
SYMMETRIES ON THE JULIA SET 
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INTRODUCTION 

Let Jf and ~f be the Julia set and the maximal entropy measure of the rational function 
f [1-5]. In this paper it is proved that the class of all rational functions of a fixed 
degree with common Julia set Jf or, in exceptional cases with common measure Df, is finite, 
with one exception. Also considered is the following question: How are the function of 
this class connected with f? For polynomials a complete answer was obtained in [6]. Our 
method leads to a generalization of results of Fatou [7], Julia [8], and Ritt [9] on commut- 
ing rational functions in the style of the paper [i0]. 

With the theory of iteration of rational functions one can become acquainted from the 
surveys [ii, 12]. The Julia set Jf is defined as the set of points of the Riemann sphere C, 
in the neighborhood of which the set of iterates (fn)ne 0 is not precompact (normal in the 
sene of Montel [13]). The Julia set coincides with the closure of the repulsive periodic 
points of f. The measure ~f is defined to be the unique measure of maximal entropy of the 
endomorphism f: C-C [4]; it is characterized by the balancedness property [5]: ~f(f(A)) = 
m~f(A), where m = degf, for any Borel set A on which f is injective; the support of ~f coin- 
cides with Jf. 

The rational f is said to be critically finite if the set Pf of iterates of its critical 
points is finite. According to Thurston [14, 15], to each such function there corresponds 
an orbifold O that is a sphere C together with the map n: C-~N U {=}, defined as follows. 
If the point z is not in Pf then n(f) = i, whereas if z ~ Pf then n(z) equals the least-com- 
mon multiple of the numbers n(t)deg tf for all preimages t of the point z: f(t) = z(deg tf 
denotes the multiplicity of the function f at the point t). The orbifold is said to be 

parabolic if (i--I/n(z))=9 In this case there exist a covering map F: C-+C and a --~v I , - .  

lift ~: z --az + b, such that degzF = n(F(z)), z e C, and f o F = F o ~ [14, 15]. The 
measure ~f is the image F,s 2 of the lebesgue measure s on R z. The parabolic orbifolds and 
the corresponding covering maps and lifts are described in [15]. We shall use the following 
assertion, proved in [I0]: f is critically finite with parabolic orbifold if and only if 
the measure ~f is fibered at some point z0 e Jf. Here a locally finite Borel measure o on 
R ~ is said to be lamellar at the point z0 e supp o [i0] if there exists a diffeomorphism 

of some domain onto a neighborhood of z 0 such that the measure ~*o is invariant under trans- 
lations along the x axis in R 2. 

I. Main Results. We term exceptional those cases in which the Julia set is the Riemann 
sphere ~, a circle, or a segment (in C). Fix a rational function f of degree m ~ 2. Let 
J = Jf, ~ = ~f, and let H = id be a function that is meromorphic in some disc B(a, r) of 
radius r centered at the point e J. 

Definition i. We call H a symmetry on J if the following conditions are satisfied: 
i) X ~ B(a, r) N J if and only if H(x) e H(B(a, r)) n J; 2) in the exceptional cases there 
exists an a > 0 such that ~(H(A)) = a~(A) for any set A on which the map H: A ~ C is injec- 
tive. A family ~ of symmetries in the disc B(a, r) is said to be nontrivial if ~{ is normal 
in B(a, r) and no limit function for .~ is equal to a constant. 

Let us state our main result. 

THEOREM i. The function f is critically finite with parabolic orbifold if and only 
if there exists an infinite nontrivial family of syn~netries on Jf. 

Kuibyshev Civil Engineering Institute. Translated from Matematicheskie Zametki, Vol. 
48, No. 5, pp. 72-79, November, 1990. Original article submitted August 15, 1989; revision 
submitted January 23, 1990. 

1126 0001-4346/90/4856-1126512.50 �9 1991 Plenum Publishing Corporation 



We let Rd(f) denote the set of rational functions g of degree d with the property that 
Jg = Jf and, in the exceptional cases, ~g = Df. Set 

/~ (I) = U d~ Bd q). 

Two rational functions are said to be equivalent if they are conjugate by means of a 
linear-fractional map. Notice that if f is equivalent to z • then for any d ~ 2 the set 
Rd(f) is isomorphic to the unit circle. 

