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ABSTRACT: We consider viscous Hamilton-Jacobi equations of the form

ug — Au = a|VulP, zeRY, t>0,
(VHJ)

u(z,0) = up(z), = €RV.

where a € R, a # 0 and p > 1. We provide an extensive investigation of the local
Cauchy problem for (VHJ) for irregular initial data wo, namely for wo in Lebesgue
spaces LY = LI(RY), 1 < ¢ < oo. The case of initial data measures or in Sobolev
spaces is also considered.

When p < 2, we prove well-posedness in L? for ¢ > ¢g. = Nép:pl). This holds
without sign restriction neither on a nor on wuyg.

In the case a > 0 and up > 0 (repulsive gradient term) we show that existence
fails in all L? spaces when p > 2. When p < 2, we prove that both existence and
uniqueness fail if 1 < ¢ < ¢..

Rather surprisingly, in the case a < 0 and up > 0 (absorbing gradient term),
we show that existence holds in L' while it may fail in measures. More precisely,
we obtain existence in L? for any ¢ > 1 when p < 2 (and also for p > 2 under
some additional assumption on wg), whereas nonexistence occurs for a large class of
measure initial data if p > %—ﬁ

In particular, a critical exponent for existence and uniqueness in the scale of L7
spaces appears if the gradient term is repulsive, while none occurs if it is absorbing.
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1. Introduction
1.1. Statement of the problem

This paper is concerned with viscous Hamilton-Jacobi equations of the form

ug — Au = a|VulP, zeRN, t>0,
(VHJ)

u(z,0) = ug(z), =€ RV,

where ¢ € R, a # 0 and p > 1.

The equation (VHJ) possesses both mathematical and physical interest. It can serve
as a typical model-case in the theory of parabolic partial differential equations. Indeed,
it is the simplest example of a parabolic PDE with a nonlinearity depending on the first
order spatial derivatives of u, and it can be considered as an analogue of the extensively
studied equation with zero order nonlinearity u; — Au = a|u|?"'u. On the other hand,
the equation u; —eAu = a|Vu|P, which can be easily reduced to (VHJ) by rescaling, may
be viewed as the viscosity approximation (as e — 0%) of Hamilton-Jacobi type equations
from stochastic control theory (see [Lio]). Also, equation (VHJ) appears in the physical
theory of growth and roughening of surfaces, where it is known as the Kardar-Parisi-
Zhang equation (see [KPZ, KSJ).

When wug is a sufficiently regular function, say uo € CZ, and p > 1, the existence of
a unique local — and actually global — classical solution of (VHJ) was established in [B1,
AB]. This result was recently extended to ug € Cp and p > 0 in [GGK].

Our purpose is to provide a rather extensive investigation of the local Cauchy prob-
lem for (VHJ) for irregular initial data ug, namely for ug in Lebesgue spaces L? =
LI(RN), 1 < g < co. The case of initial data measures or in Sobolev spaces will be also
considered. We will present various results on existence, nonexistence, uniqueness and
nonuniqueness of solutions. Some of our results will concern positive solutions, while
others will apply to solutions of mixed sign. The issue to these questions involve dif-
ferent ranges of values of p, ¢, together with the sign of a. Many of our results are
optimal and we obtain an almost complete classification regarding local (non-)existence
and (non-)uniqueness for all 1 < p,q < oo.

Beside local existence/uniqueness, another interesting question regarding equation
(VHJ) is the long time behavior of solutions (recall that all local solutions of (VHJ) exist
globally). This question was studied by a number of authors in the past few years, see
[AB, BRV1, BRV2, BK, BL1, BGL, GGK, BLS, BGK, BLSS]. A particular attention
was given to the question whether solutions decay as ¢ — oo when ug > 0 and a < 0. In
Theorem 2.5 below we obtain some decay properties without sign restrictions on a or uy.

Results on other aspects of problem (VHJ) and on its generalizations can be found
in [BL2, BL3, P, AR1, AR2, AQR]. Also, let us mention that the related equation
ug — Au = a|VulP + buP, first studied in [ChW], has received a lot of attention from the
point of view of blow-up and global existence (see [S2] for a recent survey).

Let us briefly summarize our main results. Put

N +2 N(p—-1
po=po(N) = +—= and qczqc(N,p)Zépfp)

if p < 2.
N +1 <
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The critical exponent q. plays a crucial role in this theory. We will say that ¢ is super-
critical, critical or subcritical, according to whether ¢ > ¢., ¢ = ¢, or q < q..

(i) When p < 2, we prove well-posedness in L? for supercritical and critical q. This
holds without sign restriction neither on @ nor on ug. Well-posedness holds also for
measure data if p < po(N) and for W4 data if 1 <p < oo and ¢ > N(p —1).

We next specialize to the case a > 0 and uy > 0 (repulsive gradient term) and we obtain:
(ii) When p > 2, existence fails in general in L? for any q > 1.

(iii) Thus returning to p < 2, we show that both existence and uniqueness fail in general
in LY for subcritical ¢ and in W7 if ¢ < N(p — 1). The nonuniqueness result is
extended to some more general nonlinearities depending on u and |Vul.

We then examine the situation when a < 0 and ug > 0 (absorbing gradient term).

(iv) We obtain existence in L? for any ¢ > 1 when p < 2. This even extends to p > 2
for ug > 0 in a large subset of L? (including ug € L? symmetric radially decreasing,
possibly singular at 0). However, the uniqueness of this solution is an open question
in general, except for p = 2 where uniqueness holds.

(v) We introduce a notion of p-atomic measure, which contains in particular atomic
measures, and we show that the previous existence result cannot be extended to
such measure initial data.

One of the consequences of our study is that a critical exponent for existence in the
scale of LY spaces appears if the gradient term is repulsive, while none occurs if it is
absorbing. Also, in the absorbing case, it is a rather surprising fact that existence holds
in L' while it may fail in measures. A heuristic interpretation is that when approaching
ug by more regular initial data, one ”loses” the initial trace in the limiting process if ug
is a singular measure. On the contrary, if ug is an L' function, then it is possible to
recover the initial trace, by using suitable monotonicity arguments (see Remarks 4.1 and
4.2).

Let us compare our results with previous work on equation (VHJ) with irregular
data. It was proved in [BL1] that if a < 0, p < 2, ug > 0 and ug € L' N L? with ¢ > q.,
then (VHJ) admits a unique (mild) solution. Note that, as compared with the result (i)
above, the signs of a and uy seem to be essential in the approach of [BL1]. When ug
is a bounded and nonnegative measure, it was proved in [BL1] that the existence and
uniqueness hold if ¢ < 0, 1 < p < po(N), whereas nonexistence was shown if ug is a
Dirac mass and a < 0, p > po(IN). The result (v) extends this to more general singular
measures.

In [An], the more general degenerate equation uy — Au™ = |Vu"|P (m, r,p > 1)
was considered for initial data measures. Conditions for existence and nonexistence of
positive weak solutions were obtained in terms of a certain local regularity property of
the measure ug. When applied to the special case m = r =1 (i.e. (VHJ) with a > 0) and
ug € L%, the results of [An] yield local existence of (at least) a solution of (VHJ) when
q > g. and nonexistence if ¢ < g.. Although the context of [An] is more general than
ours, it has to be pointed out that, as a consequence of the completely different approach,
the resulting (weak) solution lies only in some local spaces and that both existence in
the critical case and uniqueness are left open in this approach. Also the assumption
a > 0 seems important in the arguments used for existence. On the other hand our
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nonexistence result in (iii) is close to the nonexistence result of [An] for m = r = 1.
However the functional frameworks are different: we work with mild solutions which
require u € C([0,7); LY(RY)) and |VulP € LY(0,T;LI(RY)), while [An] works with
weak solutions which require u € C([0,T); L3 .(RY)) and |Vu|? € L ((0,T) x RY), and

the two sets of hypotheses are not comparable in general for ¢ > 1 and 1 < p < 2. Also
our method is simpler.

Remark 1.1. Let us point out that the situation for the Cauchy problem is rather
different from that for the Cauchy-Dirichlet problem associated with (VHJ) on a bounded
domain. This is due to the fact that solutions of the latter problem may exhibit finite
time gradient blowup whehever p > 2 (see, e.g., [FL, S3]), a phenomenon which does not
occur for the Cauchy problem. This is the reason — besides simplicity — why we have
restricted our attention to the Cauchy problem, although many of the results discussed
here would certainly apply to the bounded domain case (with homogeneous Dirichlet
conditions) when p < 2. For some related existence/nonexistence results in the bounded
domain case, let us mention the papers [BMP, Al]. For results in the case of periodic
boundary conditions, see [BGL, GGK, BLSS].

The outline of the paper is as follows.

Section 1.2 of the Introduction contains the necessary notation and definitions of
solutions.

Section 2 is devoted to well-posedness for supercritical and critical ¢ (a > 0 or < 0).
We also consider initial data in measures and in Sobolev spaces.

In Section 3 we specialize to the case a > 0, ug > 0. After showing nonexistence
in L? for p > 2, we prove both nonexistence and nonuniqueness results for p < 2 and ¢
subcritical, and we give extensions of the nonuniqueness results to different equations.

Then in Section 4, we turn to the case a < 0, ug > 0. We prove existence in all LY
for all 1 < p < 2 (and for all p > 1 for a large subset of L?). We then show existence and
uniqueness in all L4 for p = 2. Finally we study the nonexistence for singular measures
when p > po(N).

Some of the results of this paper have been announced in [BSW] and [B3].

1.2. Notation and definitions of solutions

In what follows, L? = LI(RY), 1 < ¢ < oo, denotes the usual Lebesgue spaces of
real valued functions, with norm denoted by |||, W% = W4(RY) is the usual Sobolev
space. M = M(RY) denotes the Banach space of bounded Borel measures on R, the
dual space of Cy(RY). Also, throughout the paper, we will denote by C, ¢, Cy, Cs,...
various positive constants which may vary from line to line. The dependence of these
constants will be made precise when necessary.

For all ¢ > 0, e*® denotes the convolution operator with the standard heat kernel,
that is

tA _
(1)) = [ Glo=u.0f)dy,

RN

where

2
[z

Gz, t) = (4nt) N 2e 3, t>0, zeRY
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and f is either a nonnegative measurable function, or f € L? for some q € [1,00]. If f
is a finite Borel measure or, more generally, if f € S’, then (etAf)(zp) is understood as
<f7 G(t: T — )>

Let a € R, a#0,1 <p< ocand 1 < g < oo be real numbers. We are primarily
interested in the existence and uniqueness of mild solutions of the equation (VHJ) i.e.,
solutions of the integral equation

t
(1.1) u(t) = e®ug + a/ et=)2|Vu(s)|Pds, 0<t<T
0

for some T' € (0, oo], where ug € S’ and the unknown function u = u(x,t) is a real valued
measurable function on Q7 := RN x (0,T). We will use interchangeably u(t) for u(-,t)

when there is no risk of confusion. Also, for 1 < p < 2 we put
N(p—1)
2—p

c =

The function u being a solution of (1.1) can be defined in several ways. In view of
the uniqueness and nonexistence results that we will develop, it is natural to work with
reasonable notions of solutions that are as general as possible.

Our basic definition of solution is the following.

Definition 1.1. Let ug € §'. A pointwise mild solution of (VHJ) is a function u €
L{ (Qr) such that Vu € L? (Q7) and such that

u(x,t) = (etAuo)(fE) + a/ G(z —y,t — s)|Vu(y,s)|’ dy ds
0o JRN

for a.e. (x,t) € Qr.

(1.2)

Note that the time-space integral term in (1.2) makes sense since |Vu(y,s)? is a
nonnegative measurable function in Qr and that since u € L{ (Qr), (1.2) implies that
the time-space integral term is finite for almost every (z,t) € Q.

We will make use also of the following notion of mild L? solution.

Definition 1.2. Let q € [1,00) and ug € L?. A mild L? solution of (VHJ) is a function
u € C([0,T); L) such that

(1.3) VulP € L'(0,T; L9)

and
t

(1.4) u(t) = et®ug + a/ =92\ Vu(s)|Pds in LY for all 0 < ¢ < T.
0

(If T = oo, the condition (1.3) is replaced by |VulP € L'(0,Ty; L?) for all Ty € (0,00).)

It is clear that any mild L? solution is a pointwise mild solution. Conversely, for
q = 1, we have:
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Proposition 1.1. Let T € (0,00), ¢ = 1 and ug € L' and let u be a pointwise mild
solution of (VHJ). Assume that either

(1.5) a<0, u>0a.e inQr,
or

(1.6) ess liminf; ,p||u(t)]|1 < oc
Then

(1.7) |Vu? € L*(0,T; L")

and u is a mild L' solution.

Proof. Using Fubini’s theorem and the preservation of the integral by e*®, we have

(1.8) // Vu(y,s pdyds—/ / =32\ Tu(s)[P dy ds.
RN RN

First assume (1.5). Integrating (1.2) in space and using (1.8), u > 0 and ug € L', we get

a|/ / |Vu(y,s)|P dyds < / etAuo(y) dy < Jlug|lx < oc.

Since e'®ug € C([0,T); L'), this easily implies that u € C([0,T); L) and that (1.3) and
(1.4) are satisfied.
Now assuming (1.6), we obtain similarly that

T
|a/ / Vuly, $)[7 dy ds < uo||s + ess liminf,_,zl|u(t)]: < oo
0 RN

and we conclude as before. 7

Denote by CZ = CZ(RY) the space of functions with bounded continuous partial
derivatives up to second order and by C?(Qr) the space of functions which are contin-
uously differentiable in Q7 up to order two in z and one in ¢.

Definition 1.3. Let ug € L?. A classical solution of (VHJ) in Qr is a function u €
C([0,T); LY) N C?Y(Qr) such that u(0) = uy,
u € C((0,T); Cp)
and uy — Au = a|Vul? for all (z,t) € Qr.
When considering the issue of local existence-uniqueness in M, we will use the
following definition.

Definition 1.4. Let ug € M. A mild M solution of (VHJ) is a function u € Cy,((0,T);
LY such that |VulP € L*(0,T; L"), (1.1) holds in L* for all t € (0,T) and u(t) — e*®uq
converges to 0 in L' ast — 0. In particular, u(t) — uy weak star in M as t — 0.

Remark 1.2. If ug € M and u is a pointwise mild solution of (VHJ), then w is a mild
M solution whenever (1.5) or (1.6) holds. This follows from the proof of Proposition 1.1.
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2. Well-posedness in supercritical and critical LY spaces.
2.1. Main results
Our main result on well-posedness is the following theorem.

Theorem 2.1. Assume 1 <p < 2. Let 1 < q < oo satisty ¢ > q. or ¢ = q. > 1, and let
ug € LY.

(i) There exists a global solution
(2.1) u € C([0,00); LY) N C((0,00); W), ¢ <r <00
of (1.1). The function u is a mild L? solution if ¢ > q. and a pointwise mild solution
if ¢ = q.. Moreover, u is a classical solution of (VHJ) in RY x (0, c0).
(ii) Assume q > q.. For allT > 0, u is the unique local in time (pointwise mild) solution

of (1.1) in the class

(2.2) C([0,T); L) N C((0,T); Whr1),

(iii) Assume q = q.. For allT > 0, u is the unique local in time (pointwise mild) solution
of (1.1) in the class

(2.3) C([0,T); L*) N C((0,T); W),

for any r > p such that q. < r < pqe.

In the case of initial data measures, we have the following result.

Theorem 2.2. Let 1 < p < %—ﬁ hence, q. < 1. For every ug € M there exists a
function

(2.4) u € Cyp((0,00); LYY N C((0,00); WHT), 1< 7 < o0,

which is a global mild M solution of (1.1). Moreover, u is a classical solution of (VH.J)
in RN x (0,00). Furthermore, for all T > 0, u is the unique pointwise mild solution of
(1.1) in the class Cy((0,T); L*) N C((0,T); WhP).

As a corollary to the proof of Theorems 2.1 and 2.2, we obtain that the solutions
given there satisfy the following smoothing properties for small ¢.

Proposition 2.3. There exist T', C' > 0 such that the solution given in Theorems 2.1
and 2.2 satisfy

(2.5) sup t¥ G D u(t)], < C, ¢<r<oo
(0,7
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(with ¢ = 1 in the case of Theorem 2.2.).

(2.6) sup 2 7| Tu(t)]|, < €, g <7 < 0.
(0,77

Moreover, in the case of Theorem 2.1 with ¢ > q. (resp., of Theorem 2.2), T and C
actually depend only on ||ugl|, (resp., ||uo||rm). In the case of Theorem 2.1 with q = g,
if ||ug||q is sufficiently small, then (2.5) and (2.6) hold with T' = oo and C' independent
of Ug.

In the next proposition, we consider the solvability of (1.4) in the Sobolev spaces
W14 instead of the Lebesgue spaces LI. We will show existence and uniqueness of local
solutions to (1.1) for all ug € W14 where ¢ > N(p — 1) or ¢ = N(p — 1) > 1. Note that
we no longer need assume p < 2. When 1 < ¢ < N(p— 1), we will show in Section 3 that
local uniqueness is no longer true in general, and some nonexistence results will be given
in Section 4.

Proposition 2.4. Assume p > 1 and let 1 < ¢ < oo satisfy ¢ > N(p — 1) or q =
N(p—1) > 1. Let ug € Wha.

(i) There exists a global pointwise mild solution
u € C([0,00); WH) N C((0,00); WHT), g <7< oo,

of (1.1). Moreover, u is a classical solution of (VHJI) in RY x (0, c0).

(ii) Assume q¢ > N(p — 1). For all T > 0, u is the unique local in time (pointwise mild)
solution of (1.1) in the class

C([0,T);Wh%) N C((0,T); W),

(iii) Assume ¢ = N(p —1) > 1. For all T > 0, u is the unique local in time (pointwise
mild) solution of (1.1) in the class

C([0,T); Wh) NC((0,T); Wh"),

for all r > p such that N(p —1) <r < Np(p — 1).
(iv) There exist T', C > 0 such that the solution given in (i) satisfies

NelL_1
sup ¢ G (@l + 1IVu®llr) <, a<r <o
0,

In particular if N(p — 1) < ¢ < N, then
(2.8) Vul? € LY(0,T; L) (¢" = Ng/(N - q)).

Moreover, if ¢ > N(p — 1), then T and C depend only on ||ug||w.q.
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Remarks 2.1. (a) The local LY theory for (VHJ) with a > 0, that we describe in
Theorem 2.1 (and in Theorems 3.1 and 3.2 below), has many common features with the
known L? theory of the equation

(2.7) ug — Au = |ulP " u.

For the latter equation, the critical exponent is N(p — 1)/2. Well-posedness for ¢ >
N(p —1)/2 (with ¢ > 1 if ¢ = N(p — 1)/2) was proved in [W2], Theorem 1. The
uniqueness class was improved in [BC]. For ¢ < N(p — 1)/2, nonexistence results were
obtained in [W2, W4, BP]) and examples of nonuniqueness in [HW, Ba] (see also [NS]).

(b) If ¢ > q. and uy € L4, the solution given by Theorem 2.1 is actually unique in
the larger class L>(0,7; L) N L{2.(0,T; WP?). This follows from slight modifications
of the proofs below (see Remark 2.5).

(c) If ¢ > q., the arguments of the proof of Theorem 2.1 show that for all finite #;,
the solution u on [0,¢g] depends continuously in L? on the initial data (see also Remarks

2.3 and 2.6).

(d) The conclusions of Theorem 2.1 (i) and (ii) and Proposition 2.3 remain valid
for ¢ = oo and any 1 < p < 2. In this case one has to replace (2.1) and (2.2) by
U(t) - etAUO € C([Oa OO);LOO)a u € C((Oa OO); Wl,oo)_

(e) The conclusions of Theorems 2.1 and 2.2 remain true (except perhaps for u being
a classical solution) if the coefficient @ is replaced by any function a(z) € L= (RY).

We conclude this section by a result concerning the large time behavior of solutions
of (VHJ). In the critical case ¢ = ¢. > 1, one has the following decay property for small
initial data, which shows that v = 0 is a stable and asymptotically stable equilibrium of
(VHI]) in L%,

Theorem 2.5. Assume q = q. > 1 (hence py < p < 2) and ug € L%. There exists
g0 = €o(p, N) > 0 such that the solution of (1.1) given by Theorem 2.1 satisfies

< i =
[ﬁ}ig)||u(t)||qc_2||uo||qc and  lim [ju(t)q. =0,

whenever |lugl|lq, < €9. Moreover one also has lim;_, ||u(t)||x = 0 for all k € (g., oc].

Remarks 2.2. (a) A similar result was proved in [S1] for the nonlinear heat equation
(2.7). Namely, if g = N(p — 1)/2 > 1 and the initial data is small in L9 norm, then u is
global and decays in LY. See also [Kal] for a related result concerning the Navier-Stokes
equations.

(b) The smallness condition on ||ug||,, in Theorem 2.5 cannot be removed. Indeed,
the (self-similar) solution constructed in Theorem 3.3 satisfies |[u(t)||,, = |luollq. > 0 for
all ¢ € [0, 00).

(c) No extension of Theorem 2.5 to ¢ = 1 is possible when a > 0: if ug > 0 (with,
say, ug € L' N Cy), then [Ju(t)|[1 > [le" uollr = [Juoll:.
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2.2 Proofs

Our proof of local existence and uniqueness of solutions to (1.1) in L? and in W14
uses ideas which go back to [KF, W1, W2]. These arguments have been carried out in
a number of contexts, in particular for the Navier-Stokes equations. In [ChW], in the
case where the nonlinear part of (1.1) also includes a power term, well-posedness of the
Cauchy problem for (1.1) was proved in W, (2), where € is a smooth bounded domain
in RY, under the hypotheses ¢ > N(p — 1) and g > p plus other conditions related to the
power term. The proof is based on the abstract theory in [W1]. Also, [ChW] includes
a brief remark on how the methods of [W2] can be applied to give well-posedness in
certain LI(§2) spaces. Later, in [AW] it is observed that the same results carry over if
Q is replaced by RY. More recently, in [Sn'TW1] the integral equation (1.1) with an
invariant power term added is studied in the ”critical” case (corresponding to ¢ = ¢, in
Theorem 2.1 above). Here the ideas are ultimately based on the treatment of the critical
case in [W2], but follow more closely the treatment in [CaW] of the pure power nonlinear
heat equation. The spaces X, Y, ... that we use below are in some sense analogous to
those used in [GMO, Ka2] for the treatment of the 2 dimensional Navier-Stokes equations
in vorticity formulation.

Since both the details of the proofs and the statements of the results for well-
posedness of (1.1) in L? and in W are different from in the case where a power term is
present, and since not all of our results can be directly deduced from the abstract frame-
work in [W2], we present the proofs in enough detail as to minimize explicit references
to previous results. Moreover, we will improve the result in [ChW] on well-posedness in
W14 by eliminating the requirement that g > p.

If u: (0,T] — W7, for some r > p, is a continuous function, we formally define

(2.9) Gu(t) = /Ute(t_s)AVu(s)pds.

Our basic approach is to prove existence of solutions to (1.1) by showing that the appli-
cation F given by
Fu(t) = e'®ug + aGu(t)

is a strict contraction on an appropriate complete metric space of curves.
In all Section 2.2, C' denotes a generic positive constant depending only on N, p, q,
r and a.

Proof of Theorem 2.1 for q > q..

For 0 < T < oo, let X = X (T') be the Banach space of continuous curves u : (0,7] —
W1P4 such that

1
lull x = max[sup t*[lu(t)|pq, sup t*F2[|Vu(t)||pg] < oo,

0,7 ;

where

(2.10) a= EG—i).
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We denote by X g (T') the closed ball of X with radius K.

The first step (Lemma 2.1) is to use a contraction mapping argument to obtain
existence and uniqueness of a local (and actually global) solution in a more restricted
class than (2.2), namely, v € C([0,T]; L?) N X (T') for suitable K, T' > 0. In a second

step (Lemma 2.2), we will then show that uniqueness actually holds in the larger class
(2.3).

Lemma 2.1. Assume q¢ > q., ¢ > 1 and ug € LY.
(i) Let K, T > 0 satisfy

(2.11) K > Cy(|luoll, + KPT7)
where C; = C1(N,p,q,a) > 0 and v = 1 — p(a+ %) > 0. Then there exists a

unique function u € Xk (T) which is a (pointwise mild) solution of (1.1) on (0,T).
Moreover, u € C([0,T]; L?) and u is actually a mild L? solution.

(ii) For all T' > 0, there is at most one (pointwise mild) solution of (1.1) in the class
X(T").

Note that Lemma 2.1 guarantees the existence of a unique maximal solution of (1.1)
in X (Tinax) for some Tiax € (0,00], with u € X (00) meaning u € X(7T') for all T > 0.

This solution will be referred to as the solution given by Lemma 2.1. We will see later
that this solution is actually global, i.e. Tiax = 00.

Proof of Lemma 2.1. (i) If u € X (T), using

||etA¢||pq < Ct_a||¢||q and ||VetA¢||pq < Ct_a_1/2||¢||qa

we have, for all ¢ € [0, T7,

t t
1Gu(t) g < C / (t— &) I Vu(s)Pll, ds = C / (t = &) Vu(s) |2, ds
t 1
< OKp/ (t—s) s PO+3)gs = oKptl—a—W*%)/ (1—s)~os7Plats) gs
0 0
< CKpt—aTl—p(a‘F%)’
and
t 1 t 1
IVGu(t) g < C / (t = 5= 5| Vu(s)[?[l, ds = C / (t — 5| Vu(s)|2, ds
t
< CKp/ (t— s)_a_%s_p(a'i'%) ds
0

1
= CKPt_a—%+1—p(a+%)/ (1— 8)—04—%8—p(a+%) ds
0

< CKPt=e—sl-plats)
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In particular, it follows that
(2.12) IGul|x < CKPT'~Plot3)

(where C is independent of T, and in fact depends only on p and ¢). The fact that ¢ > ¢,
guarantees that all the integrals above are convergent and that 1 — p(a + %) > 0.
Moreover, we note that ug € LY implies

(2.13) mas [sup "ol sup 1449 2ol < Ol

Choose K, T > 0 such that (2.11) holds. It follows from (2.12) and (2.13) that F maps
Xk (T) into itself.
Now using

(2.14)  IVul” = [Vol?ll/p < p(IVullZ™" + V0[P~ Vu = Vol (valid for r > p)

with 7 = pq, we obtain for all ¢ € [0,T),
t
[ Fu(t) = Fo(t)llpg < C/O (t = )" [|[Vu(s)[? = [Vu(s)[P[lq ds
t
< CRP [t 5)7 s DO Tu(s) = Vo(s) g ds
0

< C’K”_1||u — ’UHX /t(t — 8)_0‘3_(0‘4‘%)17 ds
0
< CK?P e e — o,
and similarly
IV Fu(t) — VFu(t)||pg < CKP~ 1= 12T1=p(e43) |y — o|| 5.

Therefore, )
| Fu — Fol|x < CKP=IT=243)|)y — o] x

and assuming (2.11) (with Cy perhaps replaced by a slightly larger value), it follows that
F is indeed a strict contraction on X g, and thus has a unique fixed point u. This fixed
point is a (pointwise mild) solution of (1.1).

Finally, if m > ¢, we can modify the calculation leading to (2.12) as follows. (This
was not needed for the contraction argument, but will be useful to obtain additional
properties of the solution, in particular Proposition 2.3.)

t t
1Gu(t) | < c/o (t— &)~ F G| Tu(s) |, ds = 0/0 (t — 5~ F G2 |Vu(s)|2, ds

N 1

t
SCKI’/ (t—s)_T(E_H)s_p(a"'%)ds
0

N1 1 N

1
_ ORPe YR+ 1-p(atd) / (1= 5)~ ¥ =) g=platd) g
0
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Thus, if
1 2 < 1 < 1
¢ N m~q
then Gu : (0,7] — L™ is continuous and
(2.15) 2G| Gu(t)||m < CKPEPl+2) < gPTI-Plats),

In particular, Gu : (0,7] — L is continuous and lim;_,¢ ||Gu(t)||, = 0. Since e*®ug €
C([0,T]; L9), it follows that Fu € C([0,T); L?) hence,

(2.16) we C([0,T); LY).

Also we note that since p(a + 1/2) < 1, u € X(T) implies that |VulP € L1(0,T; L9), so
that u is indeed a mild L? solution. Moreover,

mlz

t
IVGu(t)|m < C / (t— 5)~ ¥ =24 |Tu(s) ||, ds

—o [-or

t
SCKI’/ (t—s)_7(5_5)_53_p(a+%)ds
0

mlz

(3~

72| Vu(s) |15, ds

3=

1
= CKpt—%(%—%)—%H—P(aJr%)/ (1—s)" 2 (G m)=3g7pla+3) gg.
0

Thus, if
1 1 1 1
2.17 L <z
(2.17) TN Sm Sy
then VGu : (0,7] — L™ is continuous and
(2.18) £ (=3 | VGu(t) || < CKPEI7PO+E) < CRPTIZPOFE),

(ii) Let u and v be two solutions of (1.1) in X (T") for some T' > 0. It follows
from (2.16) that u, v € C([0,7"]; L9). Since u and v both belong to X g (T") for some
K' > Cyl|ugllq, by taking Ty € (0,T") so small that

K' > Ci(|Juollq + K'PTY),

we can invoke the above fixed point argument to conclude that u and v coincide on [0, Tj].
Letting 71 = sup{t € (0,7"]; u = v on [0,¢]} € (0,7"], then necessarily T} = T’. Indeed,
otherwise, since u(Ty) = v(Ty) € L? and u(Ty + .), v(Ty +.) € X(T' — T}), one could
reproduce the same argument on [T7, T + ¢] for ¢ > 0 small. We conclude that © = v on
[0,T']. The proof of Lemma 2.1 is complete. _
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Remark 2.3. The time ¢t maps of the semiflow generated by these solutions satisfy
various continuity properties, which can be proved by modifications to the contraction
mapping argument, as is done for example in [W2, CaW, SnTW1, SnTW2]. For example,
assuming (2.11), if ug, vg € LY, and if u, v denote the corresponding solutions of (1.1) in
XK (T), then

max [sup 1% [[u(t) — v(t)llpq , sup 22V (t) = v(t))lpa] < Clluo — volly
(0,T] (0,7

and
sup || (u(t) —v(t))|lg < Clluo = vollq,
where C = C(p,q,N,a) > 0.

Remark 2.4. The existence and uniqueness result of Lemma 2.1 (i) remains valid
for more general initial data, namely for all uy € S’ such that (2.13) holds (except, of
course, for the continuity of u in L9 at ¢ = 0).

The next step is to improve the uniqueness class for local solutions using ideas from
[B2, Br, BC].
Lemma 2.2. Assume q > q. and let ug € L%. Let

(2.19) u € C([0,T]; L9) N C((0,T); WHP2)

be a (pointwise mild) solution of (1.1) on (0,T). Then u coincides with the solution given
by Lemma 2.1.

Proof of Lemma 2.2. Let M = sup,¢ o1 |lu(t)|4 and fix Ky > 0, Ty € (0,7/2) such
that (with the notation of Lemma 2.1) K; > C1(M + KT}). It follows from Lemma
2.1 that for every 7 € (0,7/2), there is a unique solution v, € Xg (T) of

t
v (1) = e Pu(r) + a/ =8|V, (s)Pds, 0<t<T.
0

Letting u,(t) = u(r +t) for t € [0,T1), the fact that w € C((0,T); W'P9) implies
ur € X(T1). By uniqueness in X (71) (Lemma 2.1 (ii)), we deduce that

(2.20) u(t+t)=v(t), 0<t<Ty, 0<7<T/2
Using the fact that v, € Xg, (T1), we see that, for all 7 € (0,7/2),

max [ sup ¢%[|u(r +)[lpg, sup 22 | Vu(r + 1) 4] < K.

(07T1) (OaTl)

Letting 7 — 0, it follows that u € X, (T1), hence u € X(T). By uniqueness in X (7")
(using Lemma 2.1 (ii) again), we conclude that u coincides with the solution given by
Lemma 2.1. _
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Remark 2.5. The conclusion and the proof of Lemma 2.2 are still valid if one only
assumes L>(0,T; L9) N LEC.(0,T; WPe). Alternatively, under the assumption (2.19) of
Lemma 2.2, one can conclude the proof of Lemma 2.2 after (2.20) as follows. Denote
by vy the solution of (1.1) given by Lemma 2.1. For each fixed ¢ € (0,7}), upon letting
7 — 0, we get u(7 +t) — u(t) in L? (by continuity of u) and v, (t) — vo(¢) in L? (by
continuous dependence in X (T') — see Remark 2.3). Therefore u(t) = vo(t) on (0,77).

Before completing the proof of Theorem 2.1, it will be useful to obtain the higher
regularity and smoothing properties of the solution (Proposition 2.3).

Proof of Proposition 2.3 for ug € LY, ¢ > q.. The proofis based on similar arguments
in [ShTW2].
Let us first note that (1.1) implies that

t
(2.21) u(t) = e 2u(r) + a/ =32\ Vu(s)Pds, 0<7<t<T.
Fix m and r with p < m < r < oc. Suppose we know that, for some L > 0,
(2.22) max [sup ¢G5 |u(t) |, sup ¢+ G| Vu(t) ] < L.
(0,7 (0,7

Using (2.21) with 7 = ¢/2, we see that

t
Ju(®)lr < IIBEAU(t/2)||r+C/t (t =)= T |V u(s) [l yp ds

< Ot~ Ju(t/2)|m + o/ (t —s)" G2 | Vu(s)||2, ds

t
2

1
g / (1= )73 e P (S Gmm)ts) g
and

t
IVu®)llr < llezVu(t/2)]l, + Cﬂ (t=5)72 72 [ Vu(s) Pl nsp ds

t
< O ¥ G D Tu(t/2) | + c/ (t— 5" ¥ EHE|Vu(s)|2, ds
N /1 1 1 t N P 1 1 N /1 1 1
<CLt 2G93 4 CLP/ (t—s) 2=z P(E(G=m)+32) g

— CLt—%(%—%)—% + CLpt—%(%—%)—%+1—p(a+5)

1
« [l0- g oG g,

2
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The finiteness of the integrals is guaranteed if 2 — % < % (The power of s in the
integrand is of no importance for convergence since the interval of integration stays away
from 0. Also, ¢ > q. implies that 1 — p(a + 1) > 0.) If this condition is met, then we
may conclude that

|2

max [supt® @~ |u(t)]|,, sup ¢* T FTT | Vu(t)]],]
(2.23) (0,7} (0,T]
< L'(L,p,q)T'7*2) = L''(L,p,q,T).

Note that one can choose r > m such that £ — & < 1 if and only if m > N(p — 1).
One may then prove (2.5) and (2.6) in Proposition 2.3 for all pg < r < oo by an iterative
procedure. Indeed, start with r = m = pgq, for which (2.22) is a consequence of the
contraction mapping argument used in Lemma 2.1 (i) to prove existence. Then use the
calculations above to prove (2.22) for larger and larger values of . One can easily check
that r = oo is reached in a finite number of iterations.

Next, the properties (2.5) and (2.6) for ¢ < r < pq follow from (2.15), (2.18) and
the fact that ug € L? (note that ¢ > ¢g. and ¢ < r < pq imply that (2.17) is satisfied with
m=r).

The proof of Proposition 2.3 for ug € L4, g > q. is thus complete. 2

Completion of proof of Theorem 2.1 for q > q.. The local existence and uniqueness
part follows from Lemmas 2.1 and 2.2. Moreover, from Proposition 2.3, one easily deduces
that u € C((0, Trax); WHT) for ¢ < r < oco. Tt only remains to show that u is classical and
global. By standard arguments using interior parabolic regularity theory (see, e.g., [Lie,
Theorem 7.13]), along with u € C((0, Tynax); W), one easily obtains that u € C*!(Qr)
and u € C((0,7); C2), so that that u is a classical solution of (VHJ) on RN x (0, Tinax)-
It then follows from [AB, Theorem A and estimate (2.14)] that u satisfies

(2.24) o op )Hu(t)Hoo + IVu®)loo < lluto)lloc + [[Vulto)lloo <00, 0 <o < Timax-
tOmiax

But (1.1) then implies that
t

(2.25) ulto + 1) = e u(ty) + / =2 b5 ) Vulto + 5)| ds,
0

where b is bounded on RY x (tg, Trax). From (2.25), one easily deduces that ||Vu(t)]|,,
and then ||u(t)||,, remain bounded on (ty,T") for all finite 7" < Tax. It follows from
the contraction mapping argument of Lemma 2.1 (i) that u can be extended to a global
solution of (1.1), with u € C([0,00); LY)NC((0,00); WP2) and so u is a classical solution
of (VHJ) in RY x (0,00). The proof of Theorem 2.1 in the case q¢ > g, is thus complete.
B

We turn to well-posedness in L9, where ¢ = g. > 1. Our proofs are very closely
modeled on [SnTW1, SnTW2] for existence, uniqueness and regularity, and on [BC] for
extending the uniqueness class.
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Proof of Theorem 2.1 for q = q.. Let us first remark that we can no longer work
in the space X (T') that we used in the case ¢ > ¢.. Indeed taking ¢ = g. would lead to
p(a+ 1/2) = 1 and the integrals involved in the proof of Lemma 2.1 would be infinite.
Instead of this, we fix r such that

(2.26) 1<l<g<r
P

Such an r is certainly not unique, and what follows is valid for any choice of r, which we
for the moment consider as fixed. For 0 < T < oo, let Y =Y (T) be the Banach space of
continuous curves u : (0,7] — W17 such that

1
lully = max [sup ¢ ||u(t)|, sup 72| Vu(t)],] < oo,
T

7T 07

where N1 o1
=50z -7)
qc T
We denote by Y (T) the closed ball of Y (T') with radius K.

As in the supercritical case ¢ > ¢., the first step (Lemma 2.3) is to use a contraction
mapping argument to obtain existence and uniqueness of a local solution in a more
restricted class than (2.3), namely, u € C([0,T]; L?) N Yk (T) for suitable K, T > 0. It
will sometimes be possible to carry out the contraction mapping argument all at once
for all £ > 0. Thus, if T' = oo, we interpret the interval (0,7] as (0,00). In a second step
(Lemma 2.4), we will then show that uniqueness actually holds in the larger class (2.2).

Lemma 2.3. Assume q = q. > 1 and let uy € L?. For all T > 0, define

(2.27) My(ug, T) = max [sup t'8||etAu0||r, sup t5+%||VetAu0||,n] < Cl|uol| g, -
(0,T) (0,T)
(i) We have
T—0

(ii) There exists Cy = Cy(p,q,7,a) > 0, such that for all K, T > 0 satisfying
(229) K > M(](’LL(],T) + C(]Kp,

there exists a unique function u € Yx(T) which is a (pointwise mild) solution of
(1.1) on (0,T). Moreover u € C([0,T]; L?). (Note that K, T satisfying (2.29) exist
in view of (i).)

(iii) Let K,T > 0 satisfy (2.29). Then, for all T' > 0, there is at most one solution of
(1.1) in the class C((0,T'); LA W1T) N Yk (T).
It follows from Lemma 2.3 that there exists a maximal existence time Tiyax € (0, 0]

and a unique maximal solution u of (1.1) in the class

C ([0, Trmax); LY) N C((0, Tmax); W) N Y (T),
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where K, T satisfy (2.29) (u does not depend on the choice of K, T'). This solution will
be referred to as the solution given by Lemma 2.3.

Proof of Lemma 2.3. (i) The family of operators t?e*® and t#+1/2Vet®, t > 0, are
uniformly bounded from L? into L". Moreover, (2.28) is true for all ug in the dense
subset W' N L7 of L9. Tt follows that (2.28) holds for all ug € LY.

(ii) If u € Yg(T), we have, for all ¢t € [0,T],

_N(p-1) _N(p-1)

1Gu(®)]l, < C/U (= 8)" 7 [[[Vuls) Pl d8=0/0 (t—s5)" 7 [[Vu(s)[[7 ds

_N(p—-1)

t
SCK”/(t—s) 7 s P(B+3) g
0

_N(p-1)

1
:CKpt_ﬁ/ (1—-s)" "2 s7PB+3) g = CKP1 P,
0

and that

_N-1)

t
IVGu(®), < C / (t — 5) "5 4 | Tu(s) P, ds

t N(p—1 1
=c/ (t— 5)" 24 | Vu(s) | ds
0

t
SCKI’/ (t—s)_%r_l)_%s_pw"'%)ds
0

In particular, it follows that
(2.30) [Gully < CoK?,

where Cy = Cy(p,r,a) > 0 (note that Cy is independent of T'). The relation (2.26)
guarantees that all the integrals above are convergent.

Moreover, choosing K € (0’00—1/(;0—1))’ (2.29) is then satisfied for T > 0 small
enough in view of (2.29). It follows that F maps Y (T) into itself.

Now using (2.14), we obtain for all ¢t € [0,T),

N(p—1)

[ Fu(t) = Fo@)l» < C/O (=)= [Vu(s)[” = [Vo(s)[Pllr/p ds

_N(p—-1)

t
< CKP! / (t—s)" 2 s~ IFDE=D|Tu(s) - Vo(s)||, ds
0

_NO»-1)

t
goKp—lnu—vny/ (- &)~ MED -G+ g
0

< CKp_lt_BHu — |y,
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and similarly
(2.31) |V Fu(t) — VFu(t)|, < CKP~HA=12|ju — o|y.

Therefore,
| Fu — Folly < CoKP~Yu — vy

(with Cy = Cy(p,r, a) perhaps replaced by a slightly larger value than in (2.30)). As-
suming (2.29), it follows that F is indeed a strict contraction on Xk, and thus has a
unique fixed point u. This fixed point is a (pointwise mild) solution of (1.1).

Finally, if m > r/p, we can modify the calculation leading to (2.30) as follows.
(Again, this was not needed for the contraction argument, but will be useful to obtain
additional properties of the solution, in particular Proposition 2.3.)

N/ P 1

t t
1Gu(®) | < 0/0 (t — 5) ¥ E=)||Vu(s) P, ds = 0/0 (t— 5)~F G| Vu(s) |2 ds

M
]

N (P

t
< CK”/ (t—s)~ 2 Gm) g PB+3) gg
0

1

1
:CKpt_%(%_ﬁ / (1_8)—% ?_%)S_p(ﬁ'i'%) dS_
0
Thus, if
N
then Gu : (0,T] — L™ is continuous and

N(l 1

(2.32) t2 G || Gu(t)]|m < CKP.

In particular, lim;_¢ [|Gu(t)||,m =0if r/p < m < q..
Moreover,

t
_N¢(p_1y_1
IVGu(®)|lm < C / (t— 5) FE 25| Tu(s)P|l,p ds

t
=0/ (t— 5)" ¥R~ Vu(s) |7 ds
0
t

= CKPt~ 7 amw) ™ / (1— 5)~FE-F)-F-p+1) g
0

Thus, if

then VGu : (0,T] — L™ is continuous and

(2.33) ¥ G wH || VGu(t) ||l < CKP.
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In particular, lim; ¢ ||VGu(t)||m =0if r/p<m < N(p—1).
Among the various additional properties of the fixed point u, we note right away, as
a consequence of (2.32), that

u(t) — etPug € C([0,T]; L™),

if r/p < m < q.. To prove continuity in L%, note that as T'— 0, in view of (2.28), one
may choose K in (2.29) as small as we wish. Thus, again by (2.32), sup(y 1y [[Gu(?)[|q. —
0, as T'— 0. This proves u € C([0,T]; L4°).

(iii) Let u and v be two solutions of (1.1) in Y (T) N C((0,T']; LY N W) for some
T’ > 0. By part (ii), they coincide on [0, T]. Letting

Ty = sup{t € (0,T']; w = v on [0,#]} € (0,T"],

then necessarily 71 = T". Indeed, otherwise, since u(71) = v(T1) € L? and since u(T; +.)
and u(Ty +.) € C([0,T" — T1]; W) C Yy (T) for some K, T > 0 satisfying

K > My(u(Ty), T) + CoKP,

we would deduce from part (ii) that u = v on [0,T; + 7). 7

Remark 2.6. (a) A straightforward modification of the above contraction mapping
argument can be used to show that if ug, vg € L% both satisfy (2.29) for the same K,
T > 0, and if the corresponding solutions of (1.1) are given by u, v € Yi(T'), then

max [sup 7 u(t) = o(t)] , sup 7+ 2V (u(t) = v(£))]l] < Calluo — v9)ll
(0.7] (0.7]

where Cy = Cy(p,r, N,a) > 0. Further calculations show that

sup [[u(t) = o(t)lq, < Calluo = vollq
(0.T7]

(see Step 1 in the proof of Theorem 2.5 for details).

(b) If ||ugllq, is sufficiently small, then, in view of (2.27), one can choose T' = ¢ in
Lemma 2.3 and in Remark (a) above.

(c) Denote by Y the space corresponding to another value 7 satisfying (2.26). Then
the solution constructed in Lemma 2.3 (for the value of r that we have fixed) also belongs
to Y g+ (T') for some K', T' > 0 satisfying the analogue of (2.29), and it is the unique
solution of (1.1) in that class. This follows from the observation that the contraction
argument can be carried out in the intersection Y (T) NY g/ (T").

(d) The existence and uniqueness result of Lemma 2.3 (ii) remains valid for more
general initial data, namely for all ug € S’ such that My(ug,T) is sufficiently small for
some T > 0 (except, of course, for the continuity of u in L% at t = 0).

Next, we turn to the stronger uniqueness results, as in the subcritical case, modeled
after the work of [B2, Br, BC].
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Lemma 2.4. Assume q = q. > 1 and let ug € L. Letu € C([0,T]; LY)NC((0,T); W1T)
be a pointwise mild solution of (1.1) on (0,T'). Then u coincides with the solution given
by Lemma 2.3.

Following [B2, BC], in view of the proof of Lemma 2.4, we prepare the following
Lemma.

Lemma 2.5. Let 1 < ¢ < co. Let K be a compact subset of LY and define

5(tK) = sup Mo(,1), &> 0,
peEK

where M, is defined in Lemma 2.3. Then
5(t;K) =0, ast— 0.

Proof of Lemma 2.5. TFirst we note that the families of operators, t?e*® and
tB+3VetA | for + > 0, are uniformly bounded from L% into L". Moreover, they con-
verge pointwise to 0 as ¢ — 0 in view of (2.28). Thus, they converge uniformly to 0 on
any compact subset of L?. The conclusion follows. 2

Proof of Lemma 2.4. Since the image IC of [0,7/2] under the continuous function u
is compact in L%, Lemma 2.5 implies that

I(t; )= sup Mo(u(r),T1) -0, asT; — 0.
TE€[0,T/2]

Therefore there exist K > 0 and Ty € (0,7/2) such that
(2.34) K > My(u(1),Th) + CoKP, 0<T1<T/2.

It follows from Lemma 2.3 (ii) that for every 7 € (0,7/2), there is a unique solution
Ur € YK(Tl) of

t
v (1) = ePu(r) + a/ e=I2 |V, (s)Pds, 0<t<T.
0

Moreover, v, € C([0,T1];L?). Let u,(t) = u(r +t) for t € [0,Ty]. Since u, €

C([0,Ty]; WhT), it follows that |[ur[ly ) — 0 ast — 0. Therefore, there exists T € (0, T]

such that u; € Y (T t4.). Moreover, since T < Tj, (2.34) implies that
KZM()(U(T),TT)—FCOKP, O<T<T/2

and v, € Y (T,). Since u,(0) = v,(0) = u(r) € L? and u,, v, € C([0,T1]; W™ N L9),
we may apply Lemma 2.3 (iii) to deduce that u, = v, on [0,T] that is,

u(t+t)=v(t), 0<t<Ty, 0<7<T/2



22 BEN-ARTZI, SOUPLET AND WEISSLER
Using the fact that v, € Y (T1), we see that, for all 7 € (0,7/2),

max [ sup ¢%[|u(r + t)[l,, sup t°*F|Vu(r +1),] < K.
(OyTl) (OaTl)

Letting 7 — 0, it follows that u € Yx (T1). Applying Lemma 2.3 (iii) again, one concludes
that » and v coincide on [0, 7. |

As in the supercritical case, before completing the proof of Theorem 2.1, we establish
the higher regularity and smoothing properties of the solution (Proposition 2.3).

Proof of Proposition 2.8 for ug € L%, ¢ = q.. Instantaneous smoothing of solutions
into W™ for m > r is proved exactly as in the case ¢ > ¢.. Start with m = r, the
value used in the contraction mapping argument which verifies (2.26), and then follow
the same iterative procedure used in the case ¢ > ¢.. The only difference is that since
here ¢ = q., the factor T*=P(®+%) does not appear in formula (2.23) i.e., L" does not
depend on T. As a result, the iterative step is independent of T'. Of course, as in the
case q > ¢, if ug € L9, then

max [sup t%(i_%)ﬂu(t)ﬂm, sup t%(t_#)"'%HVu(t)Hm] < 0.
(0,7 (0,7

for g < m < r by the properties (2.32) and (2.33) of Gu(¢). Finally, if |lugl,, is
sufficiently small, then the previous inequality is valid with T = oo by Remark 2.6 (b).
Thus (2.5) and (2.6) are valid with 7' = oc. |

Completion of proof of Theorem 2.1 for ¢ = q.. The solution given by Lemma 2.3 was
constructed for a particular value of r, say rg, fixed in (2.26). However, the uniqueness
result of Lemma 2.4 holds not only in the class C([0,T]; L¢) N C((0,T); Wt), but
actually in C([0,T]; LY) N C((0,T); W) for any r such that g./p < r < q.. Indeed, in
view of Remark 2.6 (c), the proof of Lemma 2.4 works for all such . The local existence
and uniqueness statements of Theorem 2.1 in the case ¢ = g. are thus proved.

Arguing exactly as in the case ¢ > ¢., we obtain that v is classical on (0, Tax) and
satisfies (2.24) and sup, 1 [lu(?)|lg + [[Vu(t)][q < oc for all finite 7" < Tiax. Therefore,
we have sup, 7 [[u(t)|lwir < oo for all finite T < Tipax and ¢ < 7 < oo. It follows
from the contraction mapping argument of Lemma 2.1 (i) that » can be extended to a
global solution of (1.1), with u € C([0,00); L) N C((0,00); W), ¢ < r < oo, and so u
is a classical solution of (VHJ) in RN x (0,00). The proof of Theorem 2.1 in the case
q = q. is complete. m

Remark 2.7. Note that one can also use the space Yi to prove local existence and
uniqueness of solutions to (1.1) in the case ¢ > ¢.. Of course, in that case, one has to
replace ¢. by ¢ in (2.26) and in the definition of 8. This gives slightly better uniqueness
results.

Proof of Theorem 2.2. Tt follows along the lines of proof of Theorem 2.2 for ¢ =
1 > ¢.. In particular one works with the same space X and uses (2.11) and (2.13) with
|uol|am instead of ||lug|l, and one gets u(t) — et®ug € C([0,T); L) instead of (2.16).
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Finally, we turn to well-posedness in W4, with ¢ > N(p—1) or ¢ = N(p — 1) > 1.

Proof of Proposition 2.4 for ¢ > N(p — 1). Let Z = Z(T) be the Banach space of
continuous curves u : (0, 7] — W% such that

lullz = max [sup t°[[u(t)[pq, Sup I Vu(t)[lpg] < oo,

)

where

N(l 1)
a=—(—-———|].
2\q pq

Note the difference between Z and X: both terms in the norms of Z have the same power
of t. We denote by Zx = Zk(T) the closed ball of Z with radius K. If u € Zx(T), it
follows that

t t
1Gu(t) g < C / (t— &) IVu()P]l, ds = C / (t— &) Vu(D)|, ds
t
< CKp/ (t—s) %s™P%ds
0
1
= CKptl—@“)a/ (1—5)~@s7P* ds < CKPt=oT pe,
0
and that
t 1
IVGu(t) g < C / (t = 5)== V()P ds

< CKP? /t(t — §)TOTIgTPY gy = CKP (e /1(1 —§) 77357 g
< CKpt—OaT%—pﬂ. 0
In particular, it follows that
IGullz < CKP max|[Tz P, T'=P0]
(where C is independent of T', and in fact depends only on p and ¢). The fact that
q > N(p—1) guarantees that all the integrals above are convergent and that % —pa > 0.

Turning now to the contraction mapping argument, since vy € W4, we have

max [ sup ]| g pg, SUp to‘||VetAu0||pq] < M.
(0,77 (0,77

Choose K > M and T > 0 so that
M + CK? max|[T>~P* T'77%] < K.

It follows that F maps Zx into itself. As in Lemma 2.1, an easy modification of the
above calculations shows that, with C perhaps replaced by a slightly larger value, F is
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indeed a strict contraction on Zx, and thus has a unique fixed point u. This fixed point
is a solution of (1.1). Moreover, since ap < 1/2, u € Z implies |VulP € L'(0,T;L9)
and u € C([0,T); Wh9).

The rest of the proof, in particular the uniqueness statement (ii) and the regularity
(iv), is very similar to the corresponding proof in Theorem 2.1 and Proposition 2.3 and
is thus omitted.

Proof of Proposition 2.4 for ¢ = N(p — 1) > 1. Fix r such that
(2.26) 1<Z<Np-1)<r
p

For 0 < T < oo, let W = W(T) be the Banach space of continuous curves « : (0,7] —
WL such that

lullw = max [sup *[[u(t) ], sup 7 [|blau(t)||,] < oc,
(0,77

)

where

We denote by Wi (T') the closed ball of W(T') with radius K.
If u € Wi (T), we have, for all t € [0, T,

N( N(

t _N(p-1) t _N(p—-1)
IIQU(t)IIrSC/O(t—S) o IIVU(S)”Ilr/pdSZC/O(t—S) [ Vu(s) || ds

N(p—1)

t
SCK”/(t—s)_ o s Phds
0

_N(p—-1)

1
= CK”t%‘ﬁf (1-25) s g PB g = CKpt%—ﬁ,
0

and that

N(p—1)

t
nvguamrsc{A<t—sr'2r | u(s)P[lp ds

t Np-1) 1
=0 [(t- ) vuts) | ds
0
t

SCKP/ (t—s)" "2 25 PPgs

0

1 —
:CKpt_ﬁ/(l—s)_ 5 25 PPds = CKPLP.
0

In particular, it follows that

|Gu|lw < CoKP max(1,T*/?),
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where Cy = Cy(p,r,a) > 0 (note that Cp is independent of T'). The relation (2.26)
guarantees that all the integrals above are convergent.
Let

M (ug, T) = max [sup t5||etAu0||T, sup t’3||VetAu0||r].
(0,T) (0,T)

One easily shows that limz_, My (ug, T) = 0 for all all ug € W14, Therefore, choosing
K € (0,C;"7Y) we have K > M;(ug,T) + CoKP for 0 < T < 1 sufficiently small. It
follows that F maps Wik (T) into itself. As in Lemma 2.3, an easy modification of the
above calculations shows that, with Cj perhaps replaced by a slightly larger value, F is
indeed a strict contraction on Wy, and thus has a unique fixed point u. This fixed point
is a solution of (1.1). The rest of the proof, in particular the uniqueness statement (iii)
and the regularity (iv), is very similar to the corresponding proof in Theorem 2.1 and
Proposition 2.3 and is thus omitted.

Proof of Theorem 2.5. We follow the ideas of the proof of Theorem 3.1 (i) in [S1]
(see also [Kal, p. 480])).

Denote Ups = {ug € L; |lugllq, < M}. Forallt > 0, define the map Wy : ug — u(t)
from LY into itself.

Step 1. We prove that the W; are Lipschitz continuous on Uy, for some small M > 0,
uniformly for all ¢ € [0,00). Let r and 8 be as in the proof of Theorem 2.1 (¢ = q.).
Let ug, vo € Uy and u(t) = Wiug, v(t) = Wivg. By Remarks 2.6 (a) and (b), if M is
sufficiently small, then

(2.35) s, 9% [ Vu(t)|lr < Cluolly, sup, 72| Vo (b)) < Clluoll,
and
(2.36) sup t7+7(|Vu(t) = Vo(t)]r < Clluo — vollq-

(0,00)

Now, from (2.35), (2.36) and (2 — %) + (B+ 3)p =1, we deduce that

r

lu(t) — v(®)l,
t
< lluo — woll, + a|/0 (t— 5)" 2D |VulP — |Vol?|,, ds

t
_N(p_1
snuO—vonqmm/(t—s) FE-1)
0
(IVu(s) 2 + Vo)) [ Vauls) — Vo(s)]l, ds.
t
_N¢(p_1 _ 1
S||U0—vo||q+0(||uo||3_1+||7)0||3_1)||U0—Uo||q/(t—S) ¥ (23 g6+ Dr g
0

1
= [luo — vollg + C (Jluoll§™ + llooll§ ™) 1uo — vollq/ (1—7) G- Btr gy
0

< (14+CMP™ Y |lug — vol|q-
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The claim is proved.

Step 2. We claim that ||u(t)||, decays to 0 for ug € Uy and small M > 0 provided
ug also belongs to L™ for m € (r/p, q).

Let m € (r/p,q), 0 = 6(m) = %(% - %) and assume ug € Uy N L™. Then, by
(2.35),

N(p—1)

t
||Vu(t)||rSCt_9_5||u0||m+|a/0 (t—s)" 2 72 Vu(s)[|7 ds

N(p—-1)

t
s0t—9-%||uO||m+o/<t—s)— BNt
0

[ug|[P~Ls =P~ DB+5) g=0—3 (?ulf; 45| Vu(r)]|,) ds
0,t

Observmg that (pr D1 (gr L +1—-(p-1)(B+13)=0and that —(p—1)(B +

1)—-0-1>—-1forme (r/p, q), it follows that

t9+%IIVU(t)||,~§C||u0||m OMP—L— " +5-(0-1)(B+3)

1
(?51579+%Ilvu(7)llr)/[] (1—7)" 3= DB+ =0-3 4

= Clug||m + CMP= (sup 79+ 3 | Vu(7)|,),
(

0,
hence

(2.37) sup 973 Vu(t)||, < Cllugllm
(0,00)

(for M possibly smaller, independent of ||ug||). Next using (2.35) (2.37), we compute

lu@®lly < Ot =9 |lug|| + |a / (t—s)" 2 | Vull? ds
<cr Y ||uo||m+o/ (t = )7 T Juo |25~ P=DE+D flug s~ % ds
0
so that

t2 G =D u(t) g < Clluollm + Clluollt™ g |lm-
The claim follows.

Step 3. Since the maps W, : Uy — L? are Lipschitz contiuous, uniformly for ¢ > 0,
and since Wiug decays to 0 in LY for each ug in the dense subset Uy, N L™, it follows
that u(t) = Wyug decays to 0 in LY for all ug € Ups. The fact that u(t) decays also in
L* for ¢ < k < 0o was proved in Proposition 2.3. The proof is complete. m
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3. Nonexistence and nonuniqueness results for a > 0, ug > 0
3.1. Nonexistence in L? for p > 2

The following result shows that local existence fails in all LY spaces (¢ < oo) when
p > 2 and a > 0. We have been able to discard only the existence of solutions which
are classical for ¢ > 0. However we note that the solutions constructed in Section A for
p < 2 and q > ¢, are indeed classical for ¢ > 0.

Proposition 3.1. Let p > 2, a > 0 and ug € Ll . Assume that there exist T > 0 and

loc*

a function u € C*2(Qr), Qr = RN x (0,T), which is a solution of (VHJ); in Qr, such
that limy_,o u(t) = ug in L,.. Then exp(aug) € Li,..

Proof. Assume that such T and u exist. Then u satisfies
ug — Au > a(|Vul®> = 1) in Qr.
Letting v(z,t) = exp(a(u(z,t) + 1)), we see that
ve—Av >0 in Q7.

Fix R > 0 and ¢ty € (0,7), and denote by Gry1 = Gry1(z,y,t) the heat kernel in
Br+1(0) with homogeneous Dirichlet conditions. Since v > 0, for all £ € (0,%9/2), we
have

o(to,0) / G (0,y,t0 — €) oy, ) dy > Cl(to, R) / o(y.) dy,
ly|[<R+1 ly|<R

for some C(tg, R) > 0. But the assumptions imply the existence of a sequence ¢, | 0
such that u(ey,) converges to ug a.e. Passing to the limit in the above inequality with
€ = g, and using Fatou’s Lemma, we obtain

/ explauo(y)) dy < oo,
|z|<R

and the conclusion follows. |

Remark 3.1. When p = 2, existence is true for ug € L°°, as can be seen easily by
using the transformation v = e* (a = 1). Also, existence (of a mild solution) is true for
ug € WHY, N > 2, by Proposition 2.4. (Recall that W'Y ¢ L>® (N > 2) but that

ug € WHY implies el“ol € LL .) Interestingly, for p > 2, existence is true for uy € O,

(see [GGK]) while this seems to be an open problem for ug € L.

3.2. Nonexistence in subcritical L? spaces for p < 2
Theorem 3.2. Assume a > 0 and p < 2.
(i) Let 1 = ¢ < q. and N > 2 and set

ug(z) = 2|~V 1yp<ny
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with § > 0 sufficiently small (note that ug € L'). Then (1.1) does not admit any
local pointwise mild solution, such that u(t) € L' on a set of positive measure of t.

(ii) Let 1 < ¢ < q. and set
(3.1) ug(z) = |x‘_(N/q)+6 (1<}

with § > 0 sufficiently small (note that ug € LY). Assume in addition that N > pq.
Then (1.1) does not admit any local mild L? solution.

Also, for initial data in Sobolev spaces, we have the following nonexistence results.
Although we had to place some additional restrictions on the solution in Proposition 3.3,
these results indicate that the existence part of Proposition wo is in some sense sharp
(cf. property (2.8) in Proposition 2.4).

Proposition 3.3. Assumea >0and1<¢q< N(p—1). Let
uo(w) = |z|' =D (2 —|a])

with § > 0 sufficiently small (note that ug € W2). If p > /2, assume in addition that
N > (p+1)q. Then (1.1) does not admit any pointwise mild solution satisfying (2.8).

Proposition 3.4. Assumea=1,p>2and1<q< N (=N(p—1) whenp =2). Let

ug(z) = —N(log|z|) 1fjz1<1y

(note that ug € W14). Then for any T > 0, there exists no solution of (VHJ), classical
on RY x (0,T), such that lim;_,ou(t) = ug in L] _.

Remarks 3.2. (a) The nonexistence result of Theorem 3.2 (ii) remains true for
pointwise mild solutions satisfying the additional condition

(3.2) Vul|P € LY0,T;L"), q—e<r<gq, forsomece> 0.

We note that in the critical case ¢ = ¢., the pointwise mild solution constructed in
Theorem 2.1 does satisfy (3.2) (see (2.6)). The same remark holds for Proposition 3.3 in
the critical case ¢ = N(p — 1), with ¢* instead of ¢ in formula (3.2).

(b) The restrictions N > pq (resp. N > (p+ 1)q) in Theorem 3.2 (resp. in Propo-
sition 3.3) seem technical. Note that they are automatically satisfied when ¢ < ¢, (resp.
g< N(p-1))ifp < V2.

In of the proofs of Theorem 3.2 and Proposition 3.3, we shall need the following two
lemmata.

Lemma 3.1. Let k € R, £ > 0, let ug(z) = |z|~**° 1(;<1} and define U(t) := e'*uy.
Then for § > 0 sufficiently small, it holds

/ U(z,t)dx > C.t
{lzl<V}

N

—k
7 te
b
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for t > 0 small.
Proof. Let a =k — 6. For |z| < v/t and ¢ > 0 small, we have

U(z,t) > / (4t)~N/2e=lo=ul* /4t )y ~a gy, > Cp=al2
{Vt/2<|yl<Vt}

Therefore
/ Uz, t)dz > CtWN=)/2 for ¢t > 0 small,
{lzl<VE}

which implies the Lemma. 7

Lemma 3.2. Let 1 < p, ¢ < o0, pg < N, T > 0, and assume that u : (0,T) — L2(Q)
satisfies
|Vu? € L*(0,T; LY).

Then there exists a sequence t; | 0 such that

1

u(z,t;) dx < th

p+3(1-55)

/{$|<\/5}
Proof. ;From the assumption, there exists ¢; | 0 such that
IVu(ty)b, = ||IVult) |, <
Therefore, by Sobolev’s inequality, we have
-1
la(t)llpa) < CIVult)llp < Ct; 7,
with (pq)* = Npq/(N — pq). By Hélder’s inequality, we deduce that

(1

s-p+ 3 (1-55)

% _#) 2 pq
u(a,ty)de < Ct; P77 0lu(ts) |l (pgy- < Ct;

/{$|<\/§}

B

Proof of Theorem 3.2. Assume that (1.1) admits a local solution. First note that
in case (i), there exists T' > 0 such that ess liminf,_,7- < oo for some T > 0. It follows
from Proposition 1.1 that [VulP € L'(0,T; L') and that u is a mild L' solution. We are
thus reduced to proving the result in case (ii) (actually for 1 < ¢ < q.).

From Lemma 3.1, we see that, for ¢ > 0 small,

(3:3) / u(z,t) dr > / eBug(x) dz > C. 2 (=g)+e,
{lz|<Vt} {|z| <V}
On the other hand, by Lemma 3.2, there exists a sequence ¢; | 0 such that

1
1
J

1 N 1
pta(l—p5)—¢

(3.4) u(z,t;)de < Cot

/{x|<\/t7}
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By comparing (3.3) and (3.4) and letting j — oo and then ¢ — 0, we deduce that

N 1 1 1 N 1
Ta-Y23-2e30-1)
2 q 2 p 2 Pq
hence
N(p-1
Ne-1) o,
q
The conclusion follows. Bl

Proof of Proposition 3.3. Let ug(z) = |z|'~*/N)+0 1{z/<1)- (From Lemma 3.1, we
see that, for ¢ > 0 small,

/ u(x,t) de > / etPug(z) dz
{lz[<Vt} {lz|<Vt}

(3.5)
> / etAﬂE(a:) dz > C.t2 1-g)tate,
{lz|<Vt}

On the other hand, the current assumptions imply ¢ < N and p¢* = Ngp/(N —q) < N
(this follows from g < N(p — 1) if p < v/2). Assume (2.8), that is,

VulP € LY(0,T;L7).

By Lemma 3.2, there exists a sequence ¢; | 0 such that

30 /{|az<\/ﬁ}

By comparing (3.5) and (3.6) and letting j — oo and then ¢ — 0, we deduce that

1 N 1 1 1 N 1
S+ (1-) 24 (1- )
2 2 q 2 p 2 Pq*

hence ¢ > N(p — 1). The conclusion follows. |

Proof of Theorem 3.4. This is a direct consequence of Proposition 3.1 and the fact
that for all [#| < 1, e*0) = i ¢ L' (B1(0)). o

3.3. Nonuniqueness in subcritical L9 spaces for p < 2

Theorem 3.5. Let a > 0, N > 1. Assume %—ﬁ < p < 2, so that q. > 1. There exists a

positive self-similar solution u of (3.7) on RN x (0, 0c), of the form

2—p

u(z,t) =t~ *U xt_l/Q, k= ——,
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where U € CZ, with the following properties:
u € C((0,00); WHT), 1< q< o0,
limu(t) =0 in L7 for 1 < g < g..
t—0
In particular, the initial value problem for (3.7) in L?, 1 < q < q., with initial data 0 has

at least two solutions, the 0 solution and u.

This theorem will be proved in the subsection 3.5, together with results valid for
different nonlinear terms. In particular, it will be proved that the profile U an its deriva-
tive U’ both have exponential deccay (see Proposition 3.14). We have the following
consequence concerning nonuniqueness in W,

Corollary 3.6. Let a > 0, N > 1. Assume % < p < 2,s0 that N(p —1) > 1. Then
the initial value problem for (3.7) in W14, 1 < q < N(p — 1), with initial data 0 has at
least two solutions in C([0, 0c); W19) N C((0,00); W), the 0 solution and the solution
u given by Theorem 3.5.

Remark 3.3. One easily checks that u is a mild L? solution of (VHJ) for ¢ < g.. In
particular we have |Vul|? € L'(0,T;L9) for all T > 0.

Remark 3.4. For ug > 0 with, say, ug € L' N Cg, it is easy to see that ||u(t)||:
is a nonincreasing (resp. nondecreasing) function if @ < 0 (resp. a > 0). Letting
I = limy o ||u(t)]]1, it was proved in [BK] (see also [AB, BL1, BGK, BLSS]) that
when a < 0,

(i) To=0if 1 <p <pg= (N +2)/(N+1);

(if) Ioo > 0 if p > pg.
In the case a > 0, the question whether I, is finite or not seems to be open. For the
self-similar solution constructed in Theorem 3.5 for py < p < 2, one has I, = cc.

3.4. Nonuniqueness for other equations

Let us consider the following equation:

(3.7) uy — Au = F(u, |Vu|), zeRY, t>0.

Theorem 3.7. Let N > 1, £ < p < 2. Let F : R x R = R, Iocally Lipschitz

continuous, satisfy the homogeneity condition
(3.8) F(\*7Pz \y) = WF(z,y), forall) z,y>0.
Assume that there exists a > 0 such that either

(i N=1 and Fz,y) > aly?

(14) N=1 and F(z,y)> a\y|r|$\% for some 1 <r <2(p—1)
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or

N
(i) N>2 p<—r and Flay) > aly] +|2/77).

Then there exists a positive self-similar solution u of (3.7) on RY x (0,00), of the form

_ _ 2—p
u(z,t) =t~ FU(|z[t7?), k= 2p—1)’

where U € CZ(R), with the following properties:

u € C((0,00); WH?), 1<g< oo,

limu(t) =0 in L7 for 1 < ¢ < ¢..

t—0
In particular, the initial value problem for (VHJ) in L, 1 < q < q., with initial data 0
has at least two solutions, the 0 solution and wu.

Corollary 3.8. Assume that either

(i) F(u,|Vul) = alul™ + b|Vu[75T  with N > 1, 32 <m < 25— 0, 5> 0
or

(15)  F(u,|Vu|) = alu|™|Vu|" withN=1,1<r<2,m>1,mr>1,a>0.

Then there exists a positive self-similar solution u of (3.7) as described in Theorem 3.7
(with k = —1= in case (i) and k = m in case (ii)). In particular, the initial value
problem for (VHJ) in L%, 1 < q < q., with initial data 0 has at least two solutions, the
0 solution and u.

Remark 3.5. A similar result was obtained in [T] for F' = |u|™ + b|Vu\772l—Tl under
different assumptions on b, m. We point out that the result of [T] does not apply to the
equation (VHJ). On the other hand, the result of Theorem 3.7 applies e.g. to sums of
nonlinearities like those in (i) or (ii) of Corollary 3.8.

3.5. Proof of nonuniqueness results: construction of forward selfsimilar
solutions

Since Eqn. (3.7) involves only the values of the function F'(z,y) for y > 0, we may
assume that F' is even with respect to y (i.e., consider the function F(z,|y|) instead of
F). Looking for a radial self-similar solution u(z,t) = t=*U(|z[t~/?) of (3.7), we are
then reduced to the following equation for the profile U:

39) {U"+(¥+3)U'+kU+F(U,U'):0, r>0

U'(0)=0, U(0)=a>0.

The basic idea, in the spirit of [HW, PTW, T] is to use a suitable shooting argument
to find @ > 0 such that the solution of (3.9) is positive, defined for all » > 0, and has
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sufficiently nice decay properties as r — oo to guarantee the belonging of u(.,t) to all L4
spaces. However, due to the different nature of the nonlinearity, many of the arguments
in [HW, PTW, T] do not apply and some new ideas are required (in particular for proving
nonemptyness of I_ below).

Throughout Section 3.5, we assume that & > 0, N > 1 (not necessarily an integer)
and that F : R?> — R is locally Lipschitz continuous. Eqn. (3.9) is equivalent to the
integral equation

(3.10) U'(r)rN—ler' /4 = — /OT(kU(s) + F(U(s),U'(5))sV e /*ds,  U(0) = o

It is well known that for all & > 0, there exists a unique maximal solution U = U(«;.)
of (3.9), defined on a maximal interval [0, Rpax(@)), with 0 < Rpax(@) < oo, and that
U € C?([0, Rpmax)). (In what follows, except when necessary, we will not emphasize the
dependence of U and Rp,,x upon a.)

3.5.1. Preliminary properties

Proposition 3.9. Assume that xF(z,0) > 0 for all z € R. Then we have the following
properties.
(i) For all « > 0, we have U > 0 and U’ < 0 for r > 0 small. If R < Ryax and U > 0
on [0, R), then U' < 0 on (0, R)].
(ii) For all € > 0, there exists az > 0 such that Rp,x = oo for all a € (0, ) and

\U(r)|+|U'(r)| < e on0,00).
(iii) If Rmax = oc and U > 0 on [0, 00), then

. _ . ! _
AU =B v =0

(iv) Assume
F(z,y) < C(z)(1+y?),

with C' bounded on bounded sets. If U > 0 on [0, Ryax), then Ry = 00.

Proof. (i) The first part is clear since U”(0) = —+(ka+ F(a,0)) < 0. Next assume
that U > 0 and U’ < 0 on (0,R) and U'(R) = 0. Then U(R) > 0 by local uniqueness
and U"(R) = —kU(R) — F(U(R),0) < 0: a contradiction.

(ii) Let g(z) = F(x,0) and G(x) = foxg(s) ds > 0. Define h(z,y) = W
for y # 0 (0 for y = 0), so that we may write F(U,U’') = g(U) + U'h(U,U"). Since F
is locally Lipschitz, / is bounded on bounded sets. Let M = sup, <1 |h(7,y)| < oo.
Defining

we have
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Fix € € (0,1). By continuous dependence, since G(0) = 0, there exists a. > 0 such that
for all « € (0,.), Rmax > 2M and Fy < 8 = %min(l,k) on [0,2M]. On the other
hand, for all r € [2M, Ruax), if Ey(r) < B, then in particular |U(r)| < 1 and |U'(r)| < 1,
hence Ey;(r) < (Jh(U,U")| — M)U'? < 0. Tt follows that Ey(r) < 8 for all 7 € [0, Ryax),
so that Rpax = oo and |U| + |U’| < € on [0, o).

(iii) By (i), we know that U’ < 0 on (0, 0o}, hence 3¢ € [0, 00) such that lim, _,~ U(r)
= /. Keeping the notation of (ii), for all » > 0, if |U'(r)| < 1, then Ey(r) < K =
% + G(a). Let K' = max(v2K,+/2K/k) and M' = SUP| ), |y< i [7(2,y)]. Then, for
all r > 2M', Ey(r) < K implies |U|, [U'| < K’ hence Ey;(r) < 0. But since U has a
finite limit at oo, there must exist some r; > 2M"' such that |U’(r1)| < 1. It follows that
Ey(r) < K for all » > ry. Therefore (U,U’) is bounded on [0, 00).

Returning to Eqn. (3.9), we infer that

(311) |U/(’I“)|€T2/4 — |U/(1)‘61/4 +/ (kU-l— %U’ +F(U, U/))es2/4 ds
1

r !
< C(l-l—/ e’ /4ds) ~ ge" 1% as r — oo,
1 T
hence lim,_, o, U'(r) = 0.
Finally, to prove that £ = 0, we note that by (3.11), £ > 0 would imply |U’(r)| ~ (k¢+
F(£,0))Cr~=t as r — oo (where F(£,0) > 0 and C > 0), contradicting the boundedness
of U.

(iv) By (i), we have U’ < 0 hence U < a on (0, Rpax). Assume Ryax < 00. Using
Eqgn. (3.9) and the assumption on F, we obtain

(3.12) U')'=-U" < Ci(1+U?) < Co(1+ |U'])?, Emex <1 < Rppax.

Since U is bounded, U’ < 0 and Rpax < o0, necessarily lim,,p_. U'(r) = —oo. In-
tegrating (3.12) between r and Ry, it follows that 1 + |U’(r)| > C3(Rmax — )~} as
7 — Rmax, hence U(r) — —o0 as 1 — Rpax: a contradiction. 3

Let us now define the set

I, ={a>0; Rmax =00, U>0and U <0on (0,00)}.

3.5.2. Nonemptyness of I,
Proposition 3.10. Assume that 0 < k < N/2, zF(z,0) > 0 for all z € R, and

(3.13) F(z,y) = o(|z[ + |y]) as (z,y) = (0,0).

Then there exists a; > 0 such that (0, aq) C ;.

Proof. By Proposition 3.9 (ii), we know that Ry.x = oc for a sufficiently small. Let
ro > 0 be such that U > 0 and U’ < 0 on (0,7¢) (see Proposition 3.9 (i)). Since k < N/2,
we may fix v such that % <y < % and define

/

z(r) = —% >0 and ¢(r) = (z(r) —yr)rV 7L 0<r <.
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We compute

vz v, 1 n
7 - = Tl DU RU + F(U.UY)
F(U,U")

222_(N_1+%)Z+k+T

r

2'(r) =

and
¢'(r) =rN "1 + E=Lz) — NyrN-1
= rN_l(z2 —52+k—Nvy+ LUU’UI)).
Let § > 0 to be chosen later. By Proposition 3.9 (ii) and assumption (3.13), for a < ag(0)
sufficiently small, we have |F(U,U")| < 6(U + |U’|) on [0, 00), hence
¢'(r) <zp+rV k= Ny+ 6+ ((vy—3)r+6)z].
By imposing 0 < § < Nv — k, it follows in particular that

(3.14) ¢'(r) < z¢ for all 2= <7 <.

e

On the other hand, we have, for all r € (0,7¢),

¢'(r) < (z40)p+rV" k- Ny+6+ (y— 3)rz + dyr]
hence
(3.15) ' (r) < (z+6)¢ for all r < rg such that r < N”gi,f_k.

Now, if we choose § so small that Nvé_j_k > %_7, we deduce from (3.14) and (3.15) that
2

(3.16) vr e (0,79), ¢(r) <0= ¢'(r) <0.
Moreover, we observe that

. U (0) k F(a,0)
N _ _ - )
i r=2g(r) = ——— —v=5 ~ 7t —§a

Since F(a,0) = o(a) as a — 0, by taking « smaller if necessary, it follows that ¢(r) < 0

for r > 0 small, and (3.16) then implies that ¢ < 0 on (0,7), that is —% < «r. Upon
integration, this yields

(3.17) U(r) > ae™ 1% on [0,7).
By continuity, one immediately deduces that U can never vanish, and that (3.17) actually
holds on (0, 00). The Proposition follows. il

Remark 3.6. The previous proof shows that U(r) > ae—kr?/2N

sufficiently small.
3.5.3. Boundedness of I,

Proposition 3.11. Assume that N > 1, k > 0, and that F(x,y) = F(y) is of class C!
and satisfies

on [0,00) for «

F(y) > aly?

for some a > 0, p > 1. Then for all o sufficiently large, if Rpyax(a) = 0o, there exists
r > 0 such that U(r) = 0.

To prove Proposition 3.11, we will need the following two lemmas.
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Lemma 3.3. Assume that N > 1, k > 0, and that F(z,y) = F(y) is of class C' and

satisfies F'(0) > 0. If Ryax(@) = 0o, then U” < 0 on [0,rg), where ry = (kJX_I/IQ)l/Q.

Proof. We have NU"(0) = —ka — F(«,0), so that U"” < 0 and U’ < 0 for r > 0
small. Differentiating Eqn. (3.9) yields

(3.18) —U" = (=852 + 3+ U + (B2 + HU" + F/(UHU”.

r2 r

Assume that there is a first » > 0 such that U"”(r) = 0. Then U'(r) < 0 and U"’(r) > 0,
and (3.18) thus implies

(k + % — Noypri(r) <0

r2

hence, k + % — 1\;;1 > 0, that is r > rg. 2

Lemma 3.4. Under the hypotheses of Proposition 3.11, assume that Ry, («) = oo and
U >0 on [0,00). Then we have

\U'(ry)| > Coa for some ry € [ry, 1],

where r1 = min(1,rq) if N > 1,r; =1if N =1, and Cy = Cy(N, k,a) > 0.

Proof. By Proposition 3.9, we know that U’ < 0 on (0,00). We consider two cases.
e If U > a/2 on [0,1], it follows from Eqn. (3.10) that

—U'er2/4rN_1:/ (kU—I—F(U'))eSQ/‘lsN_lds
0

hence |U'(1)| > e"1/* 22 and we may take ro = 1.

e IfU(r) < a/2 for some r € [0, 1], then by the Mean Value Theorem, since U(0) = «,
there exists r' € [0, 1] such that |U’(r")] > «/2.
— If N = 1, since e” /4|U’(r)| is nondecreasing, then [U'(1)| > e=/4|U"(r1)| > Ca, and
we take ro = 1;
— If N > 1 and ' > r{, we may take ro = 7r’;
-~ If N >1andr’ <r <rg, then by Lemma 3.3, we have |U’| > «/2 on [r,r1], and we
may take ro = rq. _

Proof of Proposition 3.11. Fix a > 0 and assume that U > 0 on (0,00) (hence
U’ < 0). By Lemma 3.4, we have |U'(r2)| > Cpa. From Eqn. (3.9), we have

~U" > aU']P — (B2 + DU’ on (0,00)

r

hence
{U'rzwp—(%ﬂw' on [r1,2]

‘U’(T2)| Z Coa.

But since r; < 1, this would imply that |U’| blows up before r = 2 if « is sufficiently
large, which is impossible. The conclusion follows. 2
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Proposition 3.12. Assume N =1, k > 0 and
(3.19) F(z,y) > alz[™ |y’

for some a > 0, m > 0, p > 1 such that m +p > 1. Then, for all a sufficiently large, if
Rpax(a) = oo, there exists r > 0 such that U(r) = 0.

Proof. Throughout the proof, C' denotes various positive constants depending only
on m, p, a, k (and not on ). Fix a > 0 and assume that U > 0 on (0,0c) (hence U’ < 0
by Proposition 3.9 (i)). From Eqn. (3.10) and assumption (3.19), we have

(3.20) U’(r)|er2/42/ (KU + aU™| 0" P)es"/* ds.
0

We claim that there exists Ry = Rg(k) > 2 such that

(3.21) U(Ro) < %
Indeed, if U(R) > «/2 for some R > 2, then
)1 > Bt [erias > S0y crcm
0 r

Therefore, « > a — U(R) > f1R|U’| > C(k)alog R, so that 3Ry(k) > 2 such that
R < Ry(k). Since U’ < 0, we thus have either U(2) < «/2 or U(Rp) < «/2 and the claim
follows.

Writing U™|U'|P = C|(U+(m/P))"|P | we deduce from Eqn. (3.20), Holder’s inequality
and (3.21) that, for all r > Ry,

2 Ro
twma“zc/’<W“W%vm
0

Ry
(322) > C(/ ‘(U1+(m/p))l‘ dg)ﬁ
0
> C(a1+<m/p> _ (a/2)1+<m/p>)p,
Thus we have, for all r € [Ry, Ry + 1],
|U’(’I")‘ > e_(R°+1>2Cozm+p,

hence
Ro+1

o> U(Ry) = U(Ro +1) = / Ul > Camte,
Ry

Since m + p > 1, this cannot hold if « is sufficiently large. The Proposition follows. 71

Remark 3.7. Similar results can be derived for the multidimensional case of Eqn.
(3.9) when p > N, by using Sobolev type inequalities instead of (3.22). However for
N > 2, this implies p > 2 and therefore does not enable to construct self-similar solutions.
We do not know whether Proposition 3.12 holds for (some) 1 < p < 2 when N > 1.
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Proposition 3.13. Assume N > 1, k > 0 and

Co(lz[™ +lyl?) < F(z,y) < Co(l2]™ + |y[?),

N_1’
Rpax(a) = oo, there exists r > 0 such that u(r) = 0.

where 1 < p < X, 1<m < ﬁ, C1, Cy > 0. Then, for all a sufficiently large, if

We will need the following Lemma.

Lemma 3.5. For all large o, we have

U=

| R

on [0,7,)

with ro = C' min(a!=™)/2 o™(1=P)/P) and C > 0 depends only on p, m, k, N, Cy, Cs.

Proof. Throughout the proof, C' denotes various positive constants depending only
on p, m, k, N, C1, Cy. Let R € (0,1] be such that U > 0 on (0, R) (hence U’ < 0 by
Proposition 3.9 (i)). Define g(r) = supy ) |U’|. By Eqn. (3.10), for all » € [0, R], we
have

U (r)|rN 71 < 61/4/ (ka4 Co(a™ +|U'|P))s™V~tds
0
< C’rN(ozm + g% (r)).

It follows that
g(r) < Cr(a™ + g*(r)).

Since ¢g(0) = 0 and g is continuous, if there is some (minimal) 7o € (0, R], such that
gP(ro) = ™, we will have g(rg) < Crog?(r) hence, rg > Cg'=P(ry) = Cam1-P)/P Tt
follows that for all r < min(R, Ca™X=P)/P), ¢P(r) < o™ hence, rg(r) < Cr2a™. There-
fore, putting r, = C' min(a™1=P)/P o(1=™)/2) we have rg(r) < a/2 for r < min(R,r,)
hence,

(3.23) U(r)=a - / U ds > a—rg(r) > a/2, 0 <r <min(R,7y).
0

Now, take « large enough so that r, < 1. If there were a (minimal) r € (0,7,] such
that U(r) = 0, then one could take R = r in (3.23), reaching a contradiction. Therefore,
U > 0on [0,7,] and (3.23) with R = r,, gives the desired conclusion. 7

Proof of Proposition 3.13. We may assume U > 0 and U’ < 0 on [0,2], since
otherwise we are done. Note that r, < 1 for o large enough. We first claim that for
some 6 = O(m,p, N) > 0, we have

U'(1)] > C'a’

where C' = C'(m,p,k, N,C1,C5) > 0. Indeed by Eqn. (3.10) and Lemma 3.5,

U (o) |rN =1 > 6_1/401/ UmsVN1lds
0

> C'am’rév > 'l
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where § = min(m — N(m — 1)/2,m(1 — N(p — 1)/p)) > 0. Since |U'|rN=1er"/* is
nondecreasing on [0, 1] by Eqn. (3.10), the claim follows.
Now, by (3.9), we get
U= -U"> (2= + 0)|U'| + C1|U'|P on (0,2].

r

Therefore, we have

(3.24) {IU"ZC1|U"’—NU' on (0,2]

U (1) > ¢l

But it is easily seen that (3.24) cannot hold if « is sufficiently large (for |U’| would have
to blow up before r = 2). The Proposition follows. m

3.5.4. Properties of the limiting trajectory
Proposition 3.14. Assume that F satisfies

(3.13) F(z,y) = o(|z| + |y]) as (z,y) — (0,0).
and
(3.25) F(z,y) < C(z)(1+y?)

where C' is bounded on bounded sets. If 0 < ag = supl;y < oo, then Uy = U(ayg;.)
satisfies the following properties.

(1) Ruax(ag) =00, Uy >0 and Uy;>0 on (0,00),
(14) Ve >0, dR. >0, Vr > R,, e~ (14e)r*/4 < Up(r) < e~ (1=e)r’/4,
(444 Ul(r) = —%Ug(r)(l +o(1)), asr— oco.

Lemma 3.6. Assume F(0,0) = 0. Let a, A > 0 and define
R=TR(a,\kF)=2A+%+ 1+ 2L, V),
where L(a, \) = Lip(F||—a,a]x[-Aa,a])- Assume that Ryax(a) > R and that
Ula;r) >0, U'(;r) <0 on (0,R) for some R € (R, Rax()).

IfU'(r) + AU(r) > 0 for some r € (R, R), then U’ + AU > 0 on (r, R).

Proof. Under the assumptions of the Lemma, assume that U'(s) + AU(s) = 0 for
some s € [r, R). One then has

JU'(s) — kU(s) = F(U(s),U'(s))
+ f)U'(s) — F(U(s),AU(s)).
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Observe that F(U(s),\U(s)) < (1 4+ A\)U(s)L(a,A) < —(1 4+ X"1H)U'(s)L(a, A) hence,
U'(s)+AU'(s) > A+ £+ 1+ A1 L(a, \) — £)U'(s) > 0.

It is easily seen that U’ + AU must therefore remain > 0 on (r, R). The Lemma is proved.
|

Lemma 3.7. Under the assumptions of Proposition 3.14, we have Rpax(cg) = o0,
Uy > 0 and U} < 0 on (0,00), and for all A > 0,

(3.26) Us(r) + AUo(r) <0 for r large enough.

Proof. We know from Proposition 3.9 (iv) that Rpax(cg) = oo. Suppose that
Up(r) = 0 for some (minimal) » > 0. Then Uj(r) < 0 by local uniqueness, hence Uy < 0
on (r,r+¢] for some ¢ > 0 small. But this would imply that U(«a;r+¢) < 0 for « close to
ag, by continuous dependence, contradicting the definition of aq. It follows that Uy > 0
for r > 0, hence Uj < 0 by Proposition 3.9 (i).

It remains to prove (3.26). Fix A > 0 and suppose that U} (ro) + AU (rg) > 0 for some
ro > R' = R(ag+ 1, \, k, F) > R(ag, \, k, F) (see Lemma 3.6). Then, by Lemma 3.6, we
have U} + AUy > 0 on (rg,00). By continuous dependence, there exists ¢ € (0, 1) such
that for all & € (ag, ap + €) we have Ryax(a) > 79+ 1, U > 0 and U’ < 0 on (0,7 + 1],
and U'(rqg + 1) + AU(rg + 1) > 0. But by definition of «g, there exists a € (g, ag + )
and r > rg + 1 such that

U(r)y=0 and U >0, U' <0 on (0,r).

But since U' + AU > 0 on [rg + 1,7) by Lemma 3.6, we get upon integration U(r) >
e~ =m0~ (ry +1) > 0, which is a contradiction. The Lemma is proved. B

Proof of Proposition 3.14. Property (i) follows from Lemma 3.7, from which we also
deduce that

. Ug(r)
@20 i oy = -
Properties (ii) and (iii) can then be proved along the lines of [BPT, Lemmas 13, 14, 15
and Theorem 2]. (The nonlinearity there corresponds to F' = —|U|?, p > 1, but once (i)
and (3.27) are established, the hypothesis (3.13) alone allows one to carry over the steps
of their proof.) il

Proof of Theorems 8.5 and 3.7. Under any of the assumptions (i)—(iii), the homo-
geneity hypothesis (3.8) implies that

(3.28) F(z,y) < C(lyl? + [al”/*77)), @,y > 0.

(Indeed, by taking A = min(z~"/®=P) y=1) for (z,y) # (0,0) in (3.8), we obtain
F(z,y) < supge,per F(a, ) A7P < C max(y?, z*/(>=7)).) Moreover F(0,0) = 0.

Since we are interested in finding a positive solution of (3.7), only the values of the
function F(z,y) for z, y > 0 are involved, and we may redefine F' in Theorem 3.7 by

F(z,y) = F(lz], |y[) + (sgn(z) — 1) F(|z], 0).
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As F(0,0) = 0, F remains Lipschitz continuous, and it satisfies zF (z,0) = |z|F(|z|,0) >
0, Vz € R. Since (3.28) for 1 < p < 2 implies (3.13), and since 0 < k = 5255 < N/2
by hypothesis, the assumptions of Proposition 3.10 are satisfied. Therefore there exists
aq > 0 such that (0,aq) C 1.

By Propositions 3.11 (in case of Theorem 3.5), 3.12 (in cases (i)(ii) of Theorem
3.7), 3.13 (in case (iii) of Theorem 3.7), we have sup I, < oo. The results then follow
immediately from Proposition 3.14. 4

Remark 3.8. Tt can be proved that the result of Proposition 3.14 remains valid if the
assumption (3.25) is replaced with F(z,y) > a|y|/? — C(z) for some p > 1 and C bounded
on bounded sets.
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4. Existence and nonexistence results for a < 0, ug > 0
4.1. Existence in all L% spaces for p < 2
In this section we prove

Theorem 4.1. Let a < 0, 1 <p < 2and1 < q < oo. Given ug € L9, uy > 0, there
exists a (pointwise mild) solution u of (VHJ), u > 0, such that

u € C([0,00); L?).

Moreover, u is a classical solution of (VHJ) on RN x (0, c0).

Remark 4.1. For the equation u; — Au+|u[P~1u = 0, it is well-known that a (unique)
solution exists for any initial data ug € L? and any p, ¢ > 1. This is an easy consequence
of the monotonicity of the nonlinear operator u + Au — |u|?~'u = Au (in the sense that
(Au — Av,u — v) < 0 for smooth u, v). On the contrary, if ug is a Dirac mass dg, then a
solution exists if and only if p < (N +42)/N (see [BF]). Thus, in view of Theorem 4.1 and
the non-existence result of [BL1] for (VHJ) whena < 0, ug = dp andp > (N+1)/(N+1)
(see also Theorem 4.4 below), we have here a similar situation for positive solutions of
(VHJ) with ¢ < 0. However, Au — |Vu/|P has no monotonicity property and the proof of
existence that we will give now is more involved.

Remark 4.2. The basic idea of the proof is classical. One first constructs a sequence
of solutions for regularized initial data (Step 1). In order to pass to the limit in the
equation for ¢ > 0 (Step 2), we next use some estimates from [BL1]. However, a main
difficulty is then to recover the correct initial data at ¢ = 0 in the limiting process. This
requires some careful monotonicity arguments (see Step 3). Note that Steps 1 and 2
would work as well for measure initial data (say, ug = dp). But then one would ”lose”
the initial data in the limiting process (cf. Theorem 4.4).

Proof. Step 1. Construction of approzimate solutions.

Let 0 < u(()k) T ug be an increasing sequence of nonnegative functions converging a.e.
to ug, and such that

u(()k) € L>* and supp(u((]k)) CC RV,

In view of Theorem 2.1, the integral equation (1.1), with u(()k) replacing ug, has a unique

(mild L") solution u*) > 0, such that
u™ € C([0,00); L") N C((0,00): W) N C((0,00); CF),  ge <1 < 00,

In the following claim, we list some of the properties of the sequence u(%).

Claim. The sequence u'®) satisfies, for some constant C > 0 independent of k,

(4.1) 0<u®(t) <etPuy, t>0,

(4.2) u® (1) < Cllugllt~N?, zeRY, >0,
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(4.3) Vu® (,8)| < Ct~N+20/20 2 ¢ RN 4> 0,

(4.4) {u®) (,t)}?2, is monotone nondecreasing for each (z,t) € RN x (0, 00).

Proof of Claim. (4.1) follows immediately from u(()k) < ug, so that in view of (4.1),
(4.2) is a consequence of the standard estimate for the heat kernel. Since, in addition,
uF)(t) € CZ for t > 0, we obtain, by Theorem 1 of [BL1] that, for all £ > & > 0

V) (z,4)] < Cp(t — )" (N+20/2a 5 e RN | ¢ > ¢

where C}, > 0 depends on p only. Letting ¢ — 0, we get (4.3).
The monotonicity follows from the comparison principle (see e.g. [GGK, Theorem
8]). The claim is proved.

Step 2. Convergence of the approximating sequence to a solution for t > 0.

;From (4.1)(4.2) and the monotone convergence theorem, it follows that {u(*)(z,#)}
converges monotonically on RY x [0, oc) to some function u(z, t), and that the convergence
of uk) (., ) takes place in L? for each fixed t > 0. Moreover, from (4.1), u satisfies

0 <u(t) < etBug, > 0.

On the other hand, from (4.3), we see that u(®) satisfies an equation of the form
ugk) — Au®) = g (z,t) in RN x (0,00), where the functions u*) and g; are bounded
independently of k on every strip RN x (t1,%5), 0 < t; < t3 < oc. Denote as usual by D,
D2, ... any partial derivation operator in space of order 1, 2, ... It follows from interior
parabolic regularity theory (see, e.g., [Lie, chapter 7]) that for every r € (1,00), R > 0
and 0 < t; <ty < 00, Oyu® and D?u*) are bounded in L"(Bg x (t1,t5)) independently
of k. Therefore, Du®) satisfies

(Du®)), — A(Du®) = hy(x,t) = pz8Z~Du(k)8iu(k)wu(k)\p_2,

where hy(z,t) is bounded in L"(Bpg % (t1,t2)) independently of k. A further application
of parabolic regularity yields that d,Du*) is bounded in L"(Bg x (t1,12)). Applying
standard imbedding theorems for r > 1 sufficiently large, we obtain that u*) and Du(¥)
are bounded in C*®/2(Bg x (t1,t5)) for some a > 0. By Ascoli-Arzela’s Theorem and
a diagonal procedure, replacing u(k) by a subsequence, it follows that u®) and Du®
converge to u and Du respectively, uniformly on compact subsets of RV x (0,00) and
that v is C! in # on RN x (0, 0c).
Now, for £ € RY and t > ¢ > 0, we write

t
u® (z,1) = =840 () — / =32 vy (5)|P ds.

£

Since by (4.3), |[Vu(®) (z, s)|P is bounded independently of k on RY x (e,t), we may pass
to the limit via the dominated convergence theorem to obtain

t
(4.5) u(z,t) = )2y () — / et=)2|\Vu(s)|Pds, zeRY, t>e.
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We claim that
(4.6) u € C((0,00); LY).

First, since u®¥) € C([0,00); L"), r > q., for each k, and since u*) converges to u
uniformly on compact subsets of RY x (0, 00), we have that u € C((0,00); L4({|z| < R}))
for all R > 0. Next, we observe that for all 0 < t,t + h < oo,

Ju(t +h) — u®)||Laqesry) < e 20l Laqa>ry) + e uollLa((z> R}

< [le® M A ug — e Pugl| oy + 2)e ol La(fe)> RY):

and since ug € L?), the RHS can be made arbitrily small for A small and R large. The
claim (4.6) follows.

Step 3. Identification of the initial value.
It remains to identify the initial value of the constructed solution u, or in other
words to show that
limu(t) = ug in LY.
t—0

of L7 if 1 < ¢ < co. If ¢ = 1, it is a weak star precompact subset of M = M(RY),
the space of bounded Borel measures. If ¢ > 1, for any sequence ¢, — 0, there is a
subsequence ¢, and a function vy € LY such that

Since ||u(t)]lq < |luolly by (4.1), {u(t)}+>0 is a bounded, hence weakly precompact subset

u(t,) — vo, weakly in L9.

(If ¢ = 1, the convergence in is the weak star sense of M and vy € M.)
For each k > 1, from (4.1) and (4.4), we have

u® () <u(th) < etn Py

n

But on the other hand, u®) (/) — u(()k) and efn®uy — ug in L9 as n — oo. It follows
that for all £ > 1,

(the inequality being understood in the sense of measures if ¢ = 1). Letting k& — oo, we
conclude that
Vg = Ug-

Since every sequence u(t,) with ¢, — 0 has a subsequence converging (weakly in L? or
weak star in M) to the same limit g, this means that in fact

(4.7) u(t) = ug, ast—0.
As a consequence of (4.1)(4.7), note that

(4.8) 0 < e®ug—u(t) = 0 weakly in L? (¢ > 1) or weak star in M (¢ =1), as t — 0.
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We now proceed to show that the convergence in (4.7) is actually in the norm sense
of LY.

For each K cC RV, fix some continuous function ¢ with compact support, such
that 0 < ¢ <1 and ¢ =1 on K. Formula (4.8) implies that

et Pug — u(t) |l k) < / (e"ug — u(t))pdr — 0, ast— 0.
RN

In other words, e'®ug—u(t) — 0in LL _(RY), hence u(t) — ug in LL (RY), as t — 0. By
diagonal procedure, it follows that for each sequence ¢, — 0, there exists a subsequence
t! such that u(t!)) — ug a.e. in RY. But since 0 < u(t),) < et»®ug and e»®ug — ug in

L4, the dominated convergence theorem implies that
u(t,) = ug in L%
Since there is no other limit, this means that
u(t) >ug in L7 ast — 0.
Finally, by letting ¢ — 0 in (4.5), we obtain, by the monotone convergence theorem,

that ,
u(z,t) = et®uy — / et=)2\Vu(s)|Pds, xzeRY, t>0.
0

The proof is complete. 2

4.2. Existence-uniqueness in all L% spaces for p =2

Theorem 4.2. Let a <0, p=2and 1 < q < o0o. Given ug € L7, ug > 0, there exists a
classical solution u of (VHJ), u > 0, such that

(4.9) u € C([0,00); L), u(0) = ug.

Moreover, for all T > 0, u is the unique function such that u € C>Y(Qr), u > 0, u
satisfies (VHJ); in Qr and u € C([0,00); L?) with u(0) = ug.

Proof. (i) Ezistence. Assume a = —1 without loss of generality and put vy = 1—e™%0.
Since 0 < 1 —e7% < s for s > 0, it follows that 0 < vy € L?. Next define v(t) = e*®uvy.
Clearly, v € C([0,00); L9) N C*®(Q), where @ = RN x (0,00). Since ug € L9, then
vg=1—e"" <1 a.e., so that v < 1in Q.

Now define v = —log(l1 — w) > 0. Since v(t) = e'®vg, it is well-known that
v(t), div(t), 9;v(t) € Co(RYN) foreacht > 0 (4,5 = 1,..., N). In particular, it follows that
u(t) € Co(RN) for each t > 0. Moreover, since v = 1 — e~ we have d;u(t) = e*0;v € Cy
and 0;;u(t) = e"(0;;v + e“0;v0;v) € Cy, so that in particular

u(t) € CE, t>0.
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A straightforward calculation shows that
ug = Au — |Vul?, (z,t) € Q.

It remains to verify (4.9). Noting that e *(®) = et®¢~% and that s — e~® is convex,
Jensen’s inequality entails that e~*(*) > exp(—e'®ug) hence,

(4.10) 0 <u(t) <e®ug, t>0.

Fix to > 0. Since v(t) — v(tg) in LY as t — tg, for each sequence t, — to, there is
a subsequence ¢/, such that v(f]) — wv(to) a.e., hence u(t,) — u(ty) a.e. In view of
(4.10), and since e*®ug — et0®ug in L9 as t — tg, it follows from Lebesgue’s dominated
convergence theorem that u(t)) — u(tg) in L. This implies (4.9).

(ii) Uniqueness. Let u be a solution with the stated properties, and let v :=1—e™",
Then v satisfies

(4.11) vy =Av,  (z,t) € Q.
We claim that
(4.12) v € C([0,00); L), v(0)=wvg:=1—e""0 € L.
For 0 <t,t 4+ h < T, we note that

v(t+h) —o(t) = e 4® (1- e_(“(“rh)_“(t)))
and

o(t+ h) —v(t) = —e U (1 - g (ult)mult+h))

Since 1 —e™® < s, s € R, it follows that
—eT" M (u(t) — u(t + k) < o(t+h)) = v(t) < e "O(u(t + h) - u(t))

Using u > 0, we get
ot +h)) —o(t)] < |ut + k) — u(t)].

By (4.9), this proves the claim (4.12). Now, it is well-known that (4.11)(4.12) has a
unique solution, namely v(¢) = e*®vy. The uniqueness of u follows. m

4.3. Existence in all classes LY

+.approx for p > 2

Theorems 4.1 and 4.2 yield the existence of (at least) a positive solution of (VHJ)
for @ < 0 when p < 2 and 0 < uy € L%, g > 1. Define L(-Il—,approx to be the space of
those functions 0 < ug € L? which can be approximated pointwise by a monotonically
nondecreasing sequence of nonnegative continuous functions. For p > 2, we then have

the following partial extension of Theorem 4.1.
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Theorem 4.3. Let a < 0, p > 2 and 1 < ¢ < oc. Given ug € L’ there exists a

(pointwise mild) solution v of (VHJ), u > 0, such that

+,approx’

u € C([0,00); L?).
Furthermore, the solution is classical for t > 0, satisfying the regularity property
u € C((0,00); Cp).

Proof. Let ué ) be a nondecreasing sequence of nonnegative continuous functions

which converge pointwise to ug. By a truncation procedure we can assume each u((] ) to

be compactly suupported. By [GGK, Theorems 2 and 7], since uék) € Ch, there exists

a unique classical solution of (VHJ) with initial data u(()k). The rest of the proof then
follows along the lines of the proof of Theorem 4.1. I

Remark 4.3. The space LJr approx contains in particular all the functions ¢ € L9, ¢ >
0, which are radially symmetric and radially nonincreasing (with a possible singularity
at 0).

4.4. Nonexistence for p-atomic measures, py < p < 2
Let N > 2, pg = %—ﬁ < p < N and p* Npp. Let u > 0 be a Borel measure on
RN,

Definition 4.1. We say that p is p—atomic if there exist constants C > 0,0 < § < 1, such
that the following is satisfied: for every 0 < t < 1 there exist sequences {zy}7>; C RV,
{re}3Z, C (0,00), such that

(4) supp(p) C | Blax, ) (Bly,r) = {m;]e —yl <r}),
k=1
(Z'L) ZTIJCV(I_(I/IJ*» < Ctl/p,
k=1
D) Z“ (2, rx))e =t 0 agt — 0.

Note that any atomic measure (i.e., supported on countably many points z, zs, . ..)
is p—atomic for p > po. Indeed one just takes rj, = 2~ F¢1/(P+NP=1)

Theorem 4.4. Let a < 0, N > 2, pg = %—ﬁ <p< N,and u >0, u#0, be a p-atomic

measure. Then there is no local pointwise mild nonnegative solution of (VH.J) such that

(4.13) u(.,t) = p  weak star in M as t — 0.
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Proof. Assume that there exists such a solution u. First, by the argument of proof
of Proposition 1.1, we have
|Vu? € L*((0,T); LY).

Therefore, for a given ¢ > 0, there exists a sequence ¢; | 0 such that

/Vu(m,tj)|p dx < etj_l,

which implies, by the Sobolev inequality,
(4.14) /u(x,tj)p* dx < (Cetj_l)p*/p.

Observe that u < @ where @(t) = e'®u. Now, for any #;, let {z;x}2,, {rix},
be sequences guaranteed by the fact that p is p-atomic. Apply (4.14) and Holder’s
inequality to get,

(4.15) / u(z, ;) do < (Cet ;1) (wy2NrN,) 1= /P,
|le—xj k]|<2r; &

Now denote K; = Up2 B(z; k, 2r;,5). Summing in (4.15) over k = 1,2,... and using (ii),
we have

(4.16) / u(z, ;) de < Ce'/P.
K;

Consider the estimate for u over RY \ K. Since 0 < u < 4, it suffices to estimate 4.
Recall that supp(p) C U3, B(zjk,7j.x) so that if z € RV \ K,

o0

k=1 B xrjk)

with G(z,t) = (4nt)~N/2¢=2"/4 and where |z — y| > rj k. We obtain

/ W, t;) do < 3 p(B(winrin) / Gz t;) dz
RN\ K; k=1 [2]>7; &

C—1/2
|27kt

Okzﬂ/~6(B(ﬂﬂj,k,Tj,k))/lg e~ 16" de.

Clearly,

2 —1/2
e 1€ de < Oy yem Omnty
\§|Z7‘j,kt;1/2 — s

so that, in view of (iii), we get

lim a(z,t;)de = 0.
J7o0 JRN\K;
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Combining (4.16) and (4.13), we have finally, for all ¢ € Cy(RY),

ug) = Tim [ u(e, o) de = 0,
t—0 RN

hence 4 = 0. The theorem is proved. J
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