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Abstract. Smoothing (and decay) spacetime estimates are discussed for evo-

lution groups of self-adjoint operators in an abstract setting. The basic as-
sumption is the existence (and weak continuity) of the spectral density in a

functional setting. Spectral identities for the time evolution of such operators
are derived, enabling results concerning “best constants” for smoothing esti-

mates. When combined with suitable “comparison principles” (analogous to

those established in [22]), they yield smoothing estimates for classes of func-
tions of the operators .

A important particular case is the derivation of global spacetime estimates

for a perturbed operator H + V on the basis of its comparison with the un-
perturbed operator H.

A number of applications are given, including smoothing estimates for frac-

tional Laplacians, Stark Hamiltonians and Schrödinger operators with poten-
tials.
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1. Introduction

In this paper we present an abstract framework for global spacetime and smooth-
ing estimates for evolution groups generated by self-adjoint operators. In particular,
this approach leads to such estimates for various classes of pseudodifferential oper-
ators.

Global spacetime estimates for solutions of partial differential evolution equa-
tions (such as the wave equation or the Schrödinger equation) have already become
a fundamental tool in the investigation of such equations, subject to linear and
nonlinear perturbations. It suffices to mention in this context the Strichartz es-
timates [26, 27] or weighted-L2 estimates [5]. These global estimates present a
twofold aspect, expressing both an additional regularity of the solutions and their
decay properties at large time. Additionally, the local “smoothing effects” (such
as the “ 1

2−derivative gain” in the case of the Schrödinger equation) have been
incorporated into the estimates [13, 21, 28].

The class of equations for which such estimates have been established has been
substantially extended in the last twenty years, as can be seen in [1, 2, 4, 6, 7, 8,
9, 14, 15, 16, 17, 20] and references therein.

The equivalence of many different estimates has been observed in [22], by an
application of canonical transforms and comparison principles. At the same time,
it can be also used to obtain critical versions of the limiting absorption principle
and smoothing estimates [23].

In this paper we advance further this approach, in a unifying abstract setting.
In particular, various functions (in the functional-analytic sense) of an operator
H admit such estimates, based solely on their validity for H. The treatment here
enables sharp spacetime and smoothing estimates for evolution groups of pseudo-
differential operators, with initial data that may be localized in “energy space”.
We do not need to exclude the possibility of singular spectrum embedded in the
absolutely continuous part of the spectrum.

As in the case of many useful differential inequalities (such as Hardy’s inequality),
it is of interest to establish the “best (or optimal) constant” . This has been done
in the case of the free Schrödinger operator in [25] and further extended in [11, 12].
In the abstract framework used here, we are able to provide such a best constant
in a wide array of spacetime estimates.

The paper is organized as follows.
In Section 2 the basic abstract setup and notation are introduced.
Section 3 presents the main global estimates in the abstract formulation, as well

as the “best constant” result of Theorem 3.8.
Section 4 deals with comparison principles. Generally speaking, if the evolution

of a self-adjoint operator H can be globally (namely, in space-time) estimated,

then the same is true for another self-adjoint operator H̃, provided the spectral
derivatives of the two operators can be “compared” (Theorem 4.4). As a special
case, we obtain a “comparison” between a self-adjoint operator and its potential
perturbation (Theorem 4.11).

Finally, in Section 5 we give a few examples, such as fractional Laplacians and
Schrödinger operators. We did not try to present the “most complicated” cases, but
rather convey the general ideas as applied to well-known operators of mathematical
physics.
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2. The basic setup and notation

Notation. The following notations are used throughout the paper.

• 〈x〉 = (1 + |x|2)
1
2 .

• The Fourier transform in Rn :

Ff(ξ) = f̂(ξ) = (2π)−
n
2

∫
Rn
f(x)e−iξx dx.

• It is useful in multi-variable formulas to indicate by an index a variable in
integration:

L2(Jλ) =

{
v(λ) ;

∫
J

|v(λ)|2 dλ <∞
}
.

• Let I ⊆ R be an interval and let Y be a Hilbert space. Then

L2(I, Y ) =

{
g : I → Y ; ‖g‖2L2(I,Y ) =

∫
I

‖g(t)‖2Y dt <∞
}
.

• The space of bounded linear operators on a space X into a space Y is
designated as B(X,Y ) with (uniform) operator norm ‖ · ‖B(X,Y ).

Let H be a self-adjoint operator in a Hilbert space H. The scalar product and
norm in H are denoted respectively by (·, ·)H and ‖ · ‖H.

We denote by {E(I), I ⊆ R an open interval} the associated spectral family of
H. We use the common simplified notation E(λ) = E(−∞, λ).

By Pac(H) we denote the projection on the absolutely continuous subspace.
Let Σac ⊆ R be the absolutely continuous spectrum of H. Note that we are not

assuming the absence of singular spectrum embedded in the absolutely continuous
spectrum. Thus, we allow Pac(H) 6= E(Σac).

Let X ⊆ H be an embedded dense subspace with a stronger norm ‖ · ‖X . If X ∗
is the dual space, we have the canonical inclusion X ⊆ H ⊆ X ∗. We denote by 〈·, ·〉
the X ∗,X pairing.

Let J ⊆ R be an open set. The basic tool in our treatment is the hypothesis
that the weak spectral derivative

A(λ) =
d

dλ

(
E(λ)Pac(H)

)
, λ ∈ J,

exists and is bounded from X into X ∗. Thus

(2.1) 〈A(λ)f, g〉 =
d

dλ

(
E(λ)Pac(H)f, g

)
H
, f, g ∈ X , λ ∈ J.

Since < A(λ)f, g > is a nonnegative bilinear form we have

|〈A(λ)f, g〉| ≤ 〈A(λ)f, f〉
1
2 · 〈A(λ)g, g〉

1
2 ,

hence

(2.2) ‖A(λ)‖B(X ,X∗) = sup
‖f‖X=1

〈A(λ)f, f〉
1
2 .

Remark 2.1. Note that for every a > −∞ we clearly have

(2.3) 〈A(λ)f, g〉 =
d

dλ

(
E((a, λ))Pac(H)f, g

)
H
, f, g ∈ X , a < λ ∈ J.

Remark 2.2. When dealing with perturbations (Subsection 4.1) we shall need to
use a more general setting.
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We shall find it simpler (and clearer) to formulate our results in the abstract
setting. A typical concrete example is H = L2(Rn) and X = L2

s(Rnx), s > 0, the
weighted L2 space, which is the usual choice in many applications. This space is
defined by:

(2.4) L2
s(Rnx) =

f(x) ; ‖f‖20,s =

∫
Rn

〈x〉2s|f(x)|2 dx <∞, s ∈ R

 .

In this case we denote the X ∗,X pairing simply as (·, ·)L2
−s,L

2
s
, and the corre-

sponding norm of the spectral derivative by ‖A(λ)‖s,−s.

3. Global smoothing estimates

The following assumption is fundamental in what follows.

ASSUMPTION 3.1. Let J ⊆ R be an open set . The operator-valued function
A(λ) : X ↪→ X ∗, is weakly continuous on J.

In particular, it is also locally bounded on J (in the uniform operator topology).

The class of operators studied here involves two real-valued functions:

ASSUMPTION 3.2.

σ(λ) is continuous on J.

There exists a finite set N ⊆ J so that a(λ) ∈ C1(J \ N ), and

a′(λ) > 0, λ ∈ J \ N .

We first establish useful identities for the unitary group eita(H). They are es-
sentially an expression of the duality of “time” and the “spectral parameter” (or
“energy”).

Proposition 3.3. Assume the conditions of Assumptions 3.1- 3.2.
Let φ, ψ ∈ X . Then

(1)

(3.1)

‖(σ(H)eita(H)Pac(H)E(J)φ, ψ)H‖L2(Rt)

=
√

2π
∥∥∥ σ(λ)

a′(λ)
1
2

〈A(λ)φ, ψ〉
∥∥∥
L2(Jλ)

,

and
(2)

(3.2)

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

=
√

2π
∥∥∥ σ(λ)

a′(λ)
1
2

(A(λ)φ)
∥∥∥
L2(Jλ,X∗)

.

Proof. For simplicity we take N = ∅ in Assumption 3.2. Otherwise, the set J
should be replaced by J \ N .

To prove (3.1) we use the definition of A(λ) and the spectral calculus to get

(3.3) (σ(H)eita(H)Pac(H)E(J)φ, ψ)H =

∫
J

eita(λ)σ(λ)〈A(λ)φ, ψ〉dλ.
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Defining a new variable η = a(λ) yields, with J̃ = {η = a(λ) ; λ ∈ J} ,

(σ(H)eita(H)Pac(H)E(J)φ, ψ)H =

∫
J̃

eitησ(a−1(η))
〈
A(a−1(η))φ, ψ

〉 dη

a′(a−1(η))
.

Invoking Plancherel’s theorem to this equality yields
(3.4)

‖(σ(H)eita(H)Pac(H)E(J)φ, ψ)H‖2L2(Rt)

= 2π

∫
J̃

|σ(a−1(η))
〈
A(a−1(η))φ, ψ

〉
|2

a′(a−1(η))

dη

a′(a−1(η))
= 2π

∫
J

σ(λ)2

a′(λ)
|〈A(λ)φ, ψ〉|2 dλ.

This concludes the proof of (3.1).
To prove (3.2) we apply again the spectral decomposition of H and the definition

of A(λ),

(3.5)

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

= sup
‖g‖L2(Rt,X)=1

∣∣∣ ∫
R

(
σ(H)eita(H)Pac(H)E(J)φ, g(t)

)
H
dt
∣∣∣

= sup
‖g‖L2(Rt,X)=1

∣∣∣ ∫
R

∫
Jλ

σ(λ)eita(λ)〈A(λ)φ, g(t)〉 dλdt
∣∣∣

= sup
‖g‖L2(Rt,X)=1

√
2π
∣∣∣ ∫
Jλ

σ(λ)〈A(λ)φ, g̃(a(λ))〉 dλ
∣∣∣,

where the one-dimensional (with respect to t) Fourier transform is

(3.6) g̃(θ) =
1√
2π

∫
R
e−itθg(t) dt.

As above we introduce the new variable η = a(λ) and use the Plancherel theorem
to obtain,

(3.7)

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

= sup
‖g̃‖L2(Rη,X)=1

√
2π
∣∣∣ ∫
J̃

σ(a−1(η))

a′(a−1(η))

〈
A(a−1(η))φ, g̃(η)

〉
dη,

hence∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥2

X∗
⊗
L2(Rt)

= 2π
∣∣∣ ∫
J̃

( σ(a−1(η))

a′(a−1(η))

)2

‖A(a−1(η))φ‖2X∗ dη
∣∣∣,

from which (3.2) readily follows. �

The method of proof used for Proposition 3.3 in conjunction with the role of
A(λ) in the spectral calculus enable us to obtain a general spacetime estimate for
any initial data φ ∈ H.
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THEOREM 3.4. Assume the conditions of Assumptions 3.1- 3.2 and let φ ∈ H.
Then

(3.8)∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

≤
√

2π sup
λ∈J\N

{ |σ(λ)|
a′(λ)

1
2

‖A(λ)‖
1
2

B(X ,X∗)

}
‖Pac(H)E(J)φ‖H.

Proof. For simplicity of the presentation we assume as above thatN = ∅. As in (3.5)
we write, assuming first that φ ∈ X ,

(3.9)

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

= sup
‖g‖L2(Rt,X)=1

√
2π
∣∣∣ ∫
J

σ(λ)〈A(λ)φ, g̃(a(λ))〉 dλ
∣∣∣.

Since A(λ) is a nonnegative form we have∣∣∣〈A(λ)φ, g̃(·, a(λ))〉
∣∣∣2 ≤ 〈A(λ)φ, φ〉 · 〈A(λ)g̃(a(λ)), g̃(a(λ))〉.

Inserting this in (3.9) and using the Cauchy-Schwarz inequality yields

(3.10)

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥2

L2(Rt,X∗)

≤ 2π sup
‖g‖L2(Rt,X)=1

∫
J

σ(λ)2〈A(λ)g̃(a(λ)), g̃(a(λ))〉 dλ ·
∫
J

〈A(λ)φ, φ〉 dλ

= 2π sup
‖g‖L2(Rt,X)=1

∫
J

σ(λ)2〈A(λ)g̃(a(λ)), g̃(a(λ))〉 dλ · ‖Pac(H)E(J)φ‖2H,

where the spectral theorem was used in the last equality.
Employing the same change of variable η = a(λ) as above we get

(3.11)

∫
J

σ(λ)2〈A(λ)g̃(a(λ)), g̃(a(λ))〉 dλ

≤
∣∣∣ ∫
J̃

σ(a−1(η))2

a′(a−1(η))
‖A(a−1(η))‖B(X ,X∗)‖g̃(η)‖2X dη

∣∣∣
≤ sup
λ∈J

{σ(λ)2

a′(λ)
‖A(λ)‖B(X ,X∗)

}∫
J̃

‖g̃(·, η)‖2X dη.

Observe that by the Plancherel theorem∫
J̃

‖g̃(η)‖2X dη ≤
∫
R
‖g̃(η)‖2Xdη = ‖g‖2L2(Rt,X ) = 1.

Plugging (3.11) into (3.10) we obtain (3.8), still under the assumption that φ ∈ X .
However, this assumption can be dropped due to the density of X in H. �

Remark 3.5. Note that in the above statements we could “absorb” E(J) into σ(H),
but we preferred to emphasize the localization aspect of the estimates (in “energy”
space) and to leave σ(λ) as a continuous function.

It will be expedient to give explicit statements for (3.2) and (3.8) in the case of
the weighted space, X = L2

s(Rnx). This is done in the following corollary.
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Corollary 3.6. Consider the case where H = L2(Rn) and X = L2
s(Rnx), s > 0,

the weighted L2 space. Let J ⊆ R be an open set and let φ ∈ L2
s(Rn). Then, under

Assumptions 3.1 and 3.2, the following holds:

• We have

(3.12)

∥∥∥〈x〉−sσ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt×Rnx )

=
√

2π
∥∥∥ σ(λ)

|a′(λ)| 12
〈x〉−s(A(λ)φ)(x)

∥∥∥
L2(Jλ×Rnx )

.

• Let

(3.13) ‖A(λ)‖s,−s := sup
‖ψ‖0,s=1

(A(λ)ψ,ψ)L2
−s,L

2
s
.

Then for all φ ∈ L2(Rnx),

(3.14)

∥∥∥〈x〉−sσ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt×Rnx )

≤
√

2π sup
λ∈J

[ |σ(λ)|
|a′(λ)| 12

‖A(λ)‖
1
2
s,−s

]
‖φ‖L2(Rn).

Remark 3.7. Note that ‖A(λ)‖s,−s is the operator norm of the self-adjoint operator

〈x〉−sA(λ)〈x〉−s on L2(Rn).

The statement in Theorem 3.4 can be rephrased by saying that the map HJ :
E(J)H ↪→ L2(Rt,X ∗) given by

(3.15) HJ φ = σ(H)eita(H)Pac(H)E(J)φ,

is bounded, under suitable conditions.
Suppose that Pac(H)E(J) = E(J), namely, that the spectrum of H over the

open set J is purely absolutely continuous. Then (3.8) can be rewritten as

(3.16) ‖HJ‖ ≤
√

2π sup
λ∈J\N

[
|σ(λ)|
|a′(λ)| 12

‖A(λ)‖
1
2

B(X ,X∗)

]
.

In fact, we now show that the operator-norm of HJ is given by the right-hand
side of (3.16).

THEOREM 3.8. Suppose that Pac(H)E(J) = E(J), namely, that the spectrum
of H over the open set J is purely absolutely continuous.

Then we have

(3.17)

‖HJ‖ = sup
‖φ‖H=1

‖σ(H)eit a(H)Pac(H)E(J)φ‖L2(Rt,X∗)

=
√

2π sup
λ∈J\N

[ |σ(λ)|
a′(λ)

1
2

‖A(λ)‖
1
2

B(X ,X∗)

]
.

Proof. For simplicity we assume that N = ∅. Let

Γ = {φ ∈ X ; ‖φ‖H = 1} .
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By the density of X inH, it clearly suffices to take the supremum in Equation (3.17)
over φ ∈ Γ. Using Equation (3.5) we therefore write, for φ ∈ Γ,

(3.18)

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

= sup
‖g‖L2(Rt,X)=1

∣∣∣ ∫
R

∫
Jλ

σ(λ)eita(λ)〈A(λ)φ, g(t)〉 dλdt
∣∣∣

= sup
‖g‖L2(Rt,X)=1

√
2π
∣∣∣ ∫
Jλ

σ(λ)〈A(λ)φ, g̃(a(λ))〉 dλ
∣∣∣,

where g̃ is defined in (3.6).

Defining G(λ) = a′(λ)
1
2 g̃(a(λ)), it follows from the Plancherel theorem that

‖G(λ)‖L2(Jλ,X ) ≤ ‖g(t)‖L2(Rt,X ),

with equality only if supp g̃ ⊆ a(J) = {η = a(λ) ; λ ∈ J} .
We therefore conclude that

(3.19)

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

=
√

2π sup
‖G‖L2(Jλ,X)=1

∣∣∣ ∫
J

|σ(λ)|
a′(λ)

1
2

〈A(λ)φ,G(λ)〉 dλ
∣∣∣.

Fix λ0 ∈ J, and take δ > 0. In view of (2.2) there exists ψ ∈ X such that
‖ψ‖X = 1 and

(3.20) 〈A(λ0)ψ,ψ〉 ≥ ‖A(λ0)‖B(X ,X∗) − δ.

Let h > 0 so that Dh = (λ0− h
2 , λ0 + h

2 ) ⊆ J, and let χh(λ) be the characteristic
function of Dh.

Take

G(λ) = h−
1
2χh(λ)ψ,

so that the integral in (3.19) becomes

(3.21) Kh = h−
1
2

∫ λ0+h
2

λ0−h2

|σ(λ)|
a′(λ)

1
2

〈A(λ)φ, ψ〉 dλ.

In view of Remark 2.1 we can take in (3.21),

φ =
E(Dh)ψ

‖E(Dh)ψ‖H
,

and obtain, using the obvious fact that d
dλE(λ)E(Dh)ψ = A(λ)ψ, λ ∈ Dh,

(3.22) Kh =
h−

1
2

‖E(Dh)ψ‖H

∫ λ0+h
2

λ0−h2

|σ(λ)|
a′(λ)

1
2

〈A(λ)ψ,ψ〉 dλ.

By the spectral theorem

‖E(Dh)ψ‖2H =

∫ λ0+h
2

λ0−h2
〈A(λ)ψ,ψ〉 dλ.

We conclude that by (3.20)

(3.23) lim
h→0

Kh =
|σ(λ0)|
a′(λ0)

1
2

〈A(λ0)ψ,ψ〉
1
2 ≥ |σ(λ0)|

a′(λ0)
1
2

(
‖A(λ0)‖B(X ,X∗) − δ

) 1
2

.
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From (3.19) we now obtain

sup
φ∈Γ
‖σ(H)eit a(H)Pac(H)E(J)φ‖L2(Rt,X∗)

≥
√

2π
|σ(λ0)|
a′(λ0)

1
2

(
‖A(λ0)‖B(X ,X∗) − δ

) 1
2

.

Since this holds true for any λ0 ∈ J, and for any δ > 0, we conclude that

(3.24)

sup
φ∈Γ

∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

≥
√

2π sup
λ∈J

[ |σ(λ)|
a′(λ)

1
2

‖A(λ)‖
1
2

B(X ,X∗)

]
.

The equality (3.17) now follows by combining this last estimate with the opposite
one (3.16). �

Remark 3.9. The result in Theorem 3.8 can be characterized as a “best constant”
result in the spacetime estimate. In the case of the Laplacian H = −∆ such a result
was obtained in [25].

4. Comparison principles

As an application of the spectral identities established in Section 3, we present
here applications of spectral comparison principles for self-adjoint operators. Given
two such operators, these principles enable us to carry smoothing estimates for one
of them to the other, provided their spectral densities can be “compared”. As a
special case, smoothing estimates can be obtained for functions of a self-adjoint
operator.

The general methodology of “comparison principles” was introduced in [22, 24],
where its usefulness was demonstrated by a wide array of operators.

We continue to work within the basic setup of Section 2, and add the hypothesis

that there is another self-adjoint operator H̃ on the same Hilbert space H. For

this operator we denote by Ẽ(λ) its associated spectral family and by P̃ac(H̃) the
projection unto its absolutely continuous spectrum.

In addition, with the same subspace X ⊆ H, we denote by Ã(λ) = d
dλ Ẽ(λ) :

X → X ∗ the spectral density.
To simplify the statements of the results below, we assume that for an open set

J ⊆ R, the spectra of both operators are absolutely continuous in J, and extend

the conditions in Assumptions 3.1, 3.2 also to H̃.

ASSUMPTION 4.1. Let J ⊆ R be an open set, so that Pac(H)E(J) = E(J) and

P̃ac(H̃)Ẽ(J) = Ẽ(J).

The operator-valued functions A(λ) : X ↪→ X ∗ and Ã(λ) : X ↪→ X ∗ are weakly
continuous on J.

The real-valued functions σ(λ), σ̃(λ) and a(λ), ã(λ) satisfy the conditions of
Assumption 3.2.

Recall that we assume the existence of finite sets N (resp. Ñ ) where the deriva-
tives of the amplitudes a(λ) (resp. ã(λ)) may not exist. For simplicity of the

presentation, we assume in the proofs below that they are null; N = Ñ = ∅. The
following proposition is a straightforward consequence of Proposition 3.3 .
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Proposition 4.2. Assume the conditions of Assumption 4.1.
(i) (space-local comparison) Let φ, ψ ∈ X . Suppose that we have

|σ(λ)|
|a′(λ)|1/2

|〈A(λ)φ, ψ〉| ≥ |σ̃(λ)|
|ã′(λ)|1/2

∣∣∣〈Ã(λ)φ, ψ
〉∣∣∣

for almost all λ ∈ J . Then we have∥∥∥(σ(H)eita(H)Pac(H)E(J)φ, ψ
)
H

∥∥∥
L2(Rt)

≥
∥∥∥(σ̃(H̃)eitã(H̃)P̃ac(H̃)Ẽ(J)φ, ψ

)
H

∥∥∥
L2(Rt)

.

(ii) (space-global comparison) Let φ ∈ X and suppose that

|σ(λ)|
|a′(λ)|1/2

‖A(λ)φ‖X∗ ≥
|σ̃(λ)|
|ã′(λ)|1/2

∥∥∥Ã(λ)φ
∥∥∥
X∗

for almost all λ ∈ J . Then we have∥∥∥σ(H)eita(H)Pac(H)E(J)φ
∥∥∥
L2(Rt,X∗)

≥
∥∥∥σ̃(H̃)eitã(H)P̃acẼ(J)φ

∥∥∥
L2(Rt,X∗)

.

Remark 4.3. We refer to the first estimate as “space-local comparison” since the
scalar product by ψ “localizes” σ(H)eita(H)Pac(H)E(J)φ in H. The absence of such
a scalar product in the second estimate means that it is “space-global comparison” .

The following theorem is a direct consequence of Theorem 3.8 (and (2.2)).

THEOREM 4.4 (uniform comparison). Assume the conditions of Assump-
tion 4.1.
Suppose that for almost all λ ∈ J and for every unit vector ψ ∈ X (‖ψ‖X = 1) there

exists a unit vector ψ̃ ∈ X (‖ψ̃‖X = 1), such that

(4.1)
|σ(λ)|2

|a′(λ)|
〈A(λ)ψ, ψ〉 ≥ |σ̃(λ)|2

|ã′(λ)|

〈
Ã(λ)ψ̃, ψ̃

〉
.

Suppose that there exists a constant C0 > 0 so that the following estimate holds
for all φ ∈ H :

(4.2)
∥∥∥σ(H)eita(H)Pac(H)E(J)φ

∥∥∥
L2(Rt,X∗)

≤ C0‖φ‖H.

Then it follows that

(4.3)
∥∥∥σ̃(H̃)eitã(H̃)P̃ac(H̃)Ẽ(J)φ

∥∥∥
L2(Rt,X∗)

≤ C0‖φ‖H

holds for all φ ∈ H, with the same constant C0.

An important application of Theorem 4.4 is stated in the following corollary; a
smoothing estimate for some operator H, yields smoothing estimates for functions
of H.

Corollary 4.5. Assume the conditions of Assumptions 3.1 and 3.2. Suppose also
that there is a constant C0 > 0 such that

(4.4)
∥∥σ(H)eitHPac(H)E(J)φ

∥∥
L2(Rt,X∗)

≤ C0‖φ‖H

for all φ ∈ H.
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Then we have the estimate

(4.5)
∥∥∥|a′(H)|1/2σ(H)eita(H)Pac(H)E(J)φ

∥∥∥
L2(Rt,X∗)

≤ C0‖φ‖H

for all φ ∈ H, with the same constant C0.

Proof. Let H = H̃, then the corollary follows from Theorem 4.4, taking a(λ) = λ

and letting there ã(λ) = a(λ) and σ̃(λ) = σ(λ)a′(λ)
1
2 . �

4.1. Comparing unperturbed and perturbed operators. The comparison
principles presented above provide a very effective way of dealing with global space-
time estimates for perturbations, as we shall now see.

Turning back to the setup in Section 2 we impose on the self-adjoint operator H
an assumption which is stronger than Assumption 3.1.

ASSUMPTION 4.6. Let J ⊆ R be an open set , such that Pac(H)E(J) = E(J).
The operator-valued function A(λ) : X ↪→ X ∗ is Hölder continuous on J, with
respect to the operator topology of B(X ,X ∗).

This assumption implies the Limiting Absorption Principle [3, Theorem 3.6]:

Claim 4.7. Let R(z) = (H − z)−1, Im z 6= 0. Then the limits

(4.6) R±(λ) = lim
ε↓0

R(λ± iε), λ ∈ J,

exist in the uniform operator topology of B(X ,X ∗).

As suggested in Remark 2.2, we need to assume an abstract setup that is more
general than the one used hitherto. We follow the presentation of [3, Section 4]. The
main additional ingredient is a subspace X ∗H ⊆ X ∗ that is densely and continuously
embedded.

Now let V : X ∗H ↪→ X be a short-range and symmetric operator. In particular,
we assume the following.

(4.7)



V is compact.

The subspace D = D(H) ∩ X ∗H is dense in H
and the restriction of V to D is symmetric in H.
There exist z ∈ C, Im z 6= 0, and a linear subspace Dz ⊆ D
such that the image (H − z)Dz is dense in X .

Remark 4.8. The compactness hypothesis on V can be replaced by the assumption
that the operators V R±(λ) : X ↪→ X are compact for any λ ∈ J.

Under these assumptions, the operator H̃ = H + V is essentially self-adjoint on

D [3, Lemma 4.2] and we use H̃ to denote its self-adjoint extension, and let Ẽ(λ)
be its associated spectral family.

Proposition 4.9. Assume that the operators {I + V R±(λ) ; λ ∈ J} are invertible
in X and

(4.8) sup
λ∈J
‖[I + V R±(λ)]−1‖B(X ,X ) <∞.

Then the weak derivative Ã(λ) = d
dλ Ẽ(λ), λ ∈ J, exists in B(X ,X ∗). Further-

more, there exists a constant C > 0, such that

(4.9) ‖Ã(λ)‖B(X ,X∗) ≤ C‖A(λ)‖B(X ,X∗), λ ∈ J.
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Proof. Let R̃(z) = (H̃ − z)−1, Im z 6= 0. Under the conditions of the Proposition,
we can invoke the resolvent equation to obtain the Limiting Absorption Principle

for H̃ [3, Eq.(4.2)]:

(4.10) R̃±(λ) = lim
ε↓0

R̃(λ± iε)) = R±(λ)[I + V R±(λ)]−1, λ ∈ J.

The existence of the spectral derivative follows from the well-known relation [3,
Corollary 3.7]

Ã(λ) =
1

2πi
[R̃+(λ)− R̃−(λ)],

so by (4.10)

Ã(λ) = A(λ) +
1

2πi
R+(λ)

[
(I + V R+(λ))−1 − I

]
− 1

2πi
R−(λ)

[
(I + V R−(λ))−1 − I

]
= A(λ) +A(λ)

[
(I + V R+(λ))−1 − I

]
+

1

2πi
R−(λ)

[
(I + V R+(λ))−1 − (I + V R−(λ))−1

]
.

Since
1

2πi

[
(I+V R+(λ))−1−(I+V R−(λ))−1

]
= −(I+V R+(λ))−1V A(λ)(I+V R−(λ))−1,

we finally get

(4.11) Ã(λ) = A(λ)(I + V R+(λ))−1 − (I + V R+(λ))−1V A(λ)(I + V R−(λ))−1,

and the proof is complete in view of the assumption (4.8). �

Remark 4.10. Note that in Proposition 4.9 we did not need any uniform (in λ ∈ J)
estimates on the limiting resolvent values R±(λ).

The invertibility assumption of (I+V R±(λ))−1 already follows from the assump-

tion that H̃ has no eigenvalues in J and an additional mild assumption on A(λ) [3,
Theorem 4.13].

In view of Proposition 4.9 we can formulate a version of Theorem 4.4 for pertur-
bations:

THEOREM 4.11 (Spacetime estimates for perturbed operators). Let H
be a self-adjoint operator on H satisfying Assumption 4.6.

Let H̃ = H + V where V is a symmetric short-range perturbation so that the
hypotheses of Proposition 4.9 are satisfied.

Assume further that the real-valued functions σ(λ), σ̃(λ) and a(λ), ã(λ) satisfy
the conditions of Assumption 3.2 and

(4.12)
|σ(λ)|2

|a′(λ)|
≥ |σ̃(λ)|2

|ã′(λ)|
, λ ∈ J.

Suppose that there exists a constant C0 > 0 so that for all φ ∈ H we have

(4.13)
∥∥∥σ(H)eita(H)E(J)φ

∥∥∥
L2(Rt,X∗)

≤ C0‖φ‖H.

Then there exists a constant C > 0 such that

(4.14)
∥∥∥σ̃(H̃)eitã(H̃)Ẽ(J)φ

∥∥∥
L2(Rt,X∗)

≤ CC0‖φ‖H
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holds for all φ ∈ H.

5. Applications to operators of mathematical physics

We shall now give a few examples that illustrate the scope of the abstract results
when applied to a variety of operators that are frequently studied in mathematical
physics.

5.1. The fractional Laplacian. Consider the operator H = −∆ in H = L2(Rn),
n ≥ 3. It is absolutely continuous in J = (0,∞) and the condition of Assumption 4.6
is satisfied with X = L2

s(Rn), s > 1
2 [5, Section 2].

Furthermore, it was shown in [7, Theorem 1] that for all φ ∈ L2(Rn),∫
R

∫
Rn
〈x〉−2s|H 1

4 eitHφ(x)|2 dx dt ≤ C0‖φ‖2L2(Rn).

Consider now the operator Hα for some α > 0. Then it follows from Corollary 4.5
that

(5.1) α2

∫ ∞
0

∫
Rn
〈x〉−2s|H

2α−1
4 eitH

α

φ(x)|2 dx dt ≤ C0‖φ‖2L2(Rn),

for all φ ∈ L2(Rn).

5.2. The Stark Hamiltonian. Consider the self-adjoint operator in H = L2(Rn),
n ≥ 1,

H = −∆− x1,

where x = (x1, x2, . . . , xn) ∈ Rn.
This operator is the well-known “Stark Hamiltonian”, describing the motion

of a quantum-mechanical charged particle in a uniform electric field (all physical
constants scaled to unity).

It follows from [6, Lemma 2.2] that H satisfies the condition of Assumption 3.1
with

J = R, X = L2
3
4
(Rn).

In fact, using the notation introduced at the end of Section 2 it holds that

‖A(λ)‖ 3
4 ,−

3
4
≤ C(1 + |λ|)− 1

2 , λ ∈ R.

It follows that [6, Theorem A]∫
R

∫
Rn
〈x〉−

3
2 |(I + |H|) 1

4 eitHφ(x)|2 dxdt ≤ C0‖φ‖2L2(Rn).

For the operator |H|α, with α > 0, Corollary 4.5 now yields

(5.2) α2

∫
R

∫
Rn
〈x〉−

3
2 ||H|α−1(I + |H|) 1

4 eit|H|
α

φ(x)|2 dxdt ≤ C0‖φ‖2L2(Rn).

Of course, such an estimate can be derived for any function a(H) where a(λ) satisfies
the condition of Assumption 3.2.
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5.3. The Schrödinger operator with potential. Consider the operator H̃ =
H +V in L2(Rn), n ≥ 3, where H = −∆. This operator can be studied in terms of
Theorem 4.11.

Employing the notation of Subsection 4.1 we let X = L2
s(Rn), so that X ∗ =

L2
−s(Rn) and X ∗H = H2

−s(Rn), the Sobolev space of functions whose derivatives up
to second-order are in L2

−s(Rn).

The condition of Assumption 4.6 is satisfied with s > 1
2 [5, Section 2].

We assume that V (x) is a symmetric, short-range potential (see (4.7)).
The limiting values of the resolvent of the free operator H satisfy the classical

Agmon property:

Claim 5.1. For any s > 1
2 , the limiting values R±(λ) = lim

ε↓0
(H − λ∓ iε)−1, λ > 0

satisfy

(5.3) ‖R±(λ)‖s,−s ≤ Cλ−
1
2 , λ > 0,

so that the spectral derivative A(λ) = 1
2πi (R

+(λ)−R−(λ)) also satisfies

(5.4) ‖A(λ)‖s,−s ≤ Cλ−
1
2 , λ > 0,

where C > 0 depends only on s, n.

We now obtain the following spacetime estimate for H̃.

Proposition 5.2. Let s > 1
2 and assume that the potential V is short-range and

symmetric, and the spectrum of H̃ in (0,∞) is absolutely continuous.
Assume further that

(5.5) lim sup
λ→∞

‖V R±(λ)‖s,s < 1.

Fix δ > 0 and let Jδ = (δ,∞). Then there exists a constant Cδ,s so that

(5.6)

∫
R

∫
Rn
〈x〉−2s|(I + H̃)

1
4 Ẽ(Jδ)e

itH̃φ(x)|2 dx dt ≤ Cδ,s‖φ‖2L2(Rn),

for all φ ∈ L2(Rn).

Proof. The estimate (5.6), with the free Schrödinger operator H instead of H̃ (and

E(λ) instead of Ẽ(λ)) is well-known [5, Theorem A].
In order to invoke Theorem 4.11 we need to verify the condition in Proposi-

tion 4.9, namely the estimate (4.8).

Since we assume that H̃ has no eigenvalues in (0,∞) the operators I + V R±(λ)
are invertible (in X ) for any λ > 0, and being continuous (in the operator topology)
we conclude that, for any Λ > δ we have

(5.7) sup
λ∈[δ,Λ]

‖[I + V R±(λ)]−1‖s,−s <∞.

On the other hand, it follows from the assumption (5.5) that if Λ is sufficiently
large there exists η > 0 so that ‖V R±(λ)‖s,s < 1− η, so that

(5.8) sup
λ>Λ
‖[I + V R±(λ)]−1‖s,−s <

1

η
.

Combining (5.7) and (5.8) we get the needed estimate (4.8). �
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Example 5.3. • Consider the case where V = V (x) is a multiplication op-
erator. In view of (5.3) the condition (5.5) is certainly satisfied under the
pointwise decay condition

(5.9) |V (x)| ≤ C〈x〉−1−ε
, x ∈ Rn, ε > 0.

• More generally, let Hα
−s(Rn) be the weighted Sobolev space of order α > 0,

normed by

‖f‖α,s = ‖(I −∆)
α
2 f‖0,s.

It was shown in [1] that the condition (5.5) is satisfied if for some ε > 0
the operator

(5.10) V : H1−ε
−s ↪→ L2

s, s >
1

2
,

is bounded.
• Observe that V in (5.10) need not be a multiplicative real potential. For

example, we can take V to be the pseudodifferential operator

(5.11) V = 〈x〉−s(I −∆)β〈x〉−s,

for any β < 1
2 .

We refer the reader to [19, 18, 20] for related spacetime estimates for the Schrödinger
operator, using very different methods.
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