THEOREM 2. If f is not equivalent to z • then Rd(f) is finite for any d. 

THEOREM 3. Suppose g �9 R(f) and one of the following conditions is satisfied: I) there 
is a point ~ that is preperiodic (i.e., a preimage of a periodic point) for f and periodic 
and repulsive for g; 2) the limit set Pf' of the iterates of critical points of f is finite 
and contains no neutral irrational periodic points of f. Then either f and g are critically 
finite and have a common parabolic orbifold, or fs o gk = f2s for some positive integers 
s and k. 

Remark i. Suppose f and g commute. Then, by Theorem 3, either fs = gk, or f and g 
are critically finite with common parabolic orbifold, and so we recover Ritt's theorem [9]. 

Remark 2. The condition fs o gk = f2s guarantees that Jg = Jf and Dg = ~f. 

THEOREM 4. If Jf is a circie and g �9 R(f), then either f is equivalent to z • or there 
exists a linear-fractional symmetry h and numbers s k �9 N such that fs o h = fs and gk = 
h o fs 

2. Auxiliary Propositions. The following assertions are of independent interest. 

LEMMA i. Let % e C, Ill > i, and let ~n be a sequence of univalent functions in B(0, 
E), such that ~n(0) = 0 for all n �9 and ~n ~ id (n + ~). Then there exist 6 �9 (0, E/2), 
q �9 and sequences (s and (n i) of positive integers, such that for any m e N U {0}, 
starting with some number i, the maps Ri: B(0, 6) + B(0, 26) given by the formulas 

and 

& (z) = ~.4-m~.~ (~--a,-.,)~;, (z)) 

:limRi(z) =z+q~.-" ,  zEB(O, 8). 
'l,-,Paa 

(i) 

(2) 

Proof. Let qn = ~n (0)" Since qn = 0 and qn + 0, there exist sequences of positive 

integers (s and (n i) such that %Itq, i-,q(i--~oo), where [ql ~ 0 and is small. For these 

sequences and small 6 > 0 we expand the functions (i) in series and obtain (2). 

LEMMA 2. Supose the map R is holomorphic in a neighborhood of the point a, R (a) = a, 
R'(a) = i, and R preserves a finite measure a such that o({a}) = 0 and o(U) > 0 for any neigh- 
borhood U of the point a. Then R = id. 

The proof follows from the description of the local dynamics of R [Ii]. 

LEMMA 3. Let I E C, Ill > i, and suppose in the half-plane {zlRe z > M0}, M0 > 0 there 
is defined a single-valued analytic function ~ of the form ~(z) = i + z + O(Izi-X), ~ > 0, 
Iz] ~ =. Then for any c > 0 there exist sequences of positive integers (n i) and (s and 

a number M > M 0 such that %-~t~q(~ntz)-->z-Sc(i -+~176 for all z �9 H = {zlRez > M}. 

Proof. Choose M > M0 such that ~(H) c H. It is known [i] that 

* t ( z ) = l + z + o ( I z l ) + o ( l )  (l~+oo, z-->oo). 

Let c > 0 and the sequence (n i) be such that %"L_,0 (i ~ =). Set li----- [c ]% l"i]. 

~-~',~, (~?,z) - . z  + c (~ ~ ~). 

Then 

Using Lemmas 2 and 3 we prove 

Proposition i. If the rational function f and the symmetry H on Jf have a common repul- 
sive fixed point a, then f and H commute. 
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Proof. In a small neighborhood of a consider the function R = H o f o H -I o f-l, where 
the branches of H -I and f-i are chosen so that H-I(a) = f-l(a) = a. We have: R(a) = a, 
R'(a) = i. In the exceptional cases R preserves the measure ~f and, by Lemma 2, R = id, 
i.e., H o f = f o H. Now suppose Jf is not the Riemann sphere, a circle, or a segment. As- 
sume R ~ id. Let us show that if the point z e Jf is close to a, then df contains an analytic 
arc connecting z and a. As shown in [7, 8] (see also [i0]), this forces Jf to be C, or a 
circle, or a segment. Thus, let z e Jf be close to a. Then ~k(z) ~ a when k ~ ~, where 

denotes R or R -I. By a theorem of Schroder [5], there exists a holomorphic change of coor- 
dinates in a neighborhood of a which maps Jf into a set that is invariant under the map z 
z/l, where I = f'(a). Now subject the new coordinates to the change z ~ A/zP with suitable 
A = 0 and p e N. and then apply Lemma 3. Proposition 1 is proved. 

We shall need the following fact. 

Remark 3. A. E. Eremenko showed that there is no neighborhood U such that U D Jf is 
diffeomorphic to the product of an interval and a Cantor set. 

Indeed, suppose the ocntrary holds. 

One can assume that U is a neighborhood of a repulsive fixed point. Let F be its Poin- 
care function [i]. Then the full preimage I = F-1(Jf) is the product of a line (say the 
x axis) and a Cantor set. Now consider some component of the set C \Jf that is periodic for 
f [ii] and let P be a component of the preimage F-I(D); the horizontal strip P is bounded 
by lines s and s from I. The boundary of D consists of F(s i) (i = i, 2) and the boundaries 
of the two periodic cluster sets C+ and C_ for the meromorphic function F: P ~ C, obtained 
when Rez ~ +~ and Rez ~ -~. By Iversen's theorem [16], the boundaries of the complete clus- 
ter sets C+ and C_ are contained in the boundary of cluster sets 

and 

C ~ = n.~>o/'  (oP f l { z : r t e z > M ) )  

C ~  ~M>o/"(  OPI} { z : R e z < - - M } ) .  

Since C+ ~ and C_ ~ are at most two-connected and lie in 3D, the domain D is finitely connec- 
ted. Since the boundary of D contains analytic curves, D cannot be a Siegel disc or a Her- 
man ring [ii]. If D is a simply connected domain of direct attraction, then, by a theorem 
of Fatou [2], Jf is a circle or a segment. We reached a contradiction. 

3. Proof of Theorem i. Suppose ~{ is an infinite nontrivial family of symmetries on 
Jr. Let us prove that f is critically finite with parabolic orbifold (the converse is obvi- 
ous). The proof is broken into steps. 

i. By Definition i, there exist a sequence (Hn), H ~ ~', a point a e Jf, and a number 
P0 > 0 such that each H n is univalent in the disc B 0 = B(a, P0) and (H n) converges in B to 
a univalent function H. One can assume that: a) H = id (this is achieved by replacing H n 
with Hn+1 -! o Hn) ; b) a is a repulsive fixed point of f and in B0 there is defined the branch 
f0 -l of the function f0, singled out by the condition f0-1(a) = a Set F n = Hn -l o f0 -l o 
H n. Starting with some n, the maps F n are defined in a smaller disc B = B(a, p), 0 < p < 
P0. They enjoy the following properties: i.i) each F n is univalent in B; 1.2) F n ~ f0 -I in 
B; 1.3) Fn(B) c B, Fn(a~) = a~, Fn'(a,~ ) = X -I, where a n = Hn-l(a), i = f'(a); i.~) x e Jf N B 
if and only if Fn(x) e Jf fl Fn(B), n ~ ; 1.5) in the exceptional cases ~(Fn(A)) = m-1~(A) 
for any Borelian set A c B, where ~ = ~f, m = degf. 

2. Suppose that an = a for some n. Consider the function R = f o F n. Then R(a) = a, 
R'(al) = i. A verbatim repetition of the proof of Proposition 1 gives R = id. Therefore, 

F n ~ f0 -I implies an=/=a. 

3. Schroder's theorem and properties 1.1)-1.3) of F n guarantee the existence of an 
> O, a sequence of functions (hn), and a function h, all univalent in B(0, e), such that 

hn(0 ) = an, hn'(0 ) = I, h n ~ h (n ~ ~), fn ~ hn = hn(z/l), f0 -I o h = h(z/l), z ~ B(0, e). 
Set ~n = h-1 o hn, qn = ~n (0)" By Sec. 2, either qn ; 0, or F n = f0 -I. Suppose Yn = f0 -l 
for large n. Now notice that 

Llcl)n ( ~ 1  (z)/lt) = h-lo(/oFtn)oh (z), 
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and apply Lemma i. If I = h-1(J1 N B) and v = h*D (the preimage of the measure D), then 
we conclude that the set I and the measure 9 are invariant under the translations z ~ q + 
z/A m , q ; 0, m �9 N. Therefore, the set I is either a full neighborhood of zero, or an in- 
terval, or the product of a Cantor set and an interval. The last case is impossible (see 
Remark 3). In the first two cases the measure D is lamellar at the point a. It follows 
that f is critically finite with parabolic orbifold. 

4. Thus, we showed that either f has a parabolic orbifold or, starting with some index, 
F n = f0 -I, i.e., 

N~oHn = HnoN ~, k ~ N .  (3) 

Now let us carry out the last step: In the disc B choose a small disc B I centered at 
another repulsive fixed point b, a ~ b, of some iteration fP, and let fl-P be a branch of 
f-P satisfying fl-P(b) = b, fl-P(BI) c B I. Repeating the arguments (for the new functions 
~n = Hn -l o fl-P = Hn), we arrive at the equality fl-P o H n = H n o fl-P. From this and (3) 
it follows that Hn(f0-k(b)) = f0-k(b), k �9 N, i.e., H n = id. The theorem is proved. 

4. Functions with Common Julia Set or Common Maximal Entropy Measure: Proofs. 

Proof of Theorem 2. Suppose f is not equivalent to z • Find a sequence (gn) in Rd(f) 
which converges to a rational function g everywhere but at finitely many points. If g(z) 
c, then c �9 Jf. On the other hand, for large n the sequence of iterates of gn is normal 
in a neighborhood of c. We reached a contradiction. Therefore, g = const and, by Theorem i, 
it suffices to consider the case where f has a parabolic orbifold O. Let g �9 Rd(f). Since 
~g = uf, �9 is also an orbifold for g. One can assume that Jf = C. If Ff and F~ are cover- 
ing maps for f and g, then Fg[ l o Ff locally preserves the Lebesgue measure on R 2. Conse- 
quently, there exists a coverlng map common for all g �9 Rd(f), and only finitely many of 
lifts, corresponding to a given degree d [15, i0]. Theorem 2 is proved. 

Proof of Theorem 3. Suppose g e Rd(f ) and f, g are not critically finite with para- 
bolic orbifold. 

i) Passing to iterates one can consider that the points a and b = f(~) are fixed for 
f and g, respectively, and a is repulsive for g. First, let us prove that b, too, is repul- 
sive for f. Assume the contrary, i.e., 1~21 = i, where ~2 = f'(b). Let p be the multiplic- 
ity of the point , in the equation f(x) = b. Since I~iI > i, where ~ = g'(a) in a neigh- 
borhood of b there is defined a holomorphic function H I such that H I o f = f o g. Set H 2 = f. 
The symmetries H I and H 2 satisfy Hi(b) = H2(b) = b, H1'(b) = liP, H2'(b) = ~2. By a holo- 
morphic change of coordinates one can ensure that Hi(z) = %iPz. If 12q = 1 for some q e N 
then by Lemma 3 we reach an exceptional case (see the proof of Proposition I). If, however, 
12q = 1 for all q ~ N, then expanding H 2 in a series we obtain: liP s H2(z/%IP s + %2z, 
s ~ ~, and again we arrive at)an exceptional case. Therefore, pf = pg = ~. But then ~(H 2. 
(A)) = m~(A) and ~(H I o H2(A ) = md~(A) for a small neighborhood A of the point b. More- 
over, IH1'(b) I = I(H I o H2)'(b)l = I%IIP. Consequently, |im}~(B(b, s))/|nE equals simul- 

taneously inm/In I%IIP and md/in llllP: contradiction. 

Thus, we proved that IA21 ~ i. Hence, I~21 > i. We fix a small neighborhood B of the 
point a and we shall construct a nontrivial family of ssnmnetries in B. In B there is defined 
a branch of go -I by the condition g0-1(a) ' = b. Also, in a small neighborhood B I of the point 
b consider the branch of f0 -I specified by the condition f0-1(b) = b. Let h~ and h 2 be holo- 
morphic changes of coordinates that are defined in neighborhoods of zero and take go -~ and 
f0 -~ into the maps z -~ z/~ and z ~ z/~ 2, respectively. Set Hs = ~o/o~"~ = h~o(~z~)o 

(/oh,o(%["~A[~)), where (ks and (ns are chosen so that ~'/%~;-~ i, I--~ ~, and p is the multi- 

plicity of the point a under f. We have Hz = h=o(%~;~)o(h~:/%~*), where ~ = h~ -~ o f o h, 
~(u) - CuP, u ~ 0, C = 0. Expanding ~ in a series, one verifies that the sequence (Hs con- 
verges in B to a holomorphic function H ; const. Now apply Theorem 1 and conclude that H i = 
H.j for some i ~ j, n i > nj. It remains to put x =~'5(z). Then /~(x)= ]~o~"~-"~(x). This 
completes the examination of the case i). In case 2), fix a repelling fixed point a of the 
function g. Two subcases are possible: a) mr(a) c pf; b) there exists a point b �9 mf(~)\Pf 
[here ~f(a) denotes the set of limit points of the sequence (fn(a))n~0]. Since Pf' is finite 
and contains no neutral irrational cycles, in subcase a) the point = is periodic for f and 
we arrive at case i) of the theorem. Now consider subcase b). For some 6 > 0 and some se- 
quence n k ~ ~, ~"~(a)--. b and in each disc B (/"k(a), 26) there is defined a branch ~"~ by 
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the condition ff%(f'~(a)) = a. Fix a small neighborhood B0 = B (a, E) of the point a such 
that Ig'*x(l < 21Xzl for all x ~ B 0, where XI = g',(a). In B~ = B (]% (a), 6) consider the 

function ~ = glko~ ''~. where s is the smallest number for which diam~(B k) > g/41%ll. Then 
diam k(Bk) < e/2 and, by the distortion theorem C l < l~k'(X) < C a for some CI, C2, 0 < C l < 
C 2 < ~, and all k �9 N, x �9 B k. It follows that there exists a disc B centered at a such 
that B c ~(Bk) for all k. Set H k = ~I IB. Then (H k) is a nontrivial family of symmetries 

in B and H~ = ]n~og~ t~, where the branch g0 -z is defined in B 0 by the condition g0 -z (a) =a. 
By Theorem I, 

]"~ = ]"SogtCt~ 

for some i = j, s > s Theorem 3 is proved. 

Proof of Theorem 4. Suppose f is not equivalent to z • Since Jf = S is a circle, 
condition 2) of Theorem 3 is satisfied. Therefore, f2s o g2k = f~k, gz = g2k. The maps 
fl, gz: S ~ S preserve orientation. Let F and G be lifts of these maps to R. and let ~ be 
a lift of the measure ~ = ~f = ~g to B Introduce the homeomorphism 

q~: R - ~ R ,  qD(~-)= Ft(IO, .,l), i f  z ~ I O ,  t) and 

(z+n)=~(x)+n, n~Z,z~R. 

Prom the fact that the measure ~ is balanced, it follows that the difference ~ o F(x) - 
o G(x) does not depend on x �9 R. Prom this it follows, upon descending to S, that for 

some homeomorphism h0: S ~ S and some number ~, lal = i, we have 

ho~ (z) = ~ (hoola)(z), z ~ S .  

Thus  we p r o v e d  t h a t  h = gz ~ f -1  d o e s  n o t  d e p e n d  on t h e  b r a n c h  f z - z  on S .  T h e r e f o r e ,  h 
i s  a l i n e a r - f r a c t o n a l  f u n c t i o n .  The t h e o r e m  i s  p r o v e d .  

Remark  4 .  A l l  a s s e r t i o n s  o f  t h i s  p a p e r  c a r r y  o v e r  t o  p o l y n o m i a l - l i k e  maps  [17 ]  a n d  
t o  R B - d o m a i n s  a n d  maps  [ 1 8 ] .  

The a u t h o r  i s  g r a t e f u l  t o  A. ~ .  E r e m e n k o  a n d  M. Yu. L y u b i c h  f o r  s t i m u l a t i n g  a n d  u s e f u l  
d i s c u s s i o n s  on t h e  t o p i c s  o f  t h i s  w o r k .  

LITERATURