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2 BEN-ARTZI, SOUPLET AND WEISSLER1. Introdution1.1. Statement of the problemThis paper is onerned with visous Hamilton-Jaobi equations of the form(VHJ) (ut ��u = ajrujp; x 2 RN ; t > 0;u(x; 0) = u0(x); x 2 RN :where a 2 R, a 6= 0 and p � 1.The equation (VHJ) possesses both mathematial and physial interest. It an serveas a typial model-ase in the theory of paraboli partial di�erential equations. Indeed,it is the simplest example of a paraboli PDE with a nonlinearity depending on the �rstorder spatial derivatives of u, and it an be onsidered as an analogue of the extensivelystudied equation with zero order nonlinearity ut ��u = ajujp�1u. On the other hand,the equation ut�"�u = ajrujp, whih an be easily redued to (VHJ) by resaling, maybe viewed as the visosity approximation (as "! 0+) of Hamilton-Jaobi type equationsfrom stohasti ontrol theory (see [Lio℄). Also, equation (VHJ) appears in the physialtheory of growth and roughening of surfaes, where it is known as the Kardar-Parisi-Zhang equation (see [KPZ, KS℄).When u0 is a suÆiently regular funtion, say u0 2 C2b , and p � 1, the existene ofa unique loal { and atually global { lassial solution of (VHJ) was established in [B1,AB℄. This result was reently extended to u0 2 Cb and p > 0 in [GGK℄.Our purpose is to provide a rather extensive investigation of the loal Cauhy prob-lem for (VHJ) for irregular initial data u0, namely for u0 in Lebesgue spaes Lq =Lq(RN ), 1 � q <1. The ase of initial data measures or in Sobolev spaes will be alsoonsidered. We will present various results on existene, nonexistene, uniqueness andnonuniqueness of solutions. Some of our results will onern positive solutions, whileothers will apply to solutions of mixed sign. The issue to these questions involve dif-ferent ranges of values of p, q, together with the sign of a. Many of our results areoptimal and we obtain an almost omplete lassi�ation regarding loal (non-)existeneand (non-)uniqueness for all 1 � p; q <1.Beside loal existene/uniqueness, another interesting question regarding equation(VHJ) is the long time behavior of solutions (reall that all loal solutions of (VHJ) existglobally). This question was studied by a number of authors in the past few years, see[AB, BRV1, BRV2, BK, BL1, BGL, GGK, BLS, BGK, BLSS℄. A partiular attentionwas given to the question whether solutions deay as t!1 when u0 � 0 and a < 0. InTheorem 2.5 below we obtain some deay properties without sign restritions on a or u0.Results on other aspets of problem (VHJ) and on its generalizations an be foundin [BL2, BL3, P, AR1, AR2, AQR℄. Also, let us mention that the related equationut ��u = ajrujp + bup, �rst studied in [ChW℄, has reeived a lot of attention from thepoint of view of blow-up and global existene (see [S2℄ for a reent survey).Let us briey summarize our main results. Putp0 = p0(N) = N + 2N + 1 and q = q(N; p) = N(p� 1)2� p if p < 2.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 3The ritial exponent q plays a ruial role in this theory. We will say that q is super-ritial, ritial or subritial, aording to whether q > q, q = q or q < q.(i) When p < 2, we prove well-posedness in Lq for superritial and ritial q. Thisholds without sign restrition neither on a nor on u0. Well-posedness holds also formeasure data if p < p0(N) and for W 1;q data if 1 � p <1 and q � N(p� 1).We next speialize to the ase a > 0 and u0 � 0 (repulsive gradient term) and we obtain:(ii) When p � 2, existene fails in general in Lq for any q � 1.(iii) Thus returning to p < 2, we show that both existene and uniqueness fail in generalin Lq for subritial q and in W 1;q if q < N(p � 1). The nonuniqueness result isextended to some more general nonlinearities depending on u and jruj.We then examine the situation when a < 0 and u0 � 0 (absorbing gradient term).(iv) We obtain existene in Lq for any q � 1 when p � 2. This even extends to p > 2for u0 � 0 in a large subset of Lq (inluding u0 2 Lq symmetri radially dereasing,possibly singular at 0). However, the uniqueness of this solution is an open questionin general, exept for p = 2 where uniqueness holds.(v) We introdue a notion of p-atomi measure, whih ontains in partiular atomimeasures, and we show that the previous existene result annot be extended tosuh measure initial data.One of the onsequenes of our study is that a ritial exponent for existene in thesale of Lq spaes appears if the gradient term is repulsive, while none ours if it isabsorbing. Also, in the absorbing ase, it is a rather surprising fat that existene holdsin L1 while it may fail in measures. A heuristi interpretation is that when approahingu0 by more regular initial data, one "loses" the initial trae in the limiting proess if u0is a singular measure. On the ontrary, if u0 is an L1 funtion, then it is possible toreover the initial trae, by using suitable monotoniity arguments (see Remarks 4.1 and4.2).Let us ompare our results with previous work on equation (VHJ) with irregulardata. It was proved in [BL1℄ that if a < 0, p < 2, u0 � 0 and u0 2 L1 \ Lq with q > q,then (VHJ) admits a unique (mild) solution. Note that, as ompared with the result (i)above, the signs of a and u0 seem to be essential in the approah of [BL1℄. When u0is a bounded and nonnegative measure, it was proved in [BL1℄ that the existene anduniqueness hold if a < 0, 1 < p < p0(N), whereas nonexistene was shown if u0 is aDira mass and a < 0, p � p0(N). The result (v) extends this to more general singularmeasures.In [An℄, the more general degenerate equation ut � �um = jrur jp (m; r; p � 1)was onsidered for initial data measures. Conditions for existene and nonexistene ofpositive weak solutions were obtained in terms of a ertain loal regularity property ofthe measure u0. When applied to the speial asem = r = 1 (i.e. (VHJ) with a > 0) andu0 2 Lq , the results of [An℄ yield loal existene of (at least) a solution of (VHJ) whenq > q and nonexistene if q < q. Although the ontext of [An℄ is more general thanours, it has to be pointed out that, as a onsequene of the ompletely di�erent approah,the resulting (weak) solution lies only in some loal spaes and that both existene inthe ritial ase and uniqueness are left open in this approah. Also the assumptiona > 0 seems important in the arguments used for existene. On the other hand our



4 BEN-ARTZI, SOUPLET AND WEISSLERnonexistene result in (iii) is lose to the nonexistene result of [An℄ for m = r = 1.However the funtional frameworks are di�erent: we work with mild solutions whihrequire u 2 C([0; T );Lq(RN )) and jrujp 2 L1(0; T ;Lq(RN )), while [An℄ works withweak solutions whih require u 2 C([0; T );L2lo(RN )) and jruj2 2 L1lo((0; T )�RN ), andthe two sets of hypotheses are not omparable in general for q � 1 and 1 < p < 2. Alsoour method is simpler.Remark 1.1. Let us point out that the situation for the Cauhy problem is ratherdi�erent from that for the Cauhy-Dirihlet problem assoiated with (VHJ) on a boundeddomain. This is due to the fat that solutions of the latter problem may exhibit �nitetime gradient blowup whehever p > 2 (see, e.g., [FL, S3℄), a phenomenon whih does notour for the Cauhy problem. This is the reason { besides simpliity { why we haverestrited our attention to the Cauhy problem, although many of the results disussedhere would ertainly apply to the bounded domain ase (with homogeneous Dirihletonditions) when p < 2. For some related existene/nonexistene results in the boundeddomain ase, let us mention the papers [BMP, Al℄. For results in the ase of periodiboundary onditions, see [BGL, GGK, BLSS℄.The outline of the paper is as follows.Setion 1.2 of the Introdution ontains the neessary notation and de�nitions ofsolutions.Setion 2 is devoted to well-posedness for superritial and ritial q (a > 0 or < 0).We also onsider initial data in measures and in Sobolev spaes.In Setion 3 we speialize to the ase a > 0, u0 � 0. After showing nonexistenein Lq for p � 2, we prove both nonexistene and nonuniqueness results for p < 2 and qsubritial, and we give extensions of the nonuniqueness results to di�erent equations.Then in Setion 4, we turn to the ase a < 0, u0 � 0. We prove existene in all Lqfor all 1 < p < 2 (and for all p > 1 for a large subset of Lq). We then show existene anduniqueness in all Lq for p = 2. Finally we study the nonexistene for singular measureswhen p > p0(N).Some of the results of this paper have been announed in [BSW℄ and [B3℄.1.2. Notation and de�nitions of solutionsIn what follows, Lq = Lq(RN ), 1 � q � 1, denotes the usual Lebesgue spaes ofreal valued funtions, with norm denoted by k:kq. W 1;q = W 1;q(RN ) is the usual Sobolevspae. M = M(RN ) denotes the Banah spae of bounded Borel measures on RN , thedual spae of C0(RN ). Also, throughout the paper, we will denote by C; ; C1; C2; : : :various positive onstants whih may vary from line to line. The dependene of theseonstants will be made preise when neessary.For all t > 0, et� denotes the onvolution operator with the standard heat kernel,that is �et�f�(x) = ZRN G(x� y; t)f(y) dy;where G(x; t) = (4�t)�N=2e� jxj24t ; t > 0; x 2 RN



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 5and f is either a nonnegative measurable funtion, or f 2 Lq for some q 2 [1;1℄. If fis a �nite Borel measure or, more generally, if f 2 S 0, then �et�f�(x) is understood ashf;G(t; x� :)i.Let a 2 R, a 6= 0, 1 � p < 1 and 1 � q < 1 be real numbers. We are primarilyinterested in the existene and uniqueness of mild solutions of the equation (VHJ) i.e.,solutions of the integral equation(1:1) u(t) = et�u0 + aZ t0 e(t�s)�jru(s)jp ds; 0 � t < Tfor some T 2 (0;1℄, where u0 2 S 0 and the unknown funtion u = u(x; t) is a real valuedmeasurable funtion on QT := RN � (0; T ). We will use interhangeably u(t) for u(�; t)when there is no risk of onfusion. Also, for 1 � p < 2 we putq = N(p� 1)2� p :The funtion u being a solution of (1.1) an be de�ned in several ways. In view ofthe uniqueness and nonexistene results that we will develop, it is natural to work withreasonable notions of solutions that are as general as possible.Our basi de�nition of solution is the following.De�nition 1.1. Let u0 2 S 0. A pointwise mild solution of (VHJ) is a funtion u 2L1lo(QT ) suh that ru 2 Lplo(QT ) and suh that(1:2) u(x; t) = �et�u0�(x) + aZ t0 ZRN G(x� y; t� s) jru(y;s)jp dy dsfor a.e. (x; t) 2 QT .Note that the time-spae integral term in (1.2) makes sense sine jru(y; s)jp is anonnegative measurable funtion in QT and that sine u 2 L1lo(QT ), (1.2) implies thatthe time-spae integral term is �nite for almost every (x; t) 2 QT .We will make use also of the following notion of mild Lq solution.De�nition 1.2. Let q 2 [1;1) and u0 2 Lq . A mild Lq solution of (VHJ) is a funtionu 2 C([0; T );Lq) suh that(1:3) jrujp 2 L1(0; T ;Lq)and(1:4) u(t) = et�u0 + aZ t0 e(t�s)�jru(s)jp ds in Lq for all 0 � t < T .(If T =1, the ondition (1.3) is replaed by jrujp 2 L1(0; T0;Lq) for all T0 2 (0;1).)It is lear that any mild Lq solution is a pointwise mild solution. Conversely, forq = 1, we have:



6 BEN-ARTZI, SOUPLET AND WEISSLERProposition 1.1. Let T 2 (0;1), q = 1 and u0 2 L1 and let u be a pointwise mildsolution of (VHJ). Assume that either(1:5) a < 0; u � 0 a.e. in QT ,or(1:6) ess lim inft!T ku(t)k1 <1Then(1:7) jrujp 2 L1(0; T ;L1)and u is a mild L1 solution.Proof. Using Fubini's theorem and the preservation of the integral by et�, we have(1:8) Z t0 ZRN jru(y; s)jp dy ds = ZRN Z t0 e(t�s)�jru(s)jp dy ds:First assume (1.5). Integrating (1.2) in spae and using (1.8), u � 0 and u0 2 L1, we getjajZ t0 ZRN jru(y; s)jp dy ds � ZRN et�u0(y) dy � ku0k1 <1:Sine et�u0 2 C([0; T );L1), this easily implies that u 2 C([0; T );L1) and that (1.3) and(1.4) are satis�ed.Now assuming (1.6), we obtain similarly thatjajZ T0 ZRN jru(y; s)jp dy ds � ku0k1 + ess lim inft!Tku(t)k1 <1and we onlude as before.Denote by C2b = C2b (RN ) the spae of funtions with bounded ontinuous partialderivatives up to seond order and by C2;1(QT ) the spae of funtions whih are ontin-uously di�erentiable in QT up to order two in x and one in t.De�nition 1.3. Let u0 2 Lq. A lassial solution of (VHJ) in QT is a funtion u 2C([0; T );Lq) \ C2;1(QT ) suh that u(0) = u0,u 2 C((0; T );C2b)and ut ��u = ajrujp for all (x; t) 2 QT .When onsidering the issue of loal existene-uniqueness in M, we will use thefollowing de�nition.De�nition 1.4. Let u0 2M. A mild M solution of (VHJ) is a funtion u 2 Cb((0; T );L1) suh that jrujp 2 L1(0; T ;L1), (1.1) holds in L1 for all t 2 (0; T ) and u(t)� et�u0onverges to 0 in L1 as t! 0. In partiular, u(t)* u0 weak star in M as t! 0.Remark 1.2. If u0 2 M and u is a pointwise mild solution of (VHJ), then u is a mildM solution whenever (1.5) or (1.6) holds. This follows from the proof of Proposition 1.1.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 72. Well-posedness in superritial and ritial Lq spaes.2.1. Main resultsOur main result on well-posedness is the following theorem.Theorem 2.1. Assume 1 � p < 2. Let 1 � q <1 satisfy q > q or q = q > 1, and letu0 2 Lq.(i) There exists a global solution(2:1) u 2 C([0;1);Lq) \ C((0;1);W 1;r); q � r � 1of (1.1). The funtion u is a mild Lq solution if q > q and a pointwise mild solutionif q = q. Moreover, u is a lassial solution of (VHJ) in RN � (0;1).(ii) Assume q > q. For all T > 0, u is the unique loal in time (pointwise mild) solutionof (1.1) in the lass(2:2) C([0; T );Lq) \ C((0; T );W 1;pq):(iii) Assume q = q. For all T > 0, u is the unique loal in time (pointwise mild) solutionof (1.1) in the lass(2:3) C([0; T );Lq) \ C((0; T );W 1;r);for any r � p suh that q < r < pq.In the ase of initial data measures, we have the following result.Theorem 2.2. Let 1 � p < N+2N+1 hene, q < 1. For every u0 2 M there exists afuntion(2:4) u 2 Cb((0;1);L1) \ C((0;1);W 1;r); 1 � r � 1;whih is a global mild M solution of (1.1). Moreover, u is a lassial solution of (VHJ)in RN � (0;1). Furthermore, for all T > 0, u is the unique pointwise mild solution of(1.1) in the lass Cb((0; T );L1) \ C((0; T );W 1;p).As a orollary to the proof of Theorems 2.1 and 2.2, we obtain that the solutionsgiven there satisfy the following smoothing properties for small t.Proposition 2.3. There exist T , C > 0 suh that the solution given in Theorems 2.1and 2.2 satisfy(2:5) sup(0;T ℄ tN2 ( 1q� 1r )ku(t)kr � C; q � r � 1



8 BEN-ARTZI, SOUPLET AND WEISSLER(with q = 1 in the ase of Theorem 2.2.).(2:6) sup(0;T ℄ tN2 ( 1q� 1r )+ 12 kru(t)kr � C; q � r � 1:Moreover, in the ase of Theorem 2.1 with q > q (resp., of Theorem 2.2), T and Catually depend only on ku0kq (resp., ku0kM). In the ase of Theorem 2.1 with q = q,if ku0kq is suÆiently small, then (2.5) and (2.6) hold with T = 1 and C independentof u0.In the next proposition, we onsider the solvability of (1.4) in the Sobolev spaesW 1;q instead of the Lebesgue spaes Lq. We will show existene and uniqueness of loalsolutions to (1.1) for all u0 2 W 1;q where q > N(p� 1) or q = N(p� 1) > 1. Note thatwe no longer need assume p < 2. When 1 � q < N(p� 1), we will show in Setion 3 thatloal uniqueness is no longer true in general, and some nonexistene results will be givenin Setion 4.Proposition 2.4. Assume p � 1 and let 1 � q < 1 satisfy q > N(p � 1) or q =N(p� 1) > 1. Let u0 2W 1;q .(i) There exists a global pointwise mild solutionu 2 C([0;1);W 1;q) \ C((0;1);W 1;r); q � r � 1;of (1.1). Moreover, u is a lassial solution of (VHJ) in RN � (0;1).(ii) Assume q > N(p� 1). For all T > 0, u is the unique loal in time (pointwise mild)solution of (1.1) in the lassC([0; T );W 1;q) \ C((0; T );W 1;pq):(iii) Assume q = N(p � 1) > 1. For all T > 0, u is the unique loal in time (pointwisemild) solution of (1.1) in the lassC([0; T );W 1;q) \ C((0; T );W 1;r);for all r � p suh that N(p� 1) < r < Np(p� 1).(iv) There exist T , C > 0 suh that the solution given in (i) satis�essup(0;T ℄ tN2 ( 1q� 1r )�ku(t)kr + kru(t)kr� � C; q � r � 1:In partiular if N(p� 1) < q < N , then(2:8) jrujp 2 L1(0; T ;Lq�) (q� = Nq=(N � q)):Moreover, if q > N(p� 1), then T and C depend only on ku0kW 1;q .



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 9Remarks 2.1. (a) The loal Lq theory for (VHJ) with a > 0, that we desribe inTheorem 2.1 (and in Theorems 3.1 and 3.2 below), has many ommon features with theknown Lq theory of the equation(2:7) ut ��u = jujp�1u:For the latter equation, the ritial exponent is N(p � 1)=2. Well-posedness for q �N(p � 1)=2 (with q > 1 if q = N(p � 1)=2) was proved in [W2℄, Theorem 1. Theuniqueness lass was improved in [BC℄. For q < N(p � 1)=2, nonexistene results wereobtained in [W2, W4, BP℄) and examples of nonuniqueness in [HW, Ba℄ (see also [NS℄).(b) If q > q and u0 2 Lq, the solution given by Theorem 2.1 is atually unique inthe larger lass L1(0; T ;Lq) \ L1lo(0; T ;W 1;pq). This follows from slight modi�ationsof the proofs below (see Remark 2.5).() If q > q, the arguments of the proof of Theorem 2.1 show that for all �nite t0,the solution u on [0; t0℄ depends ontinuously in Lq on the initial data (see also Remarks2.3 and 2.6).(d) The onlusions of Theorem 2.1 (i) and (ii) and Proposition 2.3 remain validfor q = 1 and any 1 � p < 2. In this ase one has to replae (2.1) and (2.2) byu(t)� et�u0 2 C([0;1);L1), u 2 C((0;1);W 1;1).(e) The onlusions of Theorems 2.1 and 2.2 remain true (exept perhaps for u beinga lassial solution) if the oeÆient a is replaed by any funtion a(x) 2 L1(RN ).We onlude this setion by a result onerning the large time behavior of solutionsof (VHJ). In the ritial ase q = q > 1, one has the following deay property for smallinitial data, whih shows that u � 0 is a stable and asymptotially stable equilibrium of(VHJ) in Lq .Theorem 2.5. Assume q = q > 1 (hene p0 < p < 2) and u0 2 Lq . There exists"0 = "0(p;N) > 0 suh that the solution of (1.1) given by Theorem 2.1 satis�essup[0;1) ku(t)kq � 2ku0kq and limt!1 ku(t)kq = 0;whenever ku0kq � "0. Moreover one also has limt!1 ku(t)kk = 0 for all k 2 (q;1℄.Remarks 2.2. (a) A similar result was proved in [S1℄ for the nonlinear heat equation(2.7). Namely, if q = N(p� 1)=2 > 1 and the initial data is small in Lq norm, then u isglobal and deays in Lq . See also [Ka1℄ for a related result onerning the Navier-Stokesequations.(b) The smallness ondition on ku0kq in Theorem 2.5 annot be removed. Indeed,the (self-similar) solution onstruted in Theorem 3.3 satis�es ku(t)kq = ku0kq > 0 forall t 2 [0;1).() No extension of Theorem 2.5 to q = 1 is possible when a > 0: if u0 � 0 (with,say, u0 2 L1 \ Cb), then ku(t)k1 � ket�u0k1 = ku0k1.



10 BEN-ARTZI, SOUPLET AND WEISSLER2.2 ProofsOur proof of loal existene and uniqueness of solutions to (1.1) in Lq and in W 1;quses ideas whih go bak to [KF, W1, W2℄. These arguments have been arried out ina number of ontexts, in partiular for the Navier-Stokes equations. In [ChW℄, in thease where the nonlinear part of (1.1) also inludes a power term, well-posedness of theCauhy problem for (1.1) was proved in W 1;q0 (
), where 
 is a smooth bounded domainin RN , under the hypotheses q > N(p� 1) and q � p plus other onditions related to thepower term. The proof is based on the abstrat theory in [W1℄. Also, [ChW℄ inludesa brief remark on how the methods of [W2℄ an be applied to give well-posedness inertain Lq(
) spaes. Later, in [AW℄ it is observed that the same results arry over if
 is replaed by RN . More reently, in [SnTW1℄ the integral equation (1.1) with aninvariant power term added is studied in the "ritial" ase (orresponding to q = q inTheorem 2.1 above). Here the ideas are ultimately based on the treatment of the ritialase in [W2℄, but follow more losely the treatment in [CaW℄ of the pure power nonlinearheat equation. The spaes X; Y; : : : that we use below are in some sense analogous tothose used in [GMO, Ka2℄ for the treatment of the 2 dimensional Navier-Stokes equationsin vortiity formulation.Sine both the details of the proofs and the statements of the results for well-posedness of (1.1) in Lq and in W 1;q are di�erent from in the ase where a power term ispresent, and sine not all of our results an be diretly dedued from the abstrat frame-work in [W2℄, we present the proofs in enough detail as to minimize expliit referenesto previous results. Moreover, we will improve the result in [ChW℄ on well-posedness inW 1;q by eliminating the requirement that q � p.If u : (0; T ℄! W 1;r, for some r � p, is a ontinuous funtion, we formally de�ne(2:9) Gu(t) = Z t0 e(t�s)�jru(s)jp ds:Our basi approah is to prove existene of solutions to (1.1) by showing that the appli-ation F given by Fu(t) = et�u0 + aGu(t)is a strit ontration on an appropriate omplete metri spae of urves.In all Setion 2.2, C denotes a generi positive onstant depending only on N , p, q,r and a.Proof of Theorem 2.1 for q > q.For 0 < T <1, letX = X(T ) be the Banah spae of ontinuous urves u : (0; T ℄!W 1;pq suh that kukX = max[sup(0;T ℄ t�ku(t)kpq; sup(0;T ℄ t�+ 12 kru(t)kpq℄ <1;where(2:10) � = N2 �1q � 1pq�:



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 11We denote by XK(T ) the losed ball of X with radius K.The �rst step (Lemma 2.1) is to use a ontration mapping argument to obtainexistene and uniqueness of a loal (and atually global) solution in a more restritedlass than (2.2), namely, u 2 C([0; T ℄;Lq) \XK(T ) for suitable K, T > 0. In a seondstep (Lemma 2.2), we will then show that uniqueness atually holds in the larger lass(2.3).Lemma 2.1. Assume q > q, q � 1 and u0 2 Lq.(i) Let K, T > 0 satisfy(2:11) K � C1(ku0kq +KpT )where C1 = C1(N; p; q; a) > 0 and  = 1 � p(� + 12 ) > 0. Then there exists aunique funtion u 2 XK(T ) whih is a (pointwise mild) solution of (1.1) on (0; T ).Moreover, u 2 C([0; T ℄;Lq) and u is atually a mild Lq solution.(ii) For all T 0 > 0, there is at most one (pointwise mild) solution of (1.1) in the lassX(T 0).Note that Lemma 2.1 guarantees the existene of a unique maximal solution of (1.1)in X(Tmax) for some Tmax 2 (0;1℄, with u 2 X(1) meaning u 2 X(T ) for all T > 0.This solution will be referred to as the solution given by Lemma 2.1. We will see laterthat this solution is atually global, i.e. Tmax =1.Proof of Lemma 2.1. (i) If u 2 XK(T ), usingket��kpq � Ct��k�kq and kret��kpq � Ct���1=2k�kq;we have, for all t 2 [0; T ℄,kGu(t)kpq � C Z t0 (t� s)��kjru(s)jpkq ds = C Z t0 (t� s)��kru(s)kppq ds� CKp Z t0 (t� s)��s�p(�+ 12 )ds = CKpt1���p(�+ 12 ) Z 10 (1� s)��s�p(�+ 12 ) ds� CKpt��T 1�p(�+ 12 );and krGu(t)kpq � C Z t0 (t� s)��� 12 kjru(s)jpkq ds = C Z t0 (t� s)��� 12 kru(s)kppq ds� CKp Z t0 (t� s)��� 12 s�p(�+ 12 ) ds= CKpt��� 12+1�p(�+ 12 ) Z 10 (1� s)��� 12 s�p(�+ 12 ) ds� CKpt��� 12 T 1�p(�+ 12 ):



12 BEN-ARTZI, SOUPLET AND WEISSLERIn partiular, it follows that(2:12) kGukX � CKpT 1�p(�+ 12 )(where C is independent of T , and in fat depends only on p and q). The fat that q > qguarantees that all the integrals above are onvergent and that 1� p(�+ 12 ) > 0.Moreover, we note that u0 2 Lq implies(2:13) max � sup(0;T ℄ t�ket�u0kpq; sup(0;T ℄ t�+ 12 kret�u0kpq� � Cku0kq:Choose K, T > 0 suh that (2.11) holds. It follows from (2.12) and (2.13) that F mapsXK(T ) into itself.Now using(2:14) kjrujp � jrvjpkr=p � p(krukp�1r + krvkp�1r )kru�rvkr (valid for r � p)with r = pq, we obtain for all t 2 [0; T ),kFu(t)�Fv(t)kpq � C Z t0 (t� s)��kjru(s)jp � jrv(s)jpkq ds� CKp�1 Z t0 (t� s)��s�(�+ 12 )(p�1)kru(s)�rv(s)kpq ds� CKp�1ku� vkX Z t0 (t� s)��s�(�+ 12 )p ds� CKp�1t��T 1�p(�+ 12 )ku� vkX ;and similarly krFu(t)�rFv(t)kpq � CKp�1t���1=2T 1�p(�+ 12 )ku� vkX :Therefore, kFu�FvkX � CKp�1T 1�p(�+ 12 )ku� vkXand assuming (2.11) (with C1 perhaps replaed by a slightly larger value), it follows thatF is indeed a strit ontration on XK , and thus has a unique �xed point u. This �xedpoint is a (pointwise mild) solution of (1.1).Finally, if m � q, we an modify the alulation leading to (2.12) as follows. (Thiswas not needed for the ontration argument, but will be useful to obtain additionalproperties of the solution, in partiular Proposition 2.3.)kGu(t)km � C Z t0 (t� s)�N2 ( 1q� 1m )kjru(s)jpkq ds = C Z t0 (t� s)�N2 ( 1q� 1m )kru(s)kppq ds� CKp Z t0 (t� s)�N2 ( 1q� 1m )s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m )+1�p(�+ 12 ) Z 10 (1� s)�N2 ( 1q� 1m )s�p(�+ 12 ) ds:



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 13Thus, if 1q � 2N < 1m � 1q ;then Gu : (0; T ℄! Lm is ontinuous and(2:15) tN2 ( 1q� 1m )kGu(t)km � CKpt1�p(�+ 12 ) � CKpT 1�p(�+ 12 ):In partiular, Gu : (0; T ℄ ! Lq is ontinuous and limt!0 kGu(t)kq = 0. Sine et�u0 2C([0; T ℄;Lq), it follows that Fu 2 C([0; T );Lq) hene,(2:16) u 2 C([0; T );Lq):Also we note that sine p(�+ 1=2) < 1, u 2 X(T ) implies that jrujp 2 L1(0; T ;Lq), sothat u is indeed a mild Lq solution. Moreover,krGu(t)km � C Z t0 (t� s)�N2 ( 1q� 1m )� 12 kjru(s)jpkq ds= C Z t0 (t� s)�N2 ( 1q� 1m )� 12 kru(s)kppq ds� CKp Z t0 (t� s)�N2 ( 1q� 1m )� 12 s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m )� 12+1�p(�+ 12 ) Z 10 (1� s)�N2 ( 1q� 1m )� 12 s�p(�+ 12 ) ds:Thus, if(2:17) 1q � 1N < 1m � 1q ;then rGu : (0; T ℄! Lm is ontinuous and(2:18) tN2 ( 1q� 1m )+ 12 krGu(t)km � CKpt1�p(�+ 12 ) � CKpT 1�p(�+ 12 ):(ii) Let u and v be two solutions of (1.1) in X(T 0) for some T 0 > 0. It followsfrom (2.16) that u, v 2 C([0; T 0℄;Lq). Sine u and v both belong to XK0(T 0) for someK 0 > C1ku0kq, by taking T0 2 (0; T 0) so small thatK 0 � C1(ku0kq +K 0pT 0 );we an invoke the above �xed point argument to onlude that u and v oinide on [0; T0℄.Letting T1 = supft 2 (0; T 0℄; u = v on [0; t℄g 2 (0; T 0℄, then neessarily T1 = T 0. Indeed,otherwise, sine u(T1) = v(T1) 2 Lq and u(T1 + :), v(T1 + :) 2 X(T 0 � T1), one ouldreprodue the same argument on [T1; T1 + "℄ for " > 0 small. We onlude that u = v on[0; T 0℄. The proof of Lemma 2.1 is omplete.



14 BEN-ARTZI, SOUPLET AND WEISSLERRemark 2.3. The time t maps of the semiow generated by these solutions satisfyvarious ontinuity properties, whih an be proved by modi�ations to the ontrationmapping argument, as is done for example in [W2, CaW, SnTW1, SnTW2℄. For example,assuming (2.11), if u0, v0 2 Lq , and if u, v denote the orresponding solutions of (1.1) inXK(T ), thenmax � sup(0;T ℄ t�ku(t)� v(t)kpq ; sup(0;T ℄ t�+ 12 kr(u(t)� v(t))kpq� � Cku0 � v0kqand sup(0;T ℄ k(u(t)� v(t))kq � Cku0 � v0kq;where C = C(p; q;N; a) > 0.Remark 2.4. The existene and uniqueness result of Lemma 2.1 (i) remains validfor more general initial data, namely for all u0 2 S 0 suh that (2.13) holds (exept, ofourse, for the ontinuity of u in Lq at t = 0).The next step is to improve the uniqueness lass for loal solutions using ideas from[B2, Br, BC℄.Lemma 2.2. Assume q > q and let u0 2 Lq . Let(2:19) u 2 C([0; T ℄;Lq) \ C((0; T );W 1;pq)be a (pointwise mild) solution of (1.1) on (0; T ). Then u oinides with the solution givenby Lemma 2.1.Proof of Lemma 2.2. Let M = supt2(0;T ) ku(t)kq and �x K1 > 0, T1 2 (0; T=2) suhthat (with the notation of Lemma 2.1) K1 � C1(M + Kp1T 1 ). It follows from Lemma2.1 that for every � 2 (0; T=2), there is a unique solution v� 2 XK1(T1) ofv� (t) = et�u(�) + aZ t0 e(t�s)�jrv� (s)jp ds; 0 � t � T1:Letting u� (t) = u(� + t) for t 2 [0; T1), the fat that u 2 C((0; T );W 1;pq) impliesu� 2 X(T1). By uniqueness in X(T1) (Lemma 2.1 (ii)), we dedue that(2:20) u(� + t) = v� (t); 0 � t < T1; 0 < � < T=2:Using the fat that v� 2 XK1(T1), we see that, for all � 2 (0; T=2),max � sup(0;T1) t�ku(� + t)kpq; sup(0;T1) t�+ 12 kru(� + t)kpq� � K1:Letting � ! 0, it follows that u 2 XK1(T1), hene u 2 X(T ). By uniqueness in X(T )(using Lemma 2.1 (ii) again), we onlude that u oinides with the solution given byLemma 2.1.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 15Remark 2.5. The onlusion and the proof of Lemma 2.2 are still valid if one onlyassumes L1(0; T ;Lq) \ L1lo(0; T ;W 1;pq). Alternatively, under the assumption (2.19) ofLemma 2.2, one an onlude the proof of Lemma 2.2 after (2.20) as follows. Denoteby v0 the solution of (1.1) given by Lemma 2.1. For eah �xed t 2 (0; T1), upon letting� ! 0, we get u(� + t) ! u(t) in Lq (by ontinuity of u) and v� (t) ! v0(t) in Lq (byontinuous dependene in X(T ) { see Remark 2.3). Therefore u(t) = v0(t) on (0; T1).Before ompleting the proof of Theorem 2.1, it will be useful to obtain the higherregularity and smoothing properties of the solution (Proposition 2.3).Proof of Proposition 2.3 for u0 2 Lq, q > q. The proof is based on similar argumentsin [SnTW2℄.Let us �rst note that (1.1) implies that(2:21) u(t) = e(t��)�u(�) + aZ t� e(t�s)�jru(s)jp ds; 0 < � < t < T:Fix m and r with p � m < r � 1. Suppose we know that, for some L > 0,(2:22) max � sup(0;T ℄ tN2 ( 1q� 1m )ku(t)km; sup(0;T ℄ tN2 ( 1q� 1m )+ 12 kru(t)km� � L:Using (2.21) with � = t=2, we see thatku(t)kr � ke t2�u(t=2)kr + C Z tt2 (t� s)�N2 ( pm� 1r )kjru(s)jpkm=p ds� Ct�N2 ( 1m� 1r )ku(t=2)km + C Z tt2 (t� s)�N2 ( pm� 1r )kru(s)kpm ds� CLt�N2 ( 1q� 1r ) + CLp Z tt2 (t� s)�N2 ( pm� 1r )s�p(N2 ( 1q� 1m )+ 12 ) ds= CLt�N2 ( 1q� 1r ) + CLpt�N2 ( 1q� 1r )+1�p(�+ 12 )� Z 112 (1� s)�N2 ( pm� 1r )s�p(N2 ( 1q� 1m )+ 12 ) dsand kru(t)kr � ke t2�ru(t=2)kr + C Z tt2 (t� s)�N2 ( pm� 1r )� 12 kjru(s)jpkm=p ds� Ct�N2 ( 1m� 1r )kru(t=2)km + C Z tt2 (t� s)�N2 ( pm� 1r )� 12 kru(s)kpm ds� CLt�N2 ( 1q� 1r )� 12 + CLp Z tt2 (t� s)�N2 ( pm� 1r )� 12 s�p(N2 ( 1q� 1m )+ 12 ) ds= CLt�N2 ( 1q� 1r )� 12 + CLpt�N2 ( 1q� 1r )� 12+1�p(�+ 12 )� Z 112 (1� s)�N2 ( pm� 1r )� 12 s�p(N2 ( 1q� 1m )+ 12 ) ds:



16 BEN-ARTZI, SOUPLET AND WEISSLERThe �niteness of the integrals is guaranteed if pm � 1N < 1r . (The power of s in theintegrand is of no importane for onvergene sine the interval of integration stays awayfrom 0. Also, q > q implies that 1 � p(� + 12 ) > 0:) If this ondition is met, then wemay onlude that(2:23) max � sup(0;T ℄tN2 ( 1q� 1r )ku(t)kr; sup(0;T ℄ tN2 ( 1q� 1r )+ 12 kru(t)kr�� L0(L; p; q)T 1�p(�+ 12 ) = L00(L; p; q; T ):Note that one an hoose r > m suh that pm � 1N < 1r if and only if m > N(p � 1).One may then prove (2.5) and (2.6) in Proposition 2.3 for all pq � r � 1 by an iterativeproedure. Indeed, start with r = m = pq, for whih (2.22) is a onsequene of theontration mapping argument used in Lemma 2.1 (i) to prove existene. Then use thealulations above to prove (2.22) for larger and larger values of r. One an easily hekthat r =1 is reahed in a �nite number of iterations.Next, the properties (2.5) and (2.6) for q � r � pq follow from (2.15), (2.18) andthe fat that u0 2 Lq (note that q > q and q � r � pq imply that (2.17) is satis�ed withm = r).The proof of Proposition 2.3 for u0 2 Lq , q > q is thus omplete.Completion of proof of Theorem 2.1 for q > q. The loal existene and uniquenesspart follows from Lemmas 2.1 and 2.2. Moreover, from Proposition 2.3, one easily deduesthat u 2 C((0; Tmax);W 1;r) for q � r � 1. It only remains to show that u is lassial andglobal. By standard arguments using interior paraboli regularity theory (see, e.g., [Lie,Theorem 7.13℄), along with u 2 C((0; Tmax);W 1;1), one easily obtains that u 2 C2;1(QT )and u 2 C((0; T );C2b), so that that u is a lassial solution of (VHJ) on RN � (0; Tmax).It then follows from [AB, Theorem A and estimate (2.14)℄ that u satis�es(2:24) sup(t0;Tmax) ku(t)k1 + kru(t)k1 � ku(t0)k1 + kru(t0)k1 <1; 0 < t0 < Tmax:But (1.1) then implies that(2:25) u(t0 + t) = et� u(t0) + Z t0 e(t�s)� b(s; y)jru(t0 + s)j ds;where b is bounded on RN � (t0; Tmax). From (2.25), one easily dedues that kru(t)kq,and then ku(t)kq, remain bounded on (t0; T 0) for all �nite T 0 � Tmax. It follows fromthe ontration mapping argument of Lemma 2.1 (i) that u an be extended to a globalsolution of (1.1), with u 2 C([0;1);Lq)\C((0;1);W 1;pq), and so u is a lassial solutionof (VHJ) in RN � (0;1). The proof of Theorem 2.1 in the ase q > q is thus omplete.We turn to well-posedness in Lq, where q = q > 1. Our proofs are very loselymodeled on [SnTW1, SnTW2℄ for existene, uniqueness and regularity, and on [BC℄ forextending the uniqueness lass.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 17Proof of Theorem 2.1 for q = q. Let us �rst remark that we an no longer workin the spae X(T ) that we used in the ase q > q. Indeed taking q = q would lead top(� + 1=2) = 1 and the integrals involved in the proof of Lemma 2.1 would be in�nite.Instead of this, we �x r suh that(2:26) 1 � rp < q < r:Suh an r is ertainly not unique, and what follows is valid for any hoie of r, whih wefor the moment onsider as �xed. For 0 < T <1, let Y = Y (T ) be the Banah spae ofontinuous urves u : (0; T ℄!W 1;r suh thatkukY = max � sup(0;T ℄ t�ku(t)kr; sup(0;T ℄ t�+ 12 kru(t)kr� <1;where � = N2 � 1q � 1r�:We denote by YK(T ) the losed ball of Y (T ) with radius K.As in the superritial ase q > q, the �rst step (Lemma 2.3) is to use a ontrationmapping argument to obtain existene and uniqueness of a loal solution in a morerestrited lass than (2.3), namely, u 2 C([0; T ℄;Lq) \ YK(T ) for suitable K, T > 0. Itwill sometimes be possible to arry out the ontration mapping argument all at onefor all t > 0. Thus, if T =1, we interpret the interval (0; T ℄ as (0;1). In a seond step(Lemma 2.4), we will then show that uniqueness atually holds in the larger lass (2.2).Lemma 2.3. Assume q = q > 1 and let u0 2 Lq. For all T > 0, de�ne(2:27) M0(u0; T ) = max � sup(0;T ) t�ket�u0kr; sup(0;T ) t�+ 12 kret�u0kr� � Cku0kq :(i) We have(2:28) limT!0M0(u0; T ) = 0:(ii) There exists C0 = C0(p; q; r; a) > 0, suh that for all K, T > 0 satisfying(2:29) K > M0(u0; T ) + C0Kp;there exists a unique funtion u 2 YK(T ) whih is a (pointwise mild) solution of(1.1) on (0; T ). Moreover u 2 C([0; T ℄;Lq). (Note that K, T satisfying (2.29) existin view of (i).)(iii) Let K;T > 0 satisfy (2.29). Then, for all T 0 > 0, there is at most one solution of(1.1) in the lass C((0; T 0℄;Lq \W 1;r) \ YK(T ).It follows from Lemma 2.3 that there exists a maximal existene time Tmax 2 (0;1℄and a unique maximal solution u of (1.1) in the lassC([0; Tmax);Lq) \ C((0; Tmax);W 1;r) \ YK(T );



18 BEN-ARTZI, SOUPLET AND WEISSLERwhere K, T satisfy (2.29) (u does not depend on the hoie of K, T ). This solution willbe referred to as the solution given by Lemma 2.3.Proof of Lemma 2.3. (i) The family of operators t�et� and t�+1=2ret�, t > 0, areuniformly bounded from Lq into Lr. Moreover, (2.28) is true for all u0 in the densesubset W 1;r \ Lq of Lq. It follows that (2.28) holds for all u0 2 Lq .(ii) If u 2 YK(T ), we have, for all t 2 [0; T ℄,kGu(t)kr � C Z t0 (t� s)�N(p�1)2r kjru(s)jpkr=p ds = C Z t0 (t� s)�N(p�1)2r kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r s�p(�+ 12 )ds= CKpt�� Z 10 (1� s)�N(p�1)2r s�p(�+ 12 )ds = CKpt�� ;and thatkrGu(t)kr � C Z t0 (t� s)�N(p�1)2r � 12 kjru(s)jpkr=p ds= C Z t0 (t� s)�N(p�1)2r � 12 kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r � 12 s�p(�+ 12 )ds= CKpt��� 12 Z 10 (1� s)�N(p�1)2r � 12 s�p(�+ 12 )ds = CKpt��� 12 :In partiular, it follows that(2:30) kGukY � C0Kp;where C0 = C0(p; r; a) > 0 (note that C0 is independent of T ). The relation (2.26)guarantees that all the integrals above are onvergent.Moreover, hoosing K 2 (0; C�1=(p�1)0 ), (2.29) is then satis�ed for T > 0 smallenough in view of (2.29). It follows that F maps YK(T ) into itself.Now using (2.14), we obtain for all t 2 [0; T ),kFu(t)� Fv(t)kr � C Z t0 (t� s)�N(p�1)2r kjru(s)jp � jrv(s)jpkr=p ds� CKp�1 Z t0 (t� s)�N(p�1)2r s�(�+ 12 )(p�1)kru(s)�rv(s)kr ds� CKp�1ku� vkY Z t0 (t� s)�N(p�1)2r s�(�+ 12 )p ds� CKp�1t��ku� vkY ;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 19and similarly(2:31) krFu(t)�rFv(t)kr � CKp�1t���1=2ku� vkY :Therefore, kFu� FvkY � C0Kp�1ku� vkY(with C0 = C0(p; r; a) perhaps replaed by a slightly larger value than in (2.30)). As-suming (2.29), it follows that F is indeed a strit ontration on XK , and thus has aunique �xed point u. This �xed point is a (pointwise mild) solution of (1.1).Finally, if m � r=p, we an modify the alulation leading to (2.30) as follows.(Again, this was not needed for the ontration argument, but will be useful to obtainadditional properties of the solution, in partiular Proposition 2.3.)kGu(t)km � C Z t0 (t� s)�N2 ( pr� 1m )kjru(s)jpkr=p ds = C Z t0 (t� s)�N2 ( pr� 1m )kru(s)kpr ds� CKp Z t0 (t� s)�N2 (pr� 1m )s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m ) Z 10 (1� s)�N2 (pr� 1m )s�p(�+ 12 ) ds:Thus, if pr � 2N < 1m � pr ;then Gu : (0; T ℄! Lm is ontinuous and(2:32) tN2 ( 1q� 1m )kGu(t)km � CKp:In partiular, limt!0 kGu(t)km = 0 if r=p � m < q .Moreover,krGu(t)km � C Z t0 (t� s)�N2 (pr� 1m )� 12 kjru(s)jpkr=p ds= C Z t0 (t� s)�N2 (pr� 1m )� 12 kru(s)kpr ds� CKp Z t0 (t� s)�N2 ( pr� 1m )� 12 s�p(�+ 12 ) ds= CKpt�N2 ( 1q� 1m )� 12 Z 10 (1� s)�N2 ( pr� 1m )� 12 s�p(�+ 12 ) ds:Thus, if pr � 1N < 1m � pr ;then rGu : (0; T ℄! Lm is ontinuous and(2:33) tN2 ( 1q� 1m )+ 12 krGu(t)km � CKp:



20 BEN-ARTZI, SOUPLET AND WEISSLERIn partiular, limt!0 krGu(t)km = 0 if r=p � m < N(p� 1) .Among the various additional properties of the �xed point u, we note right away, asa onsequene of (2.32), that u(t)� et�u0 2 C([0; T ℄;Lm);if r=p � m < q . To prove ontinuity in Lq , note that as T ! 0, in view of (2.28), onemay hoose K in (2.29) as small as we wish. Thus, again by (2.32), sup(0;T ℄ kGu(t)kq !0, as T ! 0. This proves u 2 C([0; T ℄;Lq).(iii) Let u and v be two solutions of (1.1) in YK(T )\C((0; T 0℄;Lq \W 1;r) for someT 0 > 0. By part (ii), they oinide on [0; T ℄. LettingT1 = sup�t 2 (0; T 0℄; u = v on [0; t℄	 2 (0; T 0℄;then neessarily T1 = T 0. Indeed, otherwise, sine u(T1) = v(T1) 2 Lq and sine u(T1+ :)and u(T1 + :) 2 C([0; T 0 � T1℄;W 1;r) � YK̂(T̂ ) for some K̂; T̂ > 0 satisfyingK̂ > M0(u(T1); T̂ ) + C0K̂p;we would dedue from part (ii) that u = v on [0; T1 + T̂ ℄.Remark 2.6. (a) A straightforward modi�ation of the above ontration mappingargument an be used to show that if u0, v0 2 Lq both satisfy (2.29) for the same K,T > 0, and if the orresponding solutions of (1.1) are given by u, v 2 YK(T ), thenmax � sup(0;T ℄ t�ku(t)� v(t)kr ; sup(0;T ℄ t�+ 12 kr(u(t)� v(t))kr� � C2ku0 � v0)kq ;where C2 = C2(p; r;N; a) > 0. Further alulations show thatsup(0;T ℄ ku(t)� v(t)kq � C2ku0 � v0kq(see Step 1 in the proof of Theorem 2.5 for details).(b) If ku0kq is suÆiently small, then, in view of (2.27), one an hoose T =1 inLemma 2.3 and in Remark (a) above.() Denote by Y the spae orresponding to another value r satisfying (2.26). Thenthe solution onstruted in Lemma 2.3 (for the value of r that we have �xed) also belongsto Y K0(T 0) for some K 0, T 0 > 0 satisfying the analogue of (2.29), and it is the uniquesolution of (1.1) in that lass. This follows from the observation that the ontrationargument an be arried out in the intersetion YK(T ) \ Y K0(T 0).(d) The existene and uniqueness result of Lemma 2.3 (ii) remains valid for moregeneral initial data, namely for all u0 2 S 0 suh that M0(u0; T ) is suÆiently small forsome T > 0 (exept, of ourse, for the ontinuity of u in Lq at t = 0).Next, we turn to the stronger uniqueness results, as in the subritial ase, modeledafter the work of [B2, Br, BC℄.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 21Lemma 2.4. Assume q = q > 1 and let u0 2 Lq . Let u 2 C([0; T ℄;Lq)\C((0; T );W 1;r)be a pointwise mild solution of (1.1) on (0; T ). Then u oinides with the solution givenby Lemma 2.3.Following [B2, BC℄, in view of the proof of Lemma 2.4, we prepare the followingLemma.Lemma 2.5. Let 1 < q <1. Let K be a ompat subset of Lq and de�neÆ(t;K) = sup�2KM0(�; t); t > 0;where M0 is de�ned in Lemma 2.3. ThenÆ(t;K)! 0; as t! 0+:Proof of Lemma 2.5. First we note that the families of operators, t�et� andt�+ 12ret�, for t > 0, are uniformly bounded from Lq into Lr. Moreover, they on-verge pointwise to 0 as t ! 0 in view of (2.28). Thus, they onverge uniformly to 0 onany ompat subset of Lq. The onlusion follows.Proof of Lemma 2.4. Sine the image K of [0; T=2℄ under the ontinuous funtion uis ompat in Lq , Lemma 2.5 implies thatÆ(t;K) = sup�2[0;T=2℄M0(u(�); T1)! 0; as T1 ! 0.Therefore there exist K > 0 and T1 2 (0; T=2) suh that(2:34) K �M0(u(�); T1) + C0Kp; 0 < � < T=2:It follows from Lemma 2.3 (ii) that for every � 2 (0; T=2), there is a unique solutionv� 2 YK(T1) of v� (t) = et�u(�) + aZ t0 e(t�s)�jrv� (s)jp ds; 0 � t < T1:Moreover, v� 2 C([0; T1℄;Lq). Let u� (t) = u(� + t) for t 2 [0; T1℄. Sine u� 2C([0; T1℄;W 1;r), it follows that ku�kY (t) ! 0 as t! 0. Therefore, there exists T� 2 (0; T1℄suh that u� 2 YK(T tau). Moreover, sine T� � T1, (2.34) implies thatK �M0(u(�); T� ) + C0Kp; 0 < � < T=2and v� 2 YK(T� ). Sine u� (0) = v� (0) = u(�) 2 Lq and u� ; v� 2 C([0; T1℄;W 1;r \ Lq),we may apply Lemma 2.3 (iii) to dedue that u� = v� on [0; T1℄ that is,u(� + t) = v� (t); 0 � t � T1; 0 < � < T=2:



22 BEN-ARTZI, SOUPLET AND WEISSLERUsing the fat that v� 2 YK(T1), we see that, for all � 2 (0; T=2),max � sup(0;T1) t�ku(� + t)kr; sup(0;T1) t�+ 12 kru(� + t)kr� � K:Letting � ! 0, it follows that u 2 YK(T1). Applying Lemma 2.3 (iii) again, one onludesthat u and v oinide on [0; T ℄.As in the superritial ase, before ompleting the proof of Theorem 2.1, we establishthe higher regularity and smoothing properties of the solution (Proposition 2.3).Proof of Proposition 2.3 for u0 2 Lq, q = q. Instantaneous smoothing of solutionsinto W 1;m for m > r is proved exatly as in the ase q > q. Start with m = r, thevalue used in the ontration mapping argument whih veri�es (2.26), and then followthe same iterative proedure used in the ase q > q. The only di�erene is that sinehere q = q, the fator T 1�p(�+ 12 ) does not appear in formula (2.23) i.e., L00 does notdepend on T . As a result, the iterative step is independent of T . Of ourse, as in thease q > q, if u0 2 Lq , thenmax � sup(0;T ℄ tN2 ( 1q� 1m )ku(t)km; sup(0;T ℄ tN2 ( 1q� 1m )+ 12 kru(t)km� <1:for q � m < r by the properties (2.32) and (2.33) of Gu(t). Finally, if ku0kq issuÆiently small, then the previous inequality is valid with T = 1 by Remark 2.6 (b).Thus (2.5) and (2.6) are valid with T =1.Completion of proof of Theorem 2.1 for q = q. The solution given by Lemma 2.3 wasonstruted for a partiular value of r, say r0, �xed in (2.26). However, the uniquenessresult of Lemma 2.4 holds not only in the lass C([0; T ℄;Lq) \ C((0; T );W 1;r0), butatually in C([0; T ℄;Lq) \ C((0; T );W 1;r) for any r suh that q=p < r < q. Indeed, inview of Remark 2.6 (), the proof of Lemma 2.4 works for all suh r. The loal existeneand uniqueness statements of Theorem 2.1 in the ase q = q are thus proved.Arguing exatly as in the ase q > q, we obtain that u is lassial on (0; Tmax) andsatis�es (2.24) and sup(t0;T 0) ku(t)kq+ kru(t)kq <1 for all �nite T 0 � Tmax. Therefore,we have sup(t0;T 0) ku(t)kW 1;r < 1 for all �nite T 0 � Tmax and q � r � 1. It followsfrom the ontration mapping argument of Lemma 2.1 (i) that u an be extended to aglobal solution of (1.1), with u 2 C([0;1);Lq) \ C((0;1);W 1;r), q � r � 1, and so uis a lassial solution of (VHJ) in RN � (0;1). The proof of Theorem 2.1 in the aseq = q is omplete.Remark 2.7. Note that one an also use the spae YK to prove loal existene anduniqueness of solutions to (1.1) in the ase q > q. Of ourse, in that ase, one has toreplae q by q in (2.26) and in the de�nition of �. This gives slightly better uniquenessresults.Proof of Theorem 2.2. It follows along the lines of proof of Theorem 2.2 for q =1 > q. In partiular one works with the same spae X and uses (2.11) and (2.13) withku0kM instead of ku0kq and one gets u(t)� et�u0 2 C([0; T );L1) instead of (2.16).



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 23Finally, we turn to well-posedness in W 1;q, with q > N(p� 1) or q = N(p� 1) > 1.Proof of Proposition 2.4 for q > N(p � 1). Let Z = Z(T ) be the Banah spae ofontinuous urves u : (0; T ℄!W 1;pq suh thatkukZ = max � sup(0;T ℄ t�ku(t)kpq; sup(0;T ℄ t�kru(t)kpq� <1;where � = N2 �1q � 1pq�:Note the di�erene between Z and X: both terms in the norms of Z have the same powerof t. We denote by ZK = ZK(T ) the losed ball of Z with radius K. If u 2 ZK(T ), itfollows thatkGu(t)kpq � C Z t0 (t� s)��kjru(t)jpkq ds = C Z t0 (t� s)��kru(t)kppq ds� CKp Z t0 (t� s)��s�p� ds= CKpt1�(p+1)� Z 10 (1� s)��s�p� ds � CKpt��T 1�p�;and thatkrGu(t)kpq � C Z t0 (t� s)��� 12 kjru(t)jpkq ds� CKp Z t0 (t� s)��� 12 s�p� ds = CKpt1� 12�(p+1)� Z 10 (1� s)��� 12 s�p� ds� CKpt��T 12�p�:In partiular, it follows thatkGukZ � CKpmax[T 12�p�; T 1�p�℄(where C is independent of T , and in fat depends only on p and q). The fat thatq > N(p� 1) guarantees that all the integrals above are onvergent and that 12 � p� > 0.Turning now to the ontration mapping argument, sine u0 2W 1;q , we havemax � sup(0;T ℄ t�ket�u0kpq; sup(0;T ℄ t�kret�u0kpq� �M:Choose K > M and T > 0 so thatM + CKpmax[T 12�p�; T 1�p�℄ � K:It follows that F maps ZK into itself. As in Lemma 2.1, an easy modi�ation of theabove alulations shows that, with C perhaps replaed by a slightly larger value, F is



24 BEN-ARTZI, SOUPLET AND WEISSLERindeed a strit ontration on ZK , and thus has a unique �xed point u. This �xed pointis a solution of (1.1). Moreover, sine �p < 1=2, u 2 ZK implies jrujp 2 L1(0; T ;Lq)and u 2 C([0; T );W 1;q).The rest of the proof, in partiular the uniqueness statement (ii) and the regularity(iv), is very similar to the orresponding proof in Theorem 2.1 and Proposition 2.3 andis thus omitted.Proof of Proposition 2.4 for q = N(p� 1) > 1. Fix r suh that(2:26) 1 � rp < N(p� 1) < r:For 0 < T < 1, let W = W (T ) be the Banah spae of ontinuous urves u : (0; T ℄ !W 1;r suh that kukW = max � sup(0;T ℄ t�ku(t)kr; sup(0;T ℄ t�kblau(t)kr� <1;where � = N2 � 1q � 1r�:We denote by WK(T ) the losed ball of W (T ) with radius K.If u 2WK(T ), we have, for all t 2 [0; T ℄,kGu(t)kr � C Z t0 (t� s)�N(p�1)2r kjru(s)jpkr=p ds = C Z t0 (t� s)�N(p�1)2r kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r s�p�ds= CKpt 12�� Z 10 (1� s)�N(p�1)2r s�p�ds = CKpt 12�� ;and that krGu(t)kr � C Z t0 (t� s)�N(p�1)2r � 12 kjru(s)jpkr=p ds= C Z t0 (t� s)�N(p�1)2r � 12 kru(s)kpr ds� CKp Z t0 (t� s)�N(p�1)2r � 12 s�p�ds= CKpt�� Z 10 (1� s)�N(p�1)2r � 12 s�p�ds = CKpt�� :In partiular, it follows that kGukW � C0Kpmax(1; T 1=2);



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 25where C0 = C0(p; r; a) > 0 (note that C0 is independent of T ). The relation (2.26)guarantees that all the integrals above are onvergent.Let M1(u0; T ) = max � sup(0;T ) t�ket�u0kr; sup(0;T ) t�kret�u0kr�:One easily shows that limT!0M1(u0; T ) = 0 for all all u0 2 W 1;q . Therefore, hoosingK 2 (0; C�1=(p�1)0 ), we have K > M1(u0; T ) + C0Kp for 0 < T < 1 suÆiently small. Itfollows that F maps WK(T ) into itself. As in Lemma 2.3, an easy modi�ation of theabove alulations shows that, with C0 perhaps replaed by a slightly larger value, F isindeed a strit ontration on WK , and thus has a unique �xed point u. This �xed pointis a solution of (1.1). The rest of the proof, in partiular the uniqueness statement (iii)and the regularity (iv), is very similar to the orresponding proof in Theorem 2.1 andProposition 2.3 and is thus omitted.Proof of Theorem 2.5. We follow the ideas of the proof of Theorem 3.1 (i) in [S1℄(see also [Ka1, p. 480℄).Denote UM = �u0 2 Lq ; ku0kq �M	. For all t � 0, de�ne the mapWt : u0 7! u(t)from Lq into itself.Step 1. We prove that theWt are Lipshitz ontinuous on UM for some smallM > 0,uniformly for all t 2 [0;1). Let r and � be as in the proof of Theorem 2.1 (q = q).Let u0, v0 2 UM and u(t) = Wtu0, v(t) = Wtv0. By Remarks 2.6 (a) and (b), if M issuÆiently small, then(2:35) sup(0;1) t�+ 12 kru(t)kr � Cku0kq; sup(0;1) t�+ 12 krv(t)kr � Ckv0kqand(2:36) sup(0;1) t�+ 12 kru(t)�rv(t)kr � Cku0 � v0kq:Now, from (2.35), (2.36) and N2 (pr � 1q ) + (� + 12 )p = 1, we dedue thatku(t)� v(t)kq� ku0 � v0kq + jajZ t0 (t� s)�N2 (pr� 1q )kjrujp � jrvjpkr=p ds� ku0 � v0kq + jajpZ t0 (t� s)�N2 (pr� 1q )��kru(s)kp�1r + jrv(s)kp�1r �kru(s)�rv(s)kr ds:� ku0 � v0kq + C�ku0kp�1q + kv0kp�1q �ku0 � v0kq Z t0 (t� s)�N2 (pr� 1q )s�(�+ 12 )p ds= ku0 � v0kq + C�ku0kp�1q + kv0kp�1q �ku0 � v0kq Z 10 (1� �)�N2 (pr� 1q )��(�+ 12 )p d�� (1 + CMp�1)ku0 � v0kq:



26 BEN-ARTZI, SOUPLET AND WEISSLERThe laim is proved.Step 2. We laim that ku(t)kq deays to 0 for u0 2 UM and small M > 0 providedu0 also belongs to Lm for m 2 (r=p; q).Let m 2 (r=p; q), � = �(m) = N2 � 1m � 1r � and assume u0 2 UM \ Lm. Then, by(2.35), kru(t)kr � Ct��� 12 ku0km + jajZ t0 (t� s)�N(p�1)2r � 12 kru(s)kpr ds� Ct��� 12 ku0km + C Z t0 (t� s)�N(p�1)2r � 12�ku0kp�1q s�(p�1)(�+ 12 )s��� 12 �sup(0;t) ��+ 12 kru(�)kr� ds:Observing that N(p�1)2r < 12 , �N(p�1)2r + 12 � (p� 1)(� + 12 ) = 0 and that �(p � 1)(� +12 )� � � 12 > �1 for m 2 (r=p; q), it follows thatt�+ 12 kru(t)kr � Cku0km + CMp�1t�N(p�1)2r + 12�(p�1)(�+ 12 )��sup(0;t) ��+ 12 kru(�)kr� Z 10 (1� �)�N(p�1)2r � 12 ��(p�1)(�+ 12 )��� 12 d�= Cku0km + CMp�1�sup(0;t) ��+ 12 kru(�)kr�;hene(2:37) sup(0;1) t�+ 12 kru(t)kr � Cku0km(for M possibly smaller, independent of ku0k). Next using (2.35) (2.37), we omputeku(t)kq � Ct�N2 ( 1m� 1q )ku0km + jajZ t0 (t� s)�N2 (pr� 1q )krukpr ds� Ct�N2 ( 1m� 1q )ku0km + C Z t0 (t� s)�N2 ( pr� 1q )ku0kp�1q s�(p�1)(�+ 12 )ku0kms��� 12 dsso that tN2 ( 1m� 1q )ku(t)kq � Cku0km + Cku0kp�1q ku0km:The laim follows.Step 3. Sine the maps Wt : UM 7! Lq are Lipshitz ontiuous, uniformly for t � 0,and sine Wtu0 deays to 0 in Lq for eah u0 in the dense subset UM \ Lm, it followsthat u(t) = Wtu0 deays to 0 in Lq for all u0 2 UM . The fat that u(t) deays also inLk for q < k � 1 was proved in Proposition 2.3. The proof is omplete.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 273. Nonexistene and nonuniqueness results for a > 0, u0 � 03.1. Nonexistene in Lq for p � 2The following result shows that loal existene fails in all Lq spaes (q < 1) whenp � 2 and a > 0. We have been able to disard only the existene of solutions whihare lassial for t > 0. However we note that the solutions onstruted in Setion A forp < 2 and q � q are indeed lassial for t > 0.Proposition 3.1. Let p � 2, a > 0 and u0 2 L1lo. Assume that there exist T > 0 anda funtion u 2 C1;2(QT ), QT = RN � (0; T ), whih is a solution of (VHJ)1 in QT , suhthat limt!0 u(t) = u0 in L1lo. Then exp(au0) 2 L1lo.Proof. Assume that suh T and u exist. Then u satis�esut ��u � a(jruj2 � 1) in QT :Letting v(x; t) = exp(a(u(x; t) + t)), we see thatvt ��v � 0 in QT :Fix R > 0 and t0 2 (0; T ), and denote by GR+1 = GR+1(x; y; t) the heat kernel inBR+1(0) with homogeneous Dirihlet onditions. Sine v > 0, for all " 2 (0; t0=2), wehave v(t0; 0) � Zjyj<R+1GR+1(0; y; t0 � ") v(y; ") dy � C(t0; R)Zjyj<R v(y; ") dy;for some C(t0; R) > 0. But the assumptions imply the existene of a sequene "n # 0suh that u("n) onverges to u0 a.e. Passing to the limit in the above inequality with" = "n and using Fatou's Lemma, we obtainZjxj<R exp(au0(y)) dy <1;and the onlusion follows.Remark 3.1. When p = 2, existene is true for u0 2 L1, as an be seen easily byusing the transformation v = eu (a = 1). Also, existene (of a mild solution) is true foru0 2 W 1;N , N � 2, by Proposition 2.4. (Reall that W 1;N 6� L1 (N � 2) but thatu0 2 W 1;N implies eju0j 2 L1lo.) Interestingly, for p > 2, existene is true for u0 2 Cb(see [GGK℄) while this seems to be an open problem for u0 2 L1.3.2. Nonexistene in subritial Lq spaes for p < 2Theorem 3.2. Assume a > 0 and p < 2.(i) Let 1 = q < q and N � 2 and setu0(x) = jxj�N+Æ 1fjxj<1g



28 BEN-ARTZI, SOUPLET AND WEISSLERwith Æ > 0 suÆiently small (note that u0 2 L1). Then (1.1) does not admit anyloal pointwise mild solution, suh that u(t) 2 L1 on a set of positive measure of t.(ii) Let 1 < q < q and set(3:1) u0(x) = jxj�(N=q)+Æ 1fjxj<1gwith Æ > 0 suÆiently small (note that u0 2 Lq). Assume in addition that N > pq.Then (1.1) does not admit any loal mild Lq solution.Also, for initial data in Sobolev spaes, we have the following nonexistene results.Although we had to plae some additional restritions on the solution in Proposition 3.3,these results indiate that the existene part of Proposition wo is in some sense sharp(f. property (2.8) in Proposition 2.4).Proposition 3.3. Assume a > 0 and 1 � q < N(p� 1). Letu0(x) = jxj1�(N=q)+Æ (2� jxj)+with Æ > 0 suÆiently small (note that u0 2 W 1;q). If p > p2, assume in addition thatN > (p+ 1)q. Then (1.1) does not admit any pointwise mild solution satisfying (2.8).Proposition 3.4. Assume a = 1, p � 2 and 1 � q < N (= N(p� 1) when p = 2). Letu0(x) = �N(log jxj) 1fjxj<1g(note that u0 2 W 1;q). Then for any T > 0, there exists no solution of (VHJ), lassialon RN � (0; T ), suh that limt!0 u(t) = u0 in L1lo.Remarks 3.2. (a) The nonexistene result of Theorem 3.2 (ii) remains true forpointwise mild solutions satisfying the additional ondition(3:2) jrujp 2 L1(0; T ;Lr); q � " < r < q; for some " > 0.We note that in the ritial ase q = q, the pointwise mild solution onstruted inTheorem 2.1 does satisfy (3.2) (see (2.6)). The same remark holds for Proposition 3.3 inthe ritial ase q = N(p� 1), with q� instead of q in formula (3.2).(b) The restritions N > pq (resp. N > (p+ 1)q) in Theorem 3.2 (resp. in Propo-sition 3.3) seem tehnial. Note that they are automatially satis�ed when q < q (resp.q < N(p� 1)) if p � p2.In of the proofs of Theorem 3.2 and Proposition 3.3, we shall need the following twolemmata.Lemma 3.1. Let k 2 R, " > 0, let u0(x) = jxj�k+Æ 1fjxj<1g and de�ne U(t) := et�u0.Then for Æ > 0 suÆiently small, it holdsZfjxj<ptg U(x; t) dx � C" tN�k2 +";



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 29for t > 0 small.Proof. Let � = k � Æ. For jxj < pt and t > 0 small, we haveU(x; t) � Zfpt=2<jyj<ptg(4�t)�N=2e�jx�yj2=4tjyj�� dy � Ct��=2:Therefore Zfjxj<ptg U(x; t) dx � C t(N��)=2; for t > 0 small,whih implies the Lemma.Lemma 3.2. Let 1 � p, q < 1, pq < N , T > 0, and assume that u : (0; T ) ! Lq(
)satis�es jrujp 2 L1(0; T ;Lq):Then there exists a sequene tj # 0 suh thatZfjxj<ptjg u(x; tj) dx � C t 12� 1p+N2 (1� 1pq )j :Proof. >From the assumption, there exists tj # 0 suh thatkru(tj)kppq = jru(tj)jpq � t�1j :Therefore, by Sobolev's inequality, we haveku(tj)k(pq)� � Ckru(tj)kpq � Ct�1=pj ;with (pq)� = Npq=(N � pq). By H�older's inequality, we dedue thatZfjxj<ptjg u(x; tj) dx � C tN2 (1� 1(pq)� )j 0ku(tj)k(pq)� � C t 12� 1p+N2 (1� 1pq )j :Proof of Theorem 3.2. Assume that (1.1) admits a loal solution. First note thatin ase (i), there exists T > 0 suh that ess lim inft!T� <1 for some T > 0. It followsfrom Proposition 1.1 that jrujp 2 L1(0; T ;L1) and that u is a mild L1 solution. We arethus redued to proving the result in ase (ii) (atually for 1 � q < q).>From Lemma 3.1, we see that, for t > 0 small,(3:3) Zfjxj<ptg u(x; t) dx � Zfjxj<ptg et�u0(x) dx � C" tN2 (1� 1q )+":On the other hand, by Lemma 3.2, there exists a sequene tj # 0 suh that(3:4) Zfjxj<ptjg u(x; tj) dx � C" t 12� 1p+N2 (1� 1pq )�"j :



30 BEN-ARTZI, SOUPLET AND WEISSLERBy omparing (3.3) and (3.4) and letting j !1 and then "! 0, we dedue thatN2 �1� 1q� � 12 � 1p + N2 �1� 1pq�hene N(p� 1)q � 2� p:The onlusion follows.Proof of Proposition 3.3. Let fu0(x) = jxj1�(k=N)+Æ 1fjxj<1g. >From Lemma 3.1, wesee that, for t > 0 small,(3:5) Zfjxj<ptg u(x; t) dx � Zfjxj<ptg et�u0(x) dx� Zfjxj<ptg et�fu0(x) dx � C" tN2 (1� 1q )+ 12+":On the other hand, the urrent assumptions imply q < N and pq� = Nqp=(N � q) < N(this follows from q < N(p� 1) if p � p2). Assume (2.8), that is,jrujp 2 L1(0; T ;Lq�):By Lemma 3.2, there exists a sequene tj # 0 suh that(3:6) Zfjxj<ptjg u(x; tj) dx � C" t 12� 1p+N2 (1� 1pq� )�"j :By omparing (3.5) and (3.6) and letting j !1 and then "! 0, we dedue that12 + N2 �1� 1q� � 12 � 1p + N2 �1� 1pq��hene q � N(p� 1). The onlusion follows.Proof of Theorem 3.4. This is a diret onsequene of Proposition 3.1 and the fatthat for all jxj < 1, eu0(x) = 1jxjN 62 L1(B1(0)).3.3. Nonuniqueness in subritial Lq spaes for p < 2Theorem 3.5. Let a > 0, N � 1. Assume N+2N+1 < p < 2, so that q > 1. There exists apositive self-similar solution u of (3.7) on RN � (0;1), of the formu(x; t) = t�kU(jxjt�1=2); k = 2� p2(p� 1) ;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 31where U 2 C2b , with the following properties:u 2 C((0;1);W 1;q); 1 � q � 1;limt!0u(t) = 0 in Lq for 1 � q < q.In partiular, the initial value problem for (3.7) in Lq , 1 � q < q, with initial data 0 hasat least two solutions, the 0 solution and u.This theorem will be proved in the subsetion 3.5, together with results valid fordi�erent nonlinear terms. In partiular, it will be proved that the pro�le U an its deriva-tive U 0 both have exponential deay (see Proposition 3.14). We have the followingonsequene onerning nonuniqueness in W 1;q.Corollary 3.6. Let a > 0, N > 1. Assume N+1N < p < 2, so that N(p � 1) > 1. Thenthe initial value problem for (3.7) in W 1;q, 1 � q < N(p� 1), with initial data 0 has atleast two solutions in C([0;1);W 1;q)\C((0;1);W 1;pq), the 0 solution and the solutionu given by Theorem 3.5.Remark 3.3. One easily heks that u is a mild Lq solution of (VHJ) for q < q. Inpartiular we have jrujp 2 L1(0; T ;Lq) for all T > 0.Remark 3.4. For u0 � 0 with, say, u0 2 L1 \ C2b , it is easy to see that ku(t)k1is a noninreasing (resp. nondereasing) funtion if a < 0 (resp. a > 0). LettingI1 = limt!1 ku(t)k1, it was proved in [BK℄ (see also [AB, BL1, BGK, BLSS℄) thatwhen a < 0,(i) I1 = 0 if 1 � p � p0 = (N + 2)=(N + 1);(ii) I1 > 0 if p > p0.In the ase a > 0, the question whether I1 is �nite or not seems to be open. For theself-similar solution onstruted in Theorem 3.5 for p0 < p < 2, one has I1 =1.3.4. Nonuniqueness for other equationsLet us onsider the following equation:(3:7) ut ��u = F (u; jruj); x 2 RN ; t > 0:Theorem 3.7. Let N � 1, N+2N+1 < p < 2. Let F : R � R ! R, loally Lipshitzontinuous, satisfy the homogeneity ondition(3:8) F (�2�px; �y) = �pF (x; y); for all �; x; y � 0.Assume that there exists a > 0 suh that either(i) N = 1 and F (x; y) � ajyjpor(ii) N = 1 and F (x; y) � ajyjrjxj p�r2�p for some 1 � r � 2(p� 1)



32 BEN-ARTZI, SOUPLET AND WEISSLERor(iii) N � 2; p < NN � 1 ; and F (x; y) � a(jyjp + jxj p2�p ):Then there exists a positive self-similar solution u of (3.7) on RN � (0;1), of the formu(x; t) = t�kU(jxjt�1=2); k = 2� p2(p� 1) ;where U 2 C2b (R), with the following properties:u 2 C((0;1);W 1;q); 1 � q <1;limt!0u(t) = 0 in Lq for 1 � q < q.In partiular, the initial value problem for (VHJ) in Lq, 1 � q < q, with initial data 0has at least two solutions, the 0 solution and u.Corollary 3.8. Assume that either(i) F (u; jruj) = ajujm + bjruj 2mm+1 with N � 1, N+2N < m < N(N�2)+ , a, b > 0or(ii) F (u; jruj) = ajujmjrujr with N = 1, 1 � r < 2, m � 1, mr > 1, a > 0:Then there exists a positive self-similar solution u of (3.7) as desribed in Theorem 3.7(with k = 1m�1 in ase (i) and k = 2�r2(r+m�1) in ase (ii)). In partiular, the initial valueproblem for (VHJ) in Lq , 1 � q < q, with initial data 0 has at least two solutions, the0 solution and u.Remark 3.5. A similar result was obtained in [T℄ for F � jujm + bjruj 2mm+1 underdi�erent assumptions on b, m. We point out that the result of [T℄ does not apply to theequation (VHJ). On the other hand, the result of Theorem 3.7 applies e.g. to sums ofnonlinearities like those in (i) or (ii) of Corollary 3.8.3.5. Proof of nonuniqueness results: onstrution of forward selfsimilarsolutionsSine Eqn. (3.7) involves only the values of the funtion F (x; y) for y � 0, we mayassume that F is even with respet to y (i.e., onsider the funtion F (x; jyj) instead ofF ). Looking for a radial self-similar solution u(x; t) = t�kU(jxjt�1=2) of (3.7), we arethen redued to the following equation for the pro�le U :(3:9) (U 00 + �N�1r + r2�U 0 + kU + F (U;U 0) = 0; r > 0U 0(0) = 0; U(0) = � > 0:The basi idea, in the spirit of [HW, PTW, T℄ is to use a suitable shooting argumentto �nd � > 0 suh that the solution of (3.9) is positive, de�ned for all r > 0, and has



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 33suÆiently nie deay properties as r !1 to guarantee the belonging of u(:; t) to all Lqspaes. However, due to the di�erent nature of the nonlinearity, many of the argumentsin [HW, PTW, T℄ do not apply and some new ideas are required (in partiular for provingnonemptyness of I� below).Throughout Setion 3.5, we assume that k > 0, N � 1 (not neessarily an integer)and that F : R2 ! R is loally Lipshitz ontinuous. Eqn. (3.9) is equivalent to theintegral equation(3:10) U 0(r)rN�1er2=4 = �Z r0 �kU(s) + F (U(s); U 0(s))�sN�1es2=4 ds; U(0) = �:It is well known that for all � > 0, there exists a unique maximal solution U = U(�; :)of (3.9), de�ned on a maximal interval [0; Rmax(�)), with 0 < Rmax(�) � 1, and thatU 2 C2([0; Rmax)). (In what follows, exept when neessary, we will not emphasize thedependene of U and Rmax upon �.)3.5.1. Preliminary propertiesProposition 3.9. Assume that xF (x; 0) � 0 for all x 2 R. Then we have the followingproperties.(i) For all � > 0, we have U > 0 and U 0 < 0 for r > 0 small. If R < Rmax and U > 0on [0; R), then U 0 < 0 on (0; R℄.(ii) For all " > 0, there exists �" > 0 suh that Rmax =1 for all � 2 (0; �") andjU(r)j+ jU 0(r)j < " on [0;1):(iii) If Rmax =1 and U > 0 on [0;1), thenlimr!1U(r) = limr!1U 0(r) = 0:(iv) Assume F (x; y) � C(x)(1 + y2);with C bounded on bounded sets. If U > 0 on [0; Rmax), then Rmax =1.Proof. (i) The �rst part is lear sine U 00(0) = � 1N (k�+F (�; 0)) < 0. Next assumethat U > 0 and U 0 < 0 on (0; R) and U 0(R) = 0. Then U(R) > 0 by loal uniquenessand U 00(R) = �kU(R)� F (U(R); 0) < 0: a ontradition.(ii) Let g(x) = F (x; 0) and G(x) = R x0 g(s) ds � 0. De�ne h(x; y) = F (x;y)�F (x;0)yfor y 6= 0 (0 for y = 0), so that we may write F (U;U 0) = g(U) + U 0h(U;U 0). Sine Fis loally Lipshitz, h is bounded on bounded sets. Let M = supjxj;jyj�1 jh(x; y)j < 1.De�ning EU (r) = U 022 + kU22 +G(U);we have E0U (r) = ��(N�1r + r2 ) + h(U;U 0)�U 02:



34 BEN-ARTZI, SOUPLET AND WEISSLERFix " 2 (0; 1). By ontinuous dependene, sine G(0) = 0, there exists �" > 0 suh thatfor all � 2 (0; �"), Rmax > 2M and EU < � � "24 min(1; k) on [0; 2M ℄. On the otherhand, for all r 2 [2M;Rmax), if EU (r) < �, then in partiular jU(r)j < 1 and jU 0(r)j < 1,hene E0U (r) � (jh(U;U 0)j �M)U 02 � 0. It follows that EU (r) < � for all r 2 [0; Rmax),so that Rmax =1 and jU j+ jU 0j < " on [0;1).(iii) By (i), we know that U 0 < 0 on (0;1℄, hene 9` 2 [0;1) suh that limr!1 U(r)= `. Keeping the notation of (ii), for all r > 0, if jU 0(r)j < 1, then EU (r) < K �k�2+12 +G(�). Let K 0 = max(p2K;p2K=k) and M 0 = supjxj;jyj�K0 jh(x; y)j. Then, forall r � 2M 0, EU (r) < K implies jU j; jU 0j � K 0 hene E0U (r) � 0. But sine U has a�nite limit at 1, there must exist some r1 � 2M 0 suh that jU 0(r1)j < 1. It follows thatEU (r) < K for all r � r1. Therefore (U;U 0) is bounded on [0;1).Returning to Eqn. (3.9), we infer thatjU 0(r)jer2=4 = jU 0(1)je1=4 + Z r1 �kU + N�1s U 0 + F (U;U 0)�es2=4 ds(3:11) � C�1 + Z r1 es2=4 ds� � C 0r er2=4 as r !1;hene limr!1 U 0(r) = 0.Finally, to prove that ` = 0, we note that by (3.11), ` > 0 would imply jU 0(r)j � (k`+F (`; 0))Cr�1 as r ! 1 (where F (`; 0) � 0 and C > 0), ontraditing the boundednessof U .(iv) By (i), we have U 0 < 0 hene U � � on (0; Rmax). Assume Rmax < 1. UsingEqn. (3.9) and the assumption on F , we obtain(3:12) jU 0j0 = �U 00 � C1(1 + U 02) � C2(1 + jU 0j)2; Rmax2 < r < Rmax:Sine U is bounded, U 0 < 0 and Rmax < 1, neessarily limr!Rmax U 0(r) = �1. In-tegrating (3.12) between r and Rmax, it follows that 1 + jU 0(r)j � C3(Rmax � r)�1 asr ! Rmax, hene U(r)! �1 as r ! Rmax: a ontradition.Let us now de�ne the setI+ = �� > 0; Rmax =1; U > 0 and U 0 < 0 on (0;1)	:3.5.2. Nonemptyness of I+Proposition 3.10. Assume that 0 < k < N=2, xF (x; 0) � 0 for all x 2 R, and(3:13) F (x; y) = o(jxj+ jyj) as (x; y)! (0; 0):Then there exists �1 > 0 suh that (0; �1) � I+.Proof. By Proposition 3.9 (ii), we know that Rmax =1 for � suÆiently small. Letr0 > 0 be suh that U > 0 and U 0 < 0 on (0; r0) (see Proposition 3.9 (i)). Sine k < N=2,we may �x  suh that kN <  < 12 and de�nez(r) = �U 0U > 0 and �(r) = (z(r)� r)rN�1; 0 < r < r0:



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 35We ompute z0(r) = U 02U2 � U 00U = z2 + 1U �(N�1r + r2 )U 0 + kU + F (U;U 0)�= z2 � (N�1r + r2 )z + k + F (U;U 0)Uand �0(r) = rN�1(z0 + N�1r z)�NrN�1= rN�1�z2 � r2z + k �N + F (U;U 0)U �:Let Æ > 0 to be hosen later. By Proposition 3.9 (ii) and assumption (3.13), for � < �0(Æ)suÆiently small, we have jF (U;U 0)j � Æ(U + jU 0j) on [0;1), hene�0(r) � z�+ rN�1�k �N + Æ + (( � 12 )r + Æ)z�:By imposing 0 < Æ < N � k, it follows in partiular that(3:14) �0(r) � z� for all Æ12� � r < r0:On the other hand, we have, for all r 2 (0; r0),�0(r) � (z + Æ)�+ rN�1�k �N + Æ + ( � 12 )rz + Ær�hene(3:15) �0(r) � (z + Æ)� for all r < r0 suh that r � N�Æ�kÆ :Now, if we hoose Æ so small that N�Æ�kÆ > Æ12� , we dedue from (3.14) and (3.15) that(3:16) 8r 2 (0; r0); �(r) < 0) �0(r) < 0:Moreover, we observe thatlimr!0 r�N�(r) = �U 00(0)� �  = kN �  + F (�; 0)N� :Sine F (�; 0) = o(�) as �! 0, by taking � smaller if neessary, it follows that �(r) < 0for r > 0 small, and (3.16) then implies that � < 0 on (0; r0), that is �U 0U < r. Uponintegration, this yields(3:17) U(r) � �e�r2=2 on [0; r0):By ontinuity, one immediately dedues that U an never vanish, and that (3.17) atuallyholds on (0;1). The Proposition follows.Remark 3.6. The previous proof shows that U(r) � �e�kr2=2N on [0;1) for �suÆiently small.3.5.3. Boundedness of I+Proposition 3.11. Assume that N � 1, k > 0, and that F (x; y) = F (y) is of lass C1and satis�es F (y) � ajyjpfor some a > 0, p > 1. Then for all � suÆiently large, if Rmax(�) = 1, there existsr > 0 suh that U(r) = 0.To prove Proposition 3.11, we will need the following two lemmas.



36 BEN-ARTZI, SOUPLET AND WEISSLERLemma 3.3. Assume that N > 1, k > 0, and that F (x; y) = F (y) is of lass C1 andsatis�es F (0) � 0. If Rmax(�) =1, then U 00 < 0 on [0; r0), where r0 = � N�1k+1=2�1=2.Proof. We have NU 00(0) = �k� � F (�; 0), so that U 00 < 0 and U 0 < 0 for r > 0small. Di�erentiating Eqn. (3.9) yields(3:18) �U 000 = (�N�1r2 + 12 + k)U 0 + (N�1r + r2 )U 00 + F 0(U 0)U 00:Assume that there is a �rst r > 0 suh that U 00(r) = 0. Then U 0(r) < 0 and U 000(r) � 0,and (3.18) thus implies (k + 12 � N�1r2 )U 0(r) � 0hene, k + 12 � N�1r2 � 0, that is r � r0.Lemma 3.4. Under the hypotheses of Proposition 3.11, assume that Rmax(�) =1 andU > 0 on [0;1). Then we havejU 0(r2)j � C0� for some r2 2 [r1; 1℄;where r1 = min(1; r0) if N > 1, r1 = 1 if N = 1, and C0 = C0(N; k; a) > 0.Proof. By Proposition 3.9, we know that U 0 < 0 on (0;1). We onsider two ases.� If U � �=2 on [0; 1℄, it follows from Eqn. (3.10) that�U 0er2=4rN�1 = Z r0 (kU + F (U 0))es2=4sN�1 dshene jU 0(1)j � e�1=4 k�2N and we may take r2 = 1.� If U(r) < �=2 for some r 2 [0; 1℄, then by the Mean Value Theorem, sine U(0) = �,there exists r0 2 [0; 1℄ suh that jU 0(r0)℄ � �=2.{ If N = 1, sine er2=4jU 0(r)j is nondereasing, then jU 0(1)j � e�1=4jU 0(r1)j � C�, andwe take r2 = 1;{ If N > 1 and r0 � r1, we may take r2 = r0;{ If N > 1 and r0 < r1 � r0, then by Lemma 3.3, we have jU 0j � �=2 on [r0; r1℄, and wemay take r2 = r1.Proof of Proposition 3.11. Fix � > 0 and assume that U > 0 on (0;1) (heneU 0 < 0). By Lemma 3.4, we have jU 0(r2)j > C0�. From Eqn. (3.9), we have�U 00 � ajU 0jp � (N�1r + r2 )jU 0j on (0;1)hene ( jU 0j0 � ajU 0jp � (N�1r1 + 1)jU 0j on [r1; 2℄jU 0(r2)j � C0�:But sine r1 � 1, this would imply that jU 0j blows up before r = 2 if � is suÆientlylarge, whih is impossible. The onlusion follows.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 37Proposition 3.12. Assume N = 1, k > 0 and(3:19) F (x; y) � ajxjmjyjpfor some a > 0, m � 0, p � 1 suh that m + p > 1. Then, for all � suÆiently large, ifRmax(�) =1, there exists r > 0 suh that U(r) = 0.Proof. Throughout the proof, C denotes various positive onstants depending onlyon m, p, a, k (and not on �). Fix � > 0 and assume that U > 0 on (0;1) (hene U 0 < 0by Proposition 3.9 (i)). From Eqn. (3.10) and assumption (3.19), we have(3:20) jU 0(r)jer2=4 � Z r0 (kU + aUmjU 0jp)es2=4 ds:We laim that there exists R0 = R0(k) � 2 suh that(3:21) U(R0) < �2 :Indeed, if U(R) � �=2 for some R � 2, thenjU 0(r)j � k�2 e�r2=4 Z r0 es2=4 ds � C(k)�r ; 2 � r � R:Therefore, � > � � U(R) � R R1 jU 0j � C(k)� logR, so that 9R0(k) � 2 suh thatR � R0(k). Sine U 0 < 0, we thus have either U(2) < �=2 or U(R0) < �=2 and the laimfollows.WritingUmjU 0jp = Cj(U1+(m=p))0jp, we dedue from Eqn. (3.20), H�older's inequalityand (3.21) that, for all r � R0,jU 0(r)jer2=4 � C Z R00 j(U1+(m=p))0jp ds� C�Z R00 j(U1+(m=p))0j ds�p(3:22) � C��1+(m=p) � (�=2)1+(m=p)�p;Thus we have, for all r 2 [R0; R0 + 1℄,jU 0(r)j � e�(R0+1)2C�m+p;hene � > U(R0)� U(R0 + 1) = Z R0+1R0 jU 0j � C�m+p:Sine m+ p > 1, this annot hold if � is suÆiently large. The Proposition follows.Remark 3.7. Similar results an be derived for the multidimensional ase of Eqn.(3.9) when p > N , by using Sobolev type inequalities instead of (3.22). However forN � 2, this implies p > 2 and therefore does not enable to onstrut self-similar solutions.We do not know whether Proposition 3.12 holds for (some) 1 < p < 2 when N > 1.



38 BEN-ARTZI, SOUPLET AND WEISSLERProposition 3.13. Assume N > 1, k > 0 andC1(jxjm + jyjp) � F (x; y) � C2(jxjm + jyjp);where 1 < p < NN�1 , 1 � m < N(N�2)+ , C1, C2 > 0. Then, for all � suÆiently large, ifRmax(�) =1, there exists r > 0 suh that u(r) = 0.We will need the following Lemma.Lemma 3.5. For all large �, we haveU � �2 on [0; r�)with r� = Cmin(�(1�m)=2; �m(1�p)=p) and C > 0 depends only on p, m, k, N , C1, C2.Proof. Throughout the proof, C denotes various positive onstants depending onlyon p, m, k, N , C1, C2. Let R 2 (0; 1℄ be suh that U > 0 on (0; R) (hene U 0 < 0 byProposition 3.9 (i)). De�ne g(r) = sup[0;r℄ jU 0j. By Eqn. (3.10), for all r 2 [0; R℄, wehave jU 0(r)jrN�1 � e1=4 Z r0 (k�+ C2(�m + jU 0jp))sN�1 ds� CrN (�m + gp(r)):It follows that g(r) � Cr(�m + gp(r)):Sine g(0) = 0 and g is ontinuous, if there is some (minimal) r0 2 (0; R℄, suh thatgp(r0) = �m, we will have g(r0) � Cr0gp(r) hene, r0 � Cg1�p(r0) = C�m(1�p)=p. Itfollows that for all r � min(R;C�m(1�p)=p), gp(r) � �m hene, rg(r) � Cr2�m. There-fore, putting r� = Cmin(�m(1�p)=p; �(1�m)=2), we have rg(r) � �=2 for r � min(R; r�)hene,(3:23) U(r) = �� Z r0 jU 0j ds � �� rg(r) � �=2; 0 � r � min(R; r�):Now, take � large enough so that r� < 1. If there were a (minimal) r 2 (0; r�℄ suhthat U(r) = 0, then one ould take R = r in (3.23), reahing a ontradition. Therefore,U > 0 on [0; r�℄ and (3.23) with R = r� gives the desired onlusion.Proof of Proposition 3.13. We may assume U > 0 and U 0 < 0 on [0; 2℄, sineotherwise we are done. Note that r� < 1 for � large enough. We �rst laim that forsome � = �(m; p;N) > 0, we have jU 0(1)j � C 0��where C 0 = C 0(m; p; k;N;C1; C2) > 0. Indeed by Eqn. (3.10) and Lemma 3.5,jU 0(r�)jrN�1� � e�1=4C1 Z r�0 UmsN�1 ds� C 0�mrN� � C 0��;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 39where � = min(m � N(m � 1)=2;m(1 � N(p � 1)=p)) > 0. Sine jU 0jrN�1er2=4 isnondereasing on [0; 1℄ by Eqn. (3.10), the laim follows.Now, by (3.9), we getjU 0j0 = �U 00 � �(N�1r + r2 )jU 0j+ C1jU 0jp on (0; 2℄:Therefore, we have(3:24) ( jU 0j0 � C1jU 0jp �N jU 0j on (0; 2℄jU 0(1)j � C 0��:But it is easily seen that (3.24) annot hold if � is suÆiently large (for jU 0j would haveto blow up before r = 2). The Proposition follows.3.5.4. Properties of the limiting trajetoryProposition 3.14. Assume that F satis�es(3:13) F (x; y) = o(jxj+ jyj) as (x; y)! (0; 0):and(3:25) F (x; y) � C(x)(1 + y2)where C is bounded on bounded sets. If 0 < �0 = sup I+ < 1, then U0 � U(�0; :)satis�es the following properties.(i) Rmax(�0) =1; U0 > 0 and U 00 > 0 on (0;1),(ii) 8" > 0; 9R" > 0; 8r � R"; e�(1+")r2=4 � U0(r) � e�(1�")r2=4;(iii) U 00(r) = �r2U0(r)(1 + o(1)); as r !1:Lemma 3.6. Assume F (0; 0) = 0. Let �, � > 0 and de�neR = R(�; �; k; F ) = 2��+ k� + (1 + ��1)L(�; �)�;where L(�; �) = Lip(Fj[��;�℄�[���;��℄). Assume that Rmax(�) > R and thatU(�; r) > 0; U 0(�; r) < 0 on (0; R) for some R 2 (R;Rmax(�)):If U 0(r) + �U(r) � 0 for some r 2 (R;R), then U 0 + �U > 0 on (r;R).Proof. Under the assumptions of the Lemma, assume that U 0(s) + �U(s) = 0 forsome s 2 [r;R). One then hasU 00(s) + �U 0(s) = ��� N�1s � s2�U 0(s)� kU(s)� F (U(s); U 0(s))= ��� N�1s � s2 + k��U 0(s)� F (U(s); �U(s)):



40 BEN-ARTZI, SOUPLET AND WEISSLERObserve that F (U(s); �U(s)) � (1 + �)U(s)L(�; �) � �(1 + ��1)U 0(s)L(�; �) hene,U 00(s) + �U 0(s) � ��+ k� + (1 + ��1)L(�; �)� s2�U 0(s) > 0:It is easily seen that U 0+�U must therefore remain > 0 on (r;R). The Lemma is proved.Lemma 3.7. Under the assumptions of Proposition 3.14, we have Rmax(�0) = 1,U0 > 0 and U 00 < 0 on (0;1), and for all � > 0,(3:26) U 00(r) + �U0(r) < 0 for r large enough:Proof. We know from Proposition 3.9 (iv) that Rmax(�0) = 1. Suppose thatU0(r) = 0 for some (minimal) r > 0. Then U 00(r) < 0 by loal uniqueness, hene U0 < 0on (r; r+"℄ for some " > 0 small. But this would imply that U(�; r+") < 0 for � lose to�0, by ontinuous dependene, ontraditing the de�nition of �0. It follows that U0 > 0for r > 0, hene U 00 < 0 by Proposition 3.9 (i).It remains to prove (3.26). Fix � > 0 and suppose that U 00(r0)+�U(r0) � 0 for somer0 > R0 � R(�0 +1; �; k; F ) � R(�0; �; k; F ) (see Lemma 3.6). Then, by Lemma 3.6, wehave U 00 + �U0 > 0 on (r0;1). By ontinuous dependene, there exists " 2 (0; 1) suhthat for all � 2 (�0; �0 + ") we have Rmax(�) > r0 + 1, U > 0 and U 0 < 0 on (0; r0 + 1℄,and U 0(r0 + 1) + �U(r0 + 1) > 0. But by de�nition of �0, there exists � 2 (�0; �0 + ")and r > r0 + 1 suh thatU(r) = 0 and U > 0; U 0 < 0 on (0; r):But sine U 0 + �U > 0 on [r0 + 1; r) by Lemma 3.6, we get upon integration U(r) �e��(r�r0�1)U(r0 +1) > 0, whih is a ontradition. The Lemma is proved.Proof of Proposition 3.14. Property (i) follows from Lemma 3.7, from whih we alsodedue that(3:27) limr!1 U 00(r)U0(r) = �1:Properties (ii) and (iii) an then be proved along the lines of [BPT, Lemmas 13, 14, 15and Theorem 2℄. (The nonlinearity there orresponds to F � �jU jp, p > 1, but one (i)and (3.27) are established, the hypothesis (3.13) alone allows one to arry over the stepsof their proof.)Proof of Theorems 3.5 and 3.7. Under any of the assumptions (i){(iii), the homo-geneity hypothesis (3.8) implies that(3:28) F (x; y) � C(jyjp + jxjp=(2�p)); x; y � 0:(Indeed, by taking � = min(x�1=(2�p); y�1) for (x; y) 6= (0; 0) in (3.8), we obtainF (x; y) � sup0�a;b�1 F (a; b)��p � Cmax(yp; xp=(2�p)).) Moreover F (0; 0) = 0.Sine we are interested in �nding a positive solution of (3.7), only the values of thefuntion F (x; y) for x; y � 0 are involved, and we may rede�ne F in Theorem 3.7 byeF (x; y) = F (jxj; jyj) + (sgn(x)� 1)F (jxj; 0):



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 41As F (0; 0) = 0, eF remains Lipshitz ontinuous, and it satis�es x eF (x; 0) = jxjF (jxj; 0) �0; 8x 2 R. Sine (3.28) for 1 < p < 2 implies (3.13), and sine 0 < k = 2�p2(p�1) < N=2by hypothesis, the assumptions of Proposition 3.10 are satis�ed. Therefore there exists�1 > 0 suh that (0; �1) � I+.By Propositions 3.11 (in ase of Theorem 3.5), 3.12 (in ases (i)(ii) of Theorem3.7), 3.13 (in ase (iii) of Theorem 3.7), we have sup I+ < 1. The results then followimmediately from Proposition 3.14.Remark 3.8. It an be proved that the result of Proposition 3.14 remains valid if theassumption (3.25) is replaed with F (x; y) � ajyjp�C(x) for some p > 1 and C boundedon bounded sets.



42 BEN-ARTZI, SOUPLET AND WEISSLER4. Existene and nonexistene results for a < 0, u0 � 04.1. Existene in all Lq+ spaes for p < 2In this setion we proveTheorem 4.1. Let a < 0, 1 � p < 2 and 1 � q < 1. Given u0 2 Lq , u0 � 0, thereexists a (pointwise mild) solution u of (VHJ), u � 0, suh thatu 2 C([0;1);Lq):Moreover, u is a lassial solution of (VHJ) on RN � (0;1).Remark 4.1. For the equation ut��u+jujp�1u = 0, it is well-known that a (unique)solution exists for any initial data u0 2 Lq and any p, q � 1. This is an easy onsequeneof the monotoniity of the nonlinear operator u 7! �u� jujp�1u � Au (in the sense that(Au�Av; u� v) � 0 for smooth u, v). On the ontrary, if u0 is a Dira mass Æ0, then asolution exists if and only if p � (N +2)=N (see [BF℄). Thus, in view of Theorem 4.1 andthe non-existene result of [BL1℄ for (VHJ) when a < 0, u0 = Æ0 and p > (N+1)=(N+1)(see also Theorem 4.4 below), we have here a similar situation for positive solutions of(VHJ) with a < 0. However, �u� jrujp has no monotoniity property and the proof ofexistene that we will give now is more involved.Remark 4.2. The basi idea of the proof is lassial. One �rst onstruts a sequeneof solutions for regularized initial data (Step 1). In order to pass to the limit in theequation for t > 0 (Step 2), we next use some estimates from [BL1℄. However, a maindiÆulty is then to reover the orret initial data at t = 0 in the limiting proess. Thisrequires some areful monotoniity arguments (see Step 3). Note that Steps 1 and 2would work as well for measure initial data (say, u0 = Æ0). But then one would "lose"the initial data in the limiting proess (f. Theorem 4.4).Proof. Step 1. Constrution of approximate solutions.Let 0 � u(k)0 " u0 be an inreasing sequene of nonnegative funtions onverging a.e.to u0, and suh that u(k)0 2 L1 and supp(u(k)0 ) �� RN :In view of Theorem 2.1, the integral equation (1.1), with u(k)0 replaing u0, has a unique(mild Lr) solution u(k) � 0, suh thatu(k) 2 C([0;1);Lr) \ C((0;1);W 1;r) \ C((0;1);C2b); q < r <1:In the following laim, we list some of the properties of the sequene u(k).Claim. The sequene u(k) satis�es, for some onstant C > 0 independent of k,(4:1) 0 � u(k)(t) � et�u0; t � 0;(4:2) u(k)(x; t) � Cku0kqt�N=2q ; x 2 RN ; t > 0;



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 43(4:3) jru(k)(x; t)j � Ct�(N+2q)=2pq; x 2 RN ; t > 0;(4:4) fu(k)(x; t)g1k=1 is monotone nondereasing for eah (x; t) 2 RN � (0;1):Proof of Claim. (4.1) follows immediately from u(k)0 � u0, so that in view of (4.1),(4.2) is a onsequene of the standard estimate for the heat kernel. Sine, in addition,u(k)(t) 2 C2b for t > 0, we obtain, by Theorem 1 of [BL1℄ that, for all t > " > 0jru(k)(x; t)j � Cp(t� ")�(N+2q)=2pq; x 2 RN ; t > ";where Cp > 0 depends on p only. Letting "! 0, we get (4.3).The monotoniity follows from the omparison priniple (see e.g. [GGK, Theorem8℄). The laim is proved.Step 2. Convergene of the approximating sequene to a solution for t > 0.>From (4.1)(4.2) and the monotone onvergene theorem, it follows that fu(k)(x; t)gonverges monotonially on RN�[0;1) to some funtion u(x; t), and that the onvergeneof u(k)(:; t) takes plae in Lq for eah �xed t � 0. Moreover, from (4.1), u satis�es0 � u(t) � et�u0; t � 0:On the other hand, from (4.3), we see that u(k) satis�es an equation of the formu(k)t � �u(k) = gk(x; t) in RN � (0;1), where the funtions u(k) and gk are boundedindependently of k on every strip RN � (t1; t2), 0 < t1 < t2 <1. Denote as usual by D,D2, : : : any partial derivation operator in spae of order 1, 2, : : : It follows from interiorparaboli regularity theory (see, e.g., [Lie, hapter 7℄) that for every r 2 (1;1), R > 0and 0 < t1 < t2 <1, �tu(k) and D2u(k) are bounded in Lr(BR � (t1; t2)) independentlyof k. Therefore, Du(k) satis�es(Du(k))t ��(Du(k)) = hk(x; t) � pXi �iDu(k)�iu(k)jru(k)jp�2;where hk(x; t) is bounded in Lr(BR � (t1; t2)) independently of k. A further appliationof paraboli regularity yields that �tDu(k) is bounded in Lr(BR � (t1; t2)). Applyingstandard imbedding theorems for r > 1 suÆiently large, we obtain that u(k) and Du(k)are bounded in C�;�=2(BR � (t1; t2)) for some � > 0. By Asoli-Arzela's Theorem anda diagonal proedure, replaing u(k) by a subsequene, it follows that u(k) and Du(k)onverge to u and Du respetively, uniformly on ompat subsets of RN � (0;1) andthat u is C1 in x on RN � (0;1).Now, for x 2 RN and t � " > 0, we writeu(k)(x; t) = e(t�")�u(k)(")� Z t" e(t�s)�jru(k)(s)jp ds:Sine by (4.3), jru(k)(x; s)jp is bounded independently of k on RN � ("; t), we may passto the limit via the dominated onvergene theorem to obtain(4:5) u(x; t) = e(t�")�u(")� Z t" e(t�s)�jru(s)jp ds; x 2 RN ; t � ":



44 BEN-ARTZI, SOUPLET AND WEISSLERWe laim that(4:6) u 2 C((0;1);Lq):First, sine u(k) 2 C([0;1);Lr), r > q, for eah k, and sine u(k) onverges to uuniformly on ompat subsets of RN �(0;1), we have that u 2 C((0;1);Lq(fjxj � Rg))for all R > 0. Next, we observe that for all 0 < t, t+ h <1,ku(t+ h)� u(t)kLq(fjxj>Rg) � ke(t+h)�u0kLq(fjxj>Rg) + ket�u0kLq(fjxj>Rg)� ke(t+h)�u0 � et�u0kLq(RN)) + 2ket�u0kLq(fjxj>Rg);and sine u0 2 Lq), the RHS an be made arbitrily small for h small and R large. Thelaim (4.6) follows.Step 3. Identi�ation of the initial value.It remains to identify the initial value of the onstruted solution u, or in otherwords to show that limt!0u(t) = u0 in Lq.Sine ku(t)kq � ku0kq by (4.1), fu(t)gt>0 is a bounded, hene weakly preompat subsetof Lq if 1 < q < 1. If q = 1, it is a weak star preompat subset of M = M(RN ),the spae of bounded Borel measures. If q > 1, for any sequene tn ! 0, there is asubsequene t0n and a funtion v0 2 Lq suh thatu(t0n)* v0; weakly in Lq.(If q = 1, the onvergene in is the weak star sense of M and v0 2 M.)For eah k � 1, from (4.1) and (4.4), we haveu(k)(t0n) � u(t0n) � et0n�u0But on the other hand, u(k)(t0n) ! u(k)0 and et0n�u0 ! u0 in Lq as n ! 1. It followsthat for all k � 1, u(k)0 � v0 � u0(the inequality being understood in the sense of measures if q = 1). Letting k !1, weonlude that v0 = u0:Sine every sequene u(tn) with tn ! 0 has a subsequene onverging (weakly in Lq orweak star in M) to the same limit u0, this means that in fat(4:7) u(t)* u0; as t! 0.As a onsequene of (4.1)(4.7), note that(4:8) 0 � et�u0�u(t)* 0 weakly in Lq (q > 1) or weak star in M (q = 1), as t! 0.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 45We now proeed to show that the onvergene in (4.7) is atually in the norm senseof Lq.For eah K �� RN , �x some ontinuous funtion ' with ompat support, suhthat 0 � ' � 1 and ' = 1 on K. Formula (4.8) implies thatket�u0 � u(t)kL1(K) � ZRN(et�u0 � u(t))'dx! 0; as t! 0.In other words, et�u0�u(t)! 0 in L1lo(RN ), hene u(t)! u0 in L1lo(RN ), as t! 0. Bydiagonal proedure, it follows that for eah sequene tn ! 0, there exists a subsequenet0n suh that u(t0n)! u0 a.e. in RN . But sine 0 � u(t0n) � et0n�u0 and et0n�u0 ! u0 inLq, the dominated onvergene theorem implies thatu(t0n)! u0 in Lq.Sine there is no other limit, this means thatu(t)! u0 in Lq, as t! 0.Finally, by letting "! 0 in (4.5), we obtain, by the monotone onvergene theorem,that u(x; t) = et�u0 � Z t0 e(t�s)�jru(s)jp ds; x 2 RN ; t � 0:The proof is omplete.4.2. Existene-uniqueness in all Lq+ spaes for p = 2Theorem 4.2. Let a < 0, p = 2 and 1 � q <1. Given u0 2 Lq , u0 � 0, there exists alassial solution u of (VHJ), u � 0, suh that(4:9) u 2 C([0;1);Lq); u(0) = u0:Moreover, for all T > 0, u is the unique funtion suh that u 2 C2;1(QT ), u � 0, usatis�es (VHJ)1 in QT and u 2 C([0;1);Lq) with u(0) = u0.Proof. (i) Existene. Assume a = �1 without loss of generality and put v0 = 1�e�u0 .Sine 0 � 1� e�s � s for s � 0, it follows that 0 � v0 2 Lq . Next de�ne v(t) = et�v0.Clearly, v 2 C([0;1);Lq) \ C1(Q), where Q = RN � (0;1). Sine u0 2 Lq, thenv0 = 1� e�u0 < 1 a.e., so that v < 1 in Q.Now de�ne u = � log(1 � v) � 0. Sine v(t) = et�v0, it is well-known thatv(t); �iv(t); �ijv(t) 2 C0(RN ) for eah t > 0 (i; j = 1; : : : ; N). In partiular, it follows thatu(t) 2 C0(RN ) for eah t > 0. Moreover, sine v = 1� e�u, we have �iu(t) = eu�iv 2 C0and �iju(t) = eu(�ijv + eu�iv�jv) 2 C0, so that in partiularu(t) 2 C2b; t > 0:



46 BEN-ARTZI, SOUPLET AND WEISSLERA straightforward alulation shows thatut = �u� jruj2; (x; t) 2 Q:It remains to verify (4.9). Noting that e�u(t) = et�e�u0 and that s 7! e�s is onvex,Jensen's inequality entails that e�u(t) � exp(�et�u0) hene,(4:10) 0 � u(t) � et�u0; t � 0:Fix t0 � 0. Sine v(t) ! v(t0) in Lq as t ! t0, for eah sequene tn ! t0, there isa subsequene t0n suh that v(t0n) ! v(t0) a.e., hene u(t0n) ! u(t0) a.e. In view of(4.10), and sine et�u0 ! et0�u0 in Lq as t! t0, it follows from Lebesgue's dominatedonvergene theorem that u(t0n)! u(t0) in Lq. This implies (4.9).(ii) Uniqueness. Let u be a solution with the stated properties, and let v := 1�e�u.Then v satis�es(4:11) vt = �v; (x; t) 2 Q:We laim that(4:12) v 2 C([0;1);Lq); v(0) = v0 := 1� e�u0 2 Lq:For 0 � t; t+ h < T , we note thatv(t+ h)� v(t) = e�u(t)�1� e�(u(t+h)�u(t))�and v(t+ h)� v(t) = �e�u(t+h)�1� e�(u(t)�u(t+h))�:Sine 1� e�s � s, s 2 R, it follows that�e�u(t+h)(u(t)� u(t+ h)) � v(t+ h))� v(t) � e�u(t)(u(t+ h)� u(t))Using u � 0, we get jv(t+ h))� v(t)j � ju(t+ h)� u(t)j:By (4.9), this proves the laim (4.12). Now, it is well-known that (4.11)(4.12) has aunique solution, namely v(t) = et�v0. The uniqueness of u follows.4.3. Existene in all lasses Lq+;approx for p > 2Theorems 4.1 and 4.2 yield the existene of (at least) a positive solution of (VHJ)for a < 0 when p � 2 and 0 � u0 2 Lq , q � 1. De�ne Lq+;approx to be the spae ofthose funtions 0 � u0 2 Lq whih an be approximated pointwise by a monotoniallynondereasing sequene of nonnegative ontinuous funtions. For p > 2, we then havethe following partial extension of Theorem 4.1.



VISCOUS HAMILTON-JACOBI EQUATIONS IN LEBESGUE SPACES 47Theorem 4.3. Let a < 0, p > 2 and 1 � q < 1. Given u0 2 Lq+;approx, there exists a(pointwise mild) solution u of (VHJ), u � 0, suh thatu 2 C([0;1);Lq):Furthermore, the solution is lassial for t > 0, satisfying the regularity propertyu 2 C((0;1);C2b):Proof. Let u(k)0 be a nondereasing sequene of nonnegative ontinuous funtionswhih onverge pointwise to u0. By a trunation proedure we an assume eah u(k)0 tobe ompatly suupported. By [GGK, Theorems 2 and 7℄, sine u(k)0 2 Cb, there existsa unique lassial solution of (VHJ) with initial data u(k)0 . The rest of the proof thenfollows along the lines of the proof of Theorem 4.1.Remark 4.3. The spae Lq+;approx ontains in partiular all the funtions � 2 Lq, � �0, whih are radially symmetri and radially noninreasing (with a possible singularityat 0).4.4. Nonexistene for p-atomi measures, p0 < p < 2Let N � 2, p0 = N+2N+1 < p < N and p� = NpN�p . Let � � 0 be a Borel measure onRN .De�nition 4.1. We say that � is p{atomi if there exist onstantsC > 0, 0 < Æ < 1, suhthat the following is satis�ed: for every 0 < t < 1 there exist sequenes fxkg1k=1 � RN ,frkg1k=1 � (0;1), suh that(i) supp(�) � 1[k=1B(xk; rk) (B(y; r) = fx; jx � yj < rg);(ii) 1Xk=1 rN(1�(1=p�))k � Ct1=p;(iii) 1Xk=1�(B(xk; rk))e�(1�Æ)rkt�1=2 ! 0; as t! 0.Note that any atomi measure (i.e., supported on ountably many points x1; x2; : : :)is p{atomi for p > p0. Indeed one just takes rk = 2�kt1=(p+N(p�1)).Theorem 4.4. Let a < 0, N � 2, p0 = N+2N+1 < p < N , and � � 0, � 6� 0, be a p{atomimeasure. Then there is no loal pointwise mild nonnegative solution of (VHJ) suh that(4:13) u(:; t)! � weak star in M as t! 0:



48 BEN-ARTZI, SOUPLET AND WEISSLERProof. Assume that there exists suh a solution u. First, by the argument of proofof Proposition 1.1, we have jrujp 2 L1((0; T );L1):Therefore, for a given " > 0, there exists a sequene tj # 0 suh thatZ jru(x; tj)jp dx � "t�1j ;whih implies, by the Sobolev inequality,(4:14) Z u(x; tj)p� dx � (C"t�1j )p�=p:Observe that u � ~u where ~u(t) = et��. Now, for any tj , let fxj;kg1k=1, frj;kg1k=1be sequenes guaranteed by the fat that � is p{atomi. Apply (4.14) and H�older'sinequality to get,(4:15) Zjx�xj;kj�2rj;k u(x; tj) dx � (C"t�1j )1=p(!N2NrNj;k)1�(1=p�):Now denote Kj = [1k=1B(xj;k; 2rj;k). Summing in (4.15) over k = 1; 2; : : : and using (ii),we have(4:16) ZKj u(x; tj) dx � C"1=p:Consider the estimate for u over RN n Kj . Sine 0 � u � ~u, it suÆes to estimate ~u.Reall that supp(�) � [1k=1B(xj;k; rj;k) so that if x 2 RN nKj ,~u(x; tj) � 1Xk=1ZB(xj;k;rj;k)G(x� y; tj) d�(y);with G(z; t) = (4�t)�N=2e�z2=4t, and where jx� yj � rj;k. We obtainZRNnKj ~u(x; tj) dx � 1Xk=1�(B(xj;k; rj;k))Zjzj�rj;k G(z; tj) dz= C 1Xk=1�(B(xj;k; rj;k))Zj�j�rj;kt�1=2j e�j�j2 d�:Clearly, Zj�j�rj;kt�1=2j e�j�j2 d� � CÆ;Ne�(1�Æ)rj;kt�1=2j ;so that, in view of (iii), we get limj!1ZRNnKj ~u(x; tj) dx = 0:
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