 0, there exists a unique maximal solution U = U(�; :)of (3.9), de�ned on a maximal interval [0; Rmax(�)), with 0 < Rmax(�) � 1, and thatU 2 C2([0; Rmax)). (In what follows, ex
ept when ne
essary, we will not emphasize thedependen
e of U and Rmax upon �.)3.5.1. Preliminary propertiesProposition 3.9. Assume that xF (x; 0) � 0 for all x 2 R. Then we have the followingproperties.(i) For all � > 0, we have U > 0 and U 0 < 0 for r > 0 small. If R < Rmax and U > 0on [0; R), then U 0 < 0 on (0; R℄.(ii) For all " > 0, there exists �" > 0 su
h that Rmax =1 for all � 2 (0; �") andjU(r)j+ jU 0(r)j < " on [0;1):(iii) If Rmax =1 and U > 0 on [0;1), thenlimr!1U(r) = limr!1U 0(r) = 0:(iv) Assume F (x; y) � C(x)(1 + y2);with C bounded on bounded sets. If U > 0 on [0; Rmax), then Rmax =1.Proof. (i) The �rst part is 
lear sin
e U 00(0) = � 1N (k�+F (�; 0)) < 0. Next assumethat U > 0 and U 0 < 0 on (0; R) and U 0(R) = 0. Then U(R) > 0 by lo
al uniquenessand U 00(R) = �kU(R)� F (U(R); 0) < 0: a 
ontradi
tion.(ii) Let g(x) = F (x; 0) and G(x) = R x0 g(s) ds � 0. De�ne h(x; y) = F (x;y)�F (x;0)yfor y 6= 0 (0 for y = 0), so that we may write F (U;U 0) = g(U) + U 0h(U;U 0). Sin
e Fis lo
ally Lips
hitz, h is bounded on bounded sets. Let M = supjxj;jyj�1 jh(x; y)j < 1.De�ning EU (r) = U 022 + kU22 +G(U);we have E0U (r) = ��(N�1r + r2 ) + h(U;U 0)�U 02:



34 BEN-ARTZI, SOUPLET AND WEISSLERFix " 2 (0; 1). By 
ontinuous dependen
e, sin
e G(0) = 0, there exists �" > 0 su
h thatfor all � 2 (0; �"), Rmax > 2M and EU < � � "24 min(1; k) on [0; 2M ℄. On the otherhand, for all r 2 [2M;Rmax), if EU (r) < �, then in parti
ular jU(r)j < 1 and jU 0(r)j < 1,hen
e E0U (r) � (jh(U;U 0)j �M)U 02 � 0. It follows that EU (r) < � for all r 2 [0; Rmax),so that Rmax =1 and jU j+ jU 0j < " on [0;1).(iii) By (i), we know that U 0 < 0 on (0;1℄, hen
e 9` 2 [0;1) su
h that limr!1 U(r)= `. Keeping the notation of (ii), for all r > 0, if jU 0(r)j < 1, then EU (r) < K �k�2+12 +G(�). Let K 0 = max(p2K;p2K=k) and M 0 = supjxj;jyj�K0 jh(x; y)j. Then, forall r � 2M 0, EU (r) < K implies jU j; jU 0j � K 0 hen
e E0U (r) � 0. But sin
e U has a�nite limit at 1, there must exist some r1 � 2M 0 su
h that jU 0(r1)j < 1. It follows thatEU (r) < K for all r � r1. Therefore (U;U 0) is bounded on [0;1).Returning to Eqn. (3.9), we infer thatjU 0(r)jer2=4 = jU 0(1)je1=4 + Z r1 �kU + N�1s U 0 + F (U;U 0)�es2=4 ds(3:11) � C�1 + Z r1 es2=4 ds� � C 0r er2=4 as r !1;hen
e limr!1 U 0(r) = 0.Finally, to prove that ` = 0, we note that by (3.11), ` > 0 would imply jU 0(r)j � (k`+F (`; 0))Cr�1 as r ! 1 (where F (`; 0) � 0 and C > 0), 
ontradi
ting the boundednessof U .(iv) By (i), we have U 0 < 0 hen
e U � � on (0; Rmax). Assume Rmax < 1. UsingEqn. (3.9) and the assumption on F , we obtain(3:12) jU 0j0 = �U 00 � C1(1 + U 02) � C2(1 + jU 0j)2; Rmax2 < r < Rmax:Sin
e U is bounded, U 0 < 0 and Rmax < 1, ne
essarily limr!Rmax U 0(r) = �1. In-tegrating (3.12) between r and Rmax, it follows that 1 + jU 0(r)j � C3(Rmax � r)�1 asr ! Rmax, hen
e U(r)! �1 as r ! Rmax: a 
ontradi
tion.Let us now de�ne the setI+ = �� > 0; Rmax =1; U > 0 and U 0 < 0 on (0;1)	:3.5.2. Nonemptyness of I+Proposition 3.10. Assume that 0 < k < N=2, xF (x; 0) � 0 for all x 2 R, and(3:13) F (x; y) = o(jxj+ jyj) as (x; y)! (0; 0):Then there exists �1 > 0 su
h that (0; �1) � I+.Proof. By Proposition 3.9 (ii), we know that Rmax =1 for � suÆ
iently small. Letr0 > 0 be su
h that U > 0 and U 0 < 0 on (0; r0) (see Proposition 3.9 (i)). Sin
e k < N=2,we may �x 
 su
h that kN < 
 < 12 and de�nez(r) = �U 0U > 0 and �(r) = (z(r)� 
r)rN�1; 0 < r < r0:
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ompute z0(r) = U 02U2 � U 00U = z2 + 1U �(N�1r + r2 )U 0 + kU + F (U;U 0)�= z2 � (N�1r + r2 )z + k + F (U;U 0)Uand �0(r) = rN�1(z0 + N�1r z)�N
rN�1= rN�1�z2 � r2z + k �N
 + F (U;U 0)U �:Let Æ > 0 to be 
hosen later. By Proposition 3.9 (ii) and assumption (3.13), for � < �0(Æ)suÆ
iently small, we have jF (U;U 0)j � Æ(U + jU 0j) on [0;1), hen
e�0(r) � z�+ rN�1�k �N
 + Æ + ((
 � 12 )r + Æ)z�:By imposing 0 < Æ < N
 � k, it follows in parti
ular that(3:14) �0(r) � z� for all Æ12�
 � r < r0:On the other hand, we have, for all r 2 (0; r0),�0(r) � (z + Æ)�+ rN�1�k �N
 + Æ + (
 � 12 )rz + Æ
r�hen
e(3:15) �0(r) � (z + Æ)� for all r < r0 su
h that r � N
�Æ�kÆ
 :Now, if we 
hoose Æ so small that N
�Æ�kÆ
 > Æ12�
 , we dedu
e from (3.14) and (3.15) that(3:16) 8r 2 (0; r0); �(r) < 0) �0(r) < 0:Moreover, we observe thatlimr!0 r�N�(r) = �U 00(0)� � 
 = kN � 
 + F (�; 0)N� :Sin
e F (�; 0) = o(�) as �! 0, by taking � smaller if ne
essary, it follows that �(r) < 0for r > 0 small, and (3.16) then implies that � < 0 on (0; r0), that is �U 0U < 
r. Uponintegration, this yields(3:17) U(r) � �e�
r2=2 on [0; r0):By 
ontinuity, one immediately dedu
es that U 
an never vanish, and that (3.17) a
tuallyholds on (0;1). The Proposition follows.Remark 3.6. The previous proof shows that U(r) � �e�kr2=2N on [0;1) for �suÆ
iently small.3.5.3. Boundedness of I+Proposition 3.11. Assume that N � 1, k > 0, and that F (x; y) = F (y) is of 
lass C1and satis�es F (y) � ajyjpfor some a > 0, p > 1. Then for all � suÆ
iently large, if Rmax(�) = 1, there existsr > 0 su
h that U(r) = 0.To prove Proposition 3.11, we will need the following two lemmas.



36 BEN-ARTZI, SOUPLET AND WEISSLERLemma 3.3. Assume that N > 1, k > 0, and that F (x; y) = F (y) is of 
lass C1 andsatis�es F (0) � 0. If Rmax(�) =1, then U 00 < 0 on [0; r0), where r0 = � N�1k+1=2�1=2.Proof. We have NU 00(0) = �k� � F (�; 0), so that U 00 < 0 and U 0 < 0 for r > 0small. Di�erentiating Eqn. (3.9) yields(3:18) �U 000 = (�N�1r2 + 12 + k)U 0 + (N�1r + r2 )U 00 + F 0(U 0)U 00:Assume that there is a �rst r > 0 su
h that U 00(r) = 0. Then U 0(r) < 0 and U 000(r) � 0,and (3.18) thus implies (k + 12 � N�1r2 )U 0(r) � 0hen
e, k + 12 � N�1r2 � 0, that is r � r0.Lemma 3.4. Under the hypotheses of Proposition 3.11, assume that Rmax(�) =1 andU > 0 on [0;1). Then we havejU 0(r2)j � C0� for some r2 2 [r1; 1℄;where r1 = min(1; r0) if N > 1, r1 = 1 if N = 1, and C0 = C0(N; k; a) > 0.Proof. By Proposition 3.9, we know that U 0 < 0 on (0;1). We 
onsider two 
ases.� If U � �=2 on [0; 1℄, it follows from Eqn. (3.10) that�U 0er2=4rN�1 = Z r0 (kU + F (U 0))es2=4sN�1 dshen
e jU 0(1)j � e�1=4 k�2N and we may take r2 = 1.� If U(r) < �=2 for some r 2 [0; 1℄, then by the Mean Value Theorem, sin
e U(0) = �,there exists r0 2 [0; 1℄ su
h that jU 0(r0)℄ � �=2.{ If N = 1, sin
e er2=4jU 0(r)j is nonde
reasing, then jU 0(1)j � e�1=4jU 0(r1)j � C�, andwe take r2 = 1;{ If N > 1 and r0 � r1, we may take r2 = r0;{ If N > 1 and r0 < r1 � r0, then by Lemma 3.3, we have jU 0j � �=2 on [r0; r1℄, and wemay take r2 = r1.Proof of Proposition 3.11. Fix � > 0 and assume that U > 0 on (0;1) (hen
eU 0 < 0). By Lemma 3.4, we have jU 0(r2)j > C0�. From Eqn. (3.9), we have�U 00 � ajU 0jp � (N�1r + r2 )jU 0j on (0;1)hen
e ( jU 0j0 � ajU 0jp � (N�1r1 + 1)jU 0j on [r1; 2℄jU 0(r2)j � C0�:But sin
e r1 � 1, this would imply that jU 0j blows up before r = 2 if � is suÆ
ientlylarge, whi
h is impossible. The 
on
lusion follows.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 37Proposition 3.12. Assume N = 1, k > 0 and(3:19) F (x; y) � ajxjmjyjpfor some a > 0, m � 0, p � 1 su
h that m + p > 1. Then, for all � suÆ
iently large, ifRmax(�) =1, there exists r > 0 su
h that U(r) = 0.Proof. Throughout the proof, C denotes various positive 
onstants depending onlyon m, p, a, k (and not on �). Fix � > 0 and assume that U > 0 on (0;1) (hen
e U 0 < 0by Proposition 3.9 (i)). From Eqn. (3.10) and assumption (3.19), we have(3:20) jU 0(r)jer2=4 � Z r0 (kU + aUmjU 0jp)es2=4 ds:We 
laim that there exists R0 = R0(k) � 2 su
h that(3:21) U(R0) < �2 :Indeed, if U(R) � �=2 for some R � 2, thenjU 0(r)j � k�2 e�r2=4 Z r0 es2=4 ds � C(k)�r ; 2 � r � R:Therefore, � > � � U(R) � R R1 jU 0j � C(k)� logR, so that 9R0(k) � 2 su
h thatR � R0(k). Sin
e U 0 < 0, we thus have either U(2) < �=2 or U(R0) < �=2 and the 
laimfollows.WritingUmjU 0jp = Cj(U1+(m=p))0jp, we dedu
e from Eqn. (3.20), H�older's inequalityand (3.21) that, for all r � R0,jU 0(r)jer2=4 � C Z R00 j(U1+(m=p))0jp ds� C�Z R00 j(U1+(m=p))0j ds�p(3:22) � C��1+(m=p) � (�=2)1+(m=p)�p;Thus we have, for all r 2 [R0; R0 + 1℄,jU 0(r)j � e�(R0+1)2C�m+p;hen
e � > U(R0)� U(R0 + 1) = Z R0+1R0 jU 0j � C�m+p:Sin
e m+ p > 1, this 
annot hold if � is suÆ
iently large. The Proposition follows.Remark 3.7. Similar results 
an be derived for the multidimensional 
ase of Eqn.(3.9) when p > N , by using Sobolev type inequalities instead of (3.22). However forN � 2, this implies p > 2 and therefore does not enable to 
onstru
t self-similar solutions.We do not know whether Proposition 3.12 holds for (some) 1 < p < 2 when N > 1.



38 BEN-ARTZI, SOUPLET AND WEISSLERProposition 3.13. Assume N > 1, k > 0 andC1(jxjm + jyjp) � F (x; y) � C2(jxjm + jyjp);where 1 < p < NN�1 , 1 � m < N(N�2)+ , C1, C2 > 0. Then, for all � suÆ
iently large, ifRmax(�) =1, there exists r > 0 su
h that u(r) = 0.We will need the following Lemma.Lemma 3.5. For all large �, we haveU � �2 on [0; r�)with r� = Cmin(�(1�m)=2; �m(1�p)=p) and C > 0 depends only on p, m, k, N , C1, C2.Proof. Throughout the proof, C denotes various positive 
onstants depending onlyon p, m, k, N , C1, C2. Let R 2 (0; 1℄ be su
h that U > 0 on (0; R) (hen
e U 0 < 0 byProposition 3.9 (i)). De�ne g(r) = sup[0;r℄ jU 0j. By Eqn. (3.10), for all r 2 [0; R℄, wehave jU 0(r)jrN�1 � e1=4 Z r0 (k�+ C2(�m + jU 0jp))sN�1 ds� CrN (�m + gp(r)):It follows that g(r) � Cr(�m + gp(r)):Sin
e g(0) = 0 and g is 
ontinuous, if there is some (minimal) r0 2 (0; R℄, su
h thatgp(r0) = �m, we will have g(r0) � Cr0gp(r) hen
e, r0 � Cg1�p(r0) = C�m(1�p)=p. Itfollows that for all r � min(R;C�m(1�p)=p), gp(r) � �m hen
e, rg(r) � Cr2�m. There-fore, putting r� = Cmin(�m(1�p)=p; �(1�m)=2), we have rg(r) � �=2 for r � min(R; r�)hen
e,(3:23) U(r) = �� Z r0 jU 0j ds � �� rg(r) � �=2; 0 � r � min(R; r�):Now, take � large enough so that r� < 1. If there were a (minimal) r 2 (0; r�℄ su
hthat U(r) = 0, then one 
ould take R = r in (3.23), rea
hing a 
ontradi
tion. Therefore,U > 0 on [0; r�℄ and (3.23) with R = r� gives the desired 
on
lusion.Proof of Proposition 3.13. We may assume U > 0 and U 0 < 0 on [0; 2℄, sin
eotherwise we are done. Note that r� < 1 for � large enough. We �rst 
laim that forsome � = �(m; p;N) > 0, we have jU 0(1)j � C 0��where C 0 = C 0(m; p; k;N;C1; C2) > 0. Indeed by Eqn. (3.10) and Lemma 3.5,jU 0(r�)jrN�1� � e�1=4C1 Z r�0 UmsN�1 ds� C 0�mrN� � C 0��;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 39where � = min(m � N(m � 1)=2;m(1 � N(p � 1)=p)) > 0. Sin
e jU 0jrN�1er2=4 isnonde
reasing on [0; 1℄ by Eqn. (3.10), the 
laim follows.Now, by (3.9), we getjU 0j0 = �U 00 � �(N�1r + r2 )jU 0j+ C1jU 0jp on (0; 2℄:Therefore, we have(3:24) ( jU 0j0 � C1jU 0jp �N jU 0j on (0; 2℄jU 0(1)j � C 0��:But it is easily seen that (3.24) 
annot hold if � is suÆ
iently large (for jU 0j would haveto blow up before r = 2). The Proposition follows.3.5.4. Properties of the limiting traje
toryProposition 3.14. Assume that F satis�es(3:13) F (x; y) = o(jxj+ jyj) as (x; y)! (0; 0):and(3:25) F (x; y) � C(x)(1 + y2)where C is bounded on bounded sets. If 0 < �0 = sup I+ < 1, then U0 � U(�0; :)satis�es the following properties.(i) Rmax(�0) =1; U0 > 0 and U 00 > 0 on (0;1),(ii) 8" > 0; 9R" > 0; 8r � R"; e�(1+")r2=4 � U0(r) � e�(1�")r2=4;(iii) U 00(r) = �r2U0(r)(1 + o(1)); as r !1:Lemma 3.6. Assume F (0; 0) = 0. Let �, � > 0 and de�neR = R(�; �; k; F ) = 2��+ k� + (1 + ��1)L(�; �)�;where L(�; �) = Lip(Fj[��;�℄�[���;��℄). Assume that Rmax(�) > R and thatU(�; r) > 0; U 0(�; r) < 0 on (0; R) for some R 2 (R;Rmax(�)):If U 0(r) + �U(r) � 0 for some r 2 (R;R), then U 0 + �U > 0 on (r;R).Proof. Under the assumptions of the Lemma, assume that U 0(s) + �U(s) = 0 forsome s 2 [r;R). One then hasU 00(s) + �U 0(s) = ��� N�1s � s2�U 0(s)� kU(s)� F (U(s); U 0(s))= ��� N�1s � s2 + k��U 0(s)� F (U(s); �U(s)):



40 BEN-ARTZI, SOUPLET AND WEISSLERObserve that F (U(s); �U(s)) � (1 + �)U(s)L(�; �) � �(1 + ��1)U 0(s)L(�; �) hen
e,U 00(s) + �U 0(s) � ��+ k� + (1 + ��1)L(�; �)� s2�U 0(s) > 0:It is easily seen that U 0+�U must therefore remain > 0 on (r;R). The Lemma is proved.Lemma 3.7. Under the assumptions of Proposition 3.14, we have Rmax(�0) = 1,U0 > 0 and U 00 < 0 on (0;1), and for all � > 0,(3:26) U 00(r) + �U0(r) < 0 for r large enough:Proof. We know from Proposition 3.9 (iv) that Rmax(�0) = 1. Suppose thatU0(r) = 0 for some (minimal) r > 0. Then U 00(r) < 0 by lo
al uniqueness, hen
e U0 < 0on (r; r+"℄ for some " > 0 small. But this would imply that U(�; r+") < 0 for � 
lose to�0, by 
ontinuous dependen
e, 
ontradi
ting the de�nition of �0. It follows that U0 > 0for r > 0, hen
e U 00 < 0 by Proposition 3.9 (i).It remains to prove (3.26). Fix � > 0 and suppose that U 00(r0)+�U(r0) � 0 for somer0 > R0 � R(�0 +1; �; k; F ) � R(�0; �; k; F ) (see Lemma 3.6). Then, by Lemma 3.6, wehave U 00 + �U0 > 0 on (r0;1). By 
ontinuous dependen
e, there exists " 2 (0; 1) su
hthat for all � 2 (�0; �0 + ") we have Rmax(�) > r0 + 1, U > 0 and U 0 < 0 on (0; r0 + 1℄,and U 0(r0 + 1) + �U(r0 + 1) > 0. But by de�nition of �0, there exists � 2 (�0; �0 + ")and r > r0 + 1 su
h thatU(r) = 0 and U > 0; U 0 < 0 on (0; r):But sin
e U 0 + �U > 0 on [r0 + 1; r) by Lemma 3.6, we get upon integration U(r) �e��(r�r0�1)U(r0 +1) > 0, whi
h is a 
ontradi
tion. The Lemma is proved.Proof of Proposition 3.14. Property (i) follows from Lemma 3.7, from whi
h we alsodedu
e that(3:27) limr!1 U 00(r)U0(r) = �1:Properties (ii) and (iii) 
an then be proved along the lines of [BPT, Lemmas 13, 14, 15and Theorem 2℄. (The nonlinearity there 
orresponds to F � �jU jp, p > 1, but on
e (i)and (3.27) are established, the hypothesis (3.13) alone allows one to 
arry over the stepsof their proof.)Proof of Theorems 3.5 and 3.7. Under any of the assumptions (i){(iii), the homo-geneity hypothesis (3.8) implies that(3:28) F (x; y) � C(jyjp + jxjp=(2�p)); x; y � 0:(Indeed, by taking � = min(x�1=(2�p); y�1) for (x; y) 6= (0; 0) in (3.8), we obtainF (x; y) � sup0�a;b�1 F (a; b)��p � Cmax(yp; xp=(2�p)).) Moreover F (0; 0) = 0.Sin
e we are interested in �nding a positive solution of (3.7), only the values of thefun
tion F (x; y) for x; y � 0 are involved, and we may rede�ne F in Theorem 3.7 byeF (x; y) = F (jxj; jyj) + (sgn(x)� 1)F (jxj; 0):
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hitz 
ontinuous, and it satis�es x eF (x; 0) = jxjF (jxj; 0) �0; 8x 2 R. Sin
e (3.28) for 1 < p < 2 implies (3.13), and sin
e 0 < k = 2�p2(p�1) < N=2by hypothesis, the assumptions of Proposition 3.10 are satis�ed. Therefore there exists�1 > 0 su
h that (0; �1) � I+.By Propositions 3.11 (in 
ase of Theorem 3.5), 3.12 (in 
ases (i)(ii) of Theorem3.7), 3.13 (in 
ase (iii) of Theorem 3.7), we have sup I+ < 1. The results then followimmediately from Proposition 3.14.Remark 3.8. It 
an be proved that the result of Proposition 3.14 remains valid if theassumption (3.25) is repla
ed with F (x; y) � ajyjp�C(x) for some p > 1 and C boundedon bounded sets.



42 BEN-ARTZI, SOUPLET AND WEISSLER4. Existen
e and nonexisten
e results for a < 0, u0 � 04.1. Existen
e in all Lq+ spa
es for p < 2In this se
tion we proveTheorem 4.1. Let a < 0, 1 � p < 2 and 1 � q < 1. Given u0 2 Lq , u0 � 0, thereexists a (pointwise mild) solution u of (VHJ), u � 0, su
h thatu 2 C([0;1);Lq):Moreover, u is a 
lassi
al solution of (VHJ) on RN � (0;1).Remark 4.1. For the equation ut��u+jujp�1u = 0, it is well-known that a (unique)solution exists for any initial data u0 2 Lq and any p, q � 1. This is an easy 
onsequen
eof the monotoni
ity of the nonlinear operator u 7! �u� jujp�1u � Au (in the sense that(Au�Av; u� v) � 0 for smooth u, v). On the 
ontrary, if u0 is a Dira
 mass Æ0, then asolution exists if and only if p � (N +2)=N (see [BF℄). Thus, in view of Theorem 4.1 andthe non-existen
e result of [BL1℄ for (VHJ) when a < 0, u0 = Æ0 and p > (N+1)=(N+1)(see also Theorem 4.4 below), we have here a similar situation for positive solutions of(VHJ) with a < 0. However, �u� jrujp has no monotoni
ity property and the proof ofexisten
e that we will give now is more involved.Remark 4.2. The basi
 idea of the proof is 
lassi
al. One �rst 
onstru
ts a sequen
eof solutions for regularized initial data (Step 1). In order to pass to the limit in theequation for t > 0 (Step 2), we next use some estimates from [BL1℄. However, a maindiÆ
ulty is then to re
over the 
orre
t initial data at t = 0 in the limiting pro
ess. Thisrequires some 
areful monotoni
ity arguments (see Step 3). Note that Steps 1 and 2would work as well for measure initial data (say, u0 = Æ0). But then one would "lose"the initial data in the limiting pro
ess (
f. Theorem 4.4).Proof. Step 1. Constru
tion of approximate solutions.Let 0 � u(k)0 " u0 be an in
reasing sequen
e of nonnegative fun
tions 
onverging a.e.to u0, and su
h that u(k)0 2 L1 and supp(u(k)0 ) �� RN :In view of Theorem 2.1, the integral equation (1.1), with u(k)0 repla
ing u0, has a unique(mild Lr) solution u(k) � 0, su
h thatu(k) 2 C([0;1);Lr) \ C((0;1);W 1;r) \ C((0;1);C2b); q
 < r <1:In the following 
laim, we list some of the properties of the sequen
e u(k).Claim. The sequen
e u(k) satis�es, for some 
onstant C > 0 independent of k,(4:1) 0 � u(k)(t) � et�u0; t � 0;(4:2) u(k)(x; t) � Cku0kqt�N=2q ; x 2 RN ; t > 0;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 43(4:3) jru(k)(x; t)j � Ct�(N+2q)=2pq; x 2 RN ; t > 0;(4:4) fu(k)(x; t)g1k=1 is monotone nonde
reasing for ea
h (x; t) 2 RN � (0;1):Proof of Claim. (4.1) follows immediately from u(k)0 � u0, so that in view of (4.1),(4.2) is a 
onsequen
e of the standard estimate for the heat kernel. Sin
e, in addition,u(k)(t) 2 C2b for t > 0, we obtain, by Theorem 1 of [BL1℄ that, for all t > " > 0jru(k)(x; t)j � Cp(t� ")�(N+2q)=2pq; x 2 RN ; t > ";where Cp > 0 depends on p only. Letting "! 0, we get (4.3).The monotoni
ity follows from the 
omparison prin
iple (see e.g. [GGK, Theorem8℄). The 
laim is proved.Step 2. Convergen
e of the approximating sequen
e to a solution for t > 0.>From (4.1)(4.2) and the monotone 
onvergen
e theorem, it follows that fu(k)(x; t)g
onverges monotoni
ally on RN�[0;1) to some fun
tion u(x; t), and that the 
onvergen
eof u(k)(:; t) takes pla
e in Lq for ea
h �xed t � 0. Moreover, from (4.1), u satis�es0 � u(t) � et�u0; t � 0:On the other hand, from (4.3), we see that u(k) satis�es an equation of the formu(k)t � �u(k) = gk(x; t) in RN � (0;1), where the fun
tions u(k) and gk are boundedindependently of k on every strip RN � (t1; t2), 0 < t1 < t2 <1. Denote as usual by D,D2, : : : any partial derivation operator in spa
e of order 1, 2, : : : It follows from interiorparaboli
 regularity theory (see, e.g., [Lie, 
hapter 7℄) that for every r 2 (1;1), R > 0and 0 < t1 < t2 <1, �tu(k) and D2u(k) are bounded in Lr(BR � (t1; t2)) independentlyof k. Therefore, Du(k) satis�es(Du(k))t ��(Du(k)) = hk(x; t) � pXi �iDu(k)�iu(k)jru(k)jp�2;where hk(x; t) is bounded in Lr(BR � (t1; t2)) independently of k. A further appli
ationof paraboli
 regularity yields that �tDu(k) is bounded in Lr(BR � (t1; t2)). Applyingstandard imbedding theorems for r > 1 suÆ
iently large, we obtain that u(k) and Du(k)are bounded in C�;�=2(BR � (t1; t2)) for some � > 0. By As
oli-Arzela's Theorem anda diagonal pro
edure, repla
ing u(k) by a subsequen
e, it follows that u(k) and Du(k)
onverge to u and Du respe
tively, uniformly on 
ompa
t subsets of RN � (0;1) andthat u is C1 in x on RN � (0;1).Now, for x 2 RN and t � " > 0, we writeu(k)(x; t) = e(t�")�u(k)(")� Z t" e(t�s)�jru(k)(s)jp ds:Sin
e by (4.3), jru(k)(x; s)jp is bounded independently of k on RN � ("; t), we may passto the limit via the dominated 
onvergen
e theorem to obtain(4:5) u(x; t) = e(t�")�u(")� Z t" e(t�s)�jru(s)jp ds; x 2 RN ; t � ":



44 BEN-ARTZI, SOUPLET AND WEISSLERWe 
laim that(4:6) u 2 C((0;1);Lq):First, sin
e u(k) 2 C([0;1);Lr), r > q
, for ea
h k, and sin
e u(k) 
onverges to uuniformly on 
ompa
t subsets of RN �(0;1), we have that u 2 C((0;1);Lq(fjxj � Rg))for all R > 0. Next, we observe that for all 0 < t, t+ h <1,ku(t+ h)� u(t)kLq(fjxj>Rg) � ke(t+h)�u0kLq(fjxj>Rg) + ket�u0kLq(fjxj>Rg)� ke(t+h)�u0 � et�u0kLq(RN)) + 2ket�u0kLq(fjxj>Rg);and sin
e u0 2 Lq), the RHS 
an be made arbitrily small for h small and R large. The
laim (4.6) follows.Step 3. Identi�
ation of the initial value.It remains to identify the initial value of the 
onstru
ted solution u, or in otherwords to show that limt!0u(t) = u0 in Lq.Sin
e ku(t)kq � ku0kq by (4.1), fu(t)gt>0 is a bounded, hen
e weakly pre
ompa
t subsetof Lq if 1 < q < 1. If q = 1, it is a weak star pre
ompa
t subset of M = M(RN ),the spa
e of bounded Borel measures. If q > 1, for any sequen
e tn ! 0, there is asubsequen
e t0n and a fun
tion v0 2 Lq su
h thatu(t0n)* v0; weakly in Lq.(If q = 1, the 
onvergen
e in is the weak star sense of M and v0 2 M.)For ea
h k � 1, from (4.1) and (4.4), we haveu(k)(t0n) � u(t0n) � et0n�u0But on the other hand, u(k)(t0n) ! u(k)0 and et0n�u0 ! u0 in Lq as n ! 1. It followsthat for all k � 1, u(k)0 � v0 � u0(the inequality being understood in the sense of measures if q = 1). Letting k !1, we
on
lude that v0 = u0:Sin
e every sequen
e u(tn) with tn ! 0 has a subsequen
e 
onverging (weakly in Lq orweak star in M) to the same limit u0, this means that in fa
t(4:7) u(t)* u0; as t! 0.As a 
onsequen
e of (4.1)(4.7), note that(4:8) 0 � et�u0�u(t)* 0 weakly in Lq (q > 1) or weak star in M (q = 1), as t! 0.
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eed to show that the 
onvergen
e in (4.7) is a
tually in the norm senseof Lq.For ea
h K �� RN , �x some 
ontinuous fun
tion ' with 
ompa
t support, su
hthat 0 � ' � 1 and ' = 1 on K. Formula (4.8) implies thatket�u0 � u(t)kL1(K) � ZRN(et�u0 � u(t))'dx! 0; as t! 0.In other words, et�u0�u(t)! 0 in L1lo
(RN ), hen
e u(t)! u0 in L1lo
(RN ), as t! 0. Bydiagonal pro
edure, it follows that for ea
h sequen
e tn ! 0, there exists a subsequen
et0n su
h that u(t0n)! u0 a.e. in RN . But sin
e 0 � u(t0n) � et0n�u0 and et0n�u0 ! u0 inLq, the dominated 
onvergen
e theorem implies thatu(t0n)! u0 in Lq.Sin
e there is no other limit, this means thatu(t)! u0 in Lq, as t! 0.Finally, by letting "! 0 in (4.5), we obtain, by the monotone 
onvergen
e theorem,that u(x; t) = et�u0 � Z t0 e(t�s)�jru(s)jp ds; x 2 RN ; t � 0:The proof is 
omplete.4.2. Existen
e-uniqueness in all Lq+ spa
es for p = 2Theorem 4.2. Let a < 0, p = 2 and 1 � q <1. Given u0 2 Lq , u0 � 0, there exists a
lassi
al solution u of (VHJ), u � 0, su
h that(4:9) u 2 C([0;1);Lq); u(0) = u0:Moreover, for all T > 0, u is the unique fun
tion su
h that u 2 C2;1(QT ), u � 0, usatis�es (VHJ)1 in QT and u 2 C([0;1);Lq) with u(0) = u0.Proof. (i) Existen
e. Assume a = �1 without loss of generality and put v0 = 1�e�u0 .Sin
e 0 � 1� e�s � s for s � 0, it follows that 0 � v0 2 Lq . Next de�ne v(t) = et�v0.Clearly, v 2 C([0;1);Lq) \ C1(Q), where Q = RN � (0;1). Sin
e u0 2 Lq, thenv0 = 1� e�u0 < 1 a.e., so that v < 1 in Q.Now de�ne u = � log(1 � v) � 0. Sin
e v(t) = et�v0, it is well-known thatv(t); �iv(t); �ijv(t) 2 C0(RN ) for ea
h t > 0 (i; j = 1; : : : ; N). In parti
ular, it follows thatu(t) 2 C0(RN ) for ea
h t > 0. Moreover, sin
e v = 1� e�u, we have �iu(t) = eu�iv 2 C0and �iju(t) = eu(�ijv + eu�iv�jv) 2 C0, so that in parti
ularu(t) 2 C2b; t > 0:



46 BEN-ARTZI, SOUPLET AND WEISSLERA straightforward 
al
ulation shows thatut = �u� jruj2; (x; t) 2 Q:It remains to verify (4.9). Noting that e�u(t) = et�e�u0 and that s 7! e�s is 
onvex,Jensen's inequality entails that e�u(t) � exp(�et�u0) hen
e,(4:10) 0 � u(t) � et�u0; t � 0:Fix t0 � 0. Sin
e v(t) ! v(t0) in Lq as t ! t0, for ea
h sequen
e tn ! t0, there isa subsequen
e t0n su
h that v(t0n) ! v(t0) a.e., hen
e u(t0n) ! u(t0) a.e. In view of(4.10), and sin
e et�u0 ! et0�u0 in Lq as t! t0, it follows from Lebesgue's dominated
onvergen
e theorem that u(t0n)! u(t0) in Lq. This implies (4.9).(ii) Uniqueness. Let u be a solution with the stated properties, and let v := 1�e�u.Then v satis�es(4:11) vt = �v; (x; t) 2 Q:We 
laim that(4:12) v 2 C([0;1);Lq); v(0) = v0 := 1� e�u0 2 Lq:For 0 � t; t+ h < T , we note thatv(t+ h)� v(t) = e�u(t)�1� e�(u(t+h)�u(t))�and v(t+ h)� v(t) = �e�u(t+h)�1� e�(u(t)�u(t+h))�:Sin
e 1� e�s � s, s 2 R, it follows that�e�u(t+h)(u(t)� u(t+ h)) � v(t+ h))� v(t) � e�u(t)(u(t+ h)� u(t))Using u � 0, we get jv(t+ h))� v(t)j � ju(t+ h)� u(t)j:By (4.9), this proves the 
laim (4.12). Now, it is well-known that (4.11)(4.12) has aunique solution, namely v(t) = et�v0. The uniqueness of u follows.4.3. Existen
e in all 
lasses Lq+;approx for p > 2Theorems 4.1 and 4.2 yield the existen
e of (at least) a positive solution of (VHJ)for a < 0 when p � 2 and 0 � u0 2 Lq , q � 1. De�ne Lq+;approx to be the spa
e ofthose fun
tions 0 � u0 2 Lq whi
h 
an be approximated pointwise by a monotoni
allynonde
reasing sequen
e of nonnegative 
ontinuous fun
tions. For p > 2, we then havethe following partial extension of Theorem 4.1.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 47Theorem 4.3. Let a < 0, p > 2 and 1 � q < 1. Given u0 2 Lq+;approx, there exists a(pointwise mild) solution u of (VHJ), u � 0, su
h thatu 2 C([0;1);Lq):Furthermore, the solution is 
lassi
al for t > 0, satisfying the regularity propertyu 2 C((0;1);C2b):Proof. Let u(k)0 be a nonde
reasing sequen
e of nonnegative 
ontinuous fun
tionswhi
h 
onverge pointwise to u0. By a trun
ation pro
edure we 
an assume ea
h u(k)0 tobe 
ompa
tly suupported. By [GGK, Theorems 2 and 7℄, sin
e u(k)0 2 Cb, there existsa unique 
lassi
al solution of (VHJ) with initial data u(k)0 . The rest of the proof thenfollows along the lines of the proof of Theorem 4.1.Remark 4.3. The spa
e Lq+;approx 
ontains in parti
ular all the fun
tions � 2 Lq, � �0, whi
h are radially symmetri
 and radially nonin
reasing (with a possible singularityat 0).4.4. Nonexisten
e for p-atomi
 measures, p0 < p < 2Let N � 2, p0 = N+2N+1 < p < N and p� = NpN�p . Let � � 0 be a Borel measure onRN .De�nition 4.1. We say that � is p{atomi
 if there exist 
onstantsC > 0, 0 < Æ < 1, su
hthat the following is satis�ed: for every 0 < t < 1 there exist sequen
es fxkg1k=1 � RN ,frkg1k=1 � (0;1), su
h that(i) supp(�) � 1[k=1B(xk; rk) (B(y; r) = fx; jx � yj < rg);(ii) 1Xk=1 rN(1�(1=p�))k � Ct1=p;(iii) 1Xk=1�(B(xk; rk))e�(1�Æ)rkt�1=2 ! 0; as t! 0.Note that any atomi
 measure (i.e., supported on 
ountably many points x1; x2; : : :)is p{atomi
 for p > p0. Indeed one just takes rk = 2�kt1=(p+N(p�1)).Theorem 4.4. Let a < 0, N � 2, p0 = N+2N+1 < p < N , and � � 0, � 6� 0, be a p{atomi
measure. Then there is no lo
al pointwise mild nonnegative solution of (VHJ) su
h that(4:13) u(:; t)! � weak star in M as t! 0:



48 BEN-ARTZI, SOUPLET AND WEISSLERProof. Assume that there exists su
h a solution u. First, by the argument of proofof Proposition 1.1, we have jrujp 2 L1((0; T );L1):Therefore, for a given " > 0, there exists a sequen
e tj # 0 su
h thatZ jru(x; tj)jp dx � "t�1j ;whi
h implies, by the Sobolev inequality,(4:14) Z u(x; tj)p� dx � (C"t�1j )p�=p:Observe that u � ~u where ~u(t) = et��. Now, for any tj , let fxj;kg1k=1, frj;kg1k=1be sequen
es guaranteed by the fa
t that � is p{atomi
. Apply (4.14) and H�older'sinequality to get,(4:15) Zjx�xj;kj�2rj;k u(x; tj) dx � (C"t�1j )1=p(!N2NrNj;k)1�(1=p�):Now denote Kj = [1k=1B(xj;k; 2rj;k). Summing in (4.15) over k = 1; 2; : : : and using (ii),we have(4:16) ZKj u(x; tj) dx � C"1=p:Consider the estimate for u over RN n Kj . Sin
e 0 � u � ~u, it suÆ
es to estimate ~u.Re
all that supp(�) � [1k=1B(xj;k; rj;k) so that if x 2 RN nKj ,~u(x; tj) � 1Xk=1ZB(xj;k;rj;k)G(x� y; tj) d�(y);with G(z; t) = (4�t)�N=2e�z2=4t, and where jx� yj � rj;k. We obtainZRNnKj ~u(x; tj) dx � 1Xk=1�(B(xj;k; rj;k))Zjzj�rj;k G(z; tj) dz= C 1Xk=1�(B(xj;k; rj;k))Zj�j�rj;kt�1=2j e�j�j2 d�:Clearly, Zj�j�rj;kt�1=2j e�j�j2 d� � CÆ;Ne�(1�Æ)rj;kt�1=2j ;so that, in view of (iii), we get limj!1ZRNnKj ~u(x; tj) dx = 0:
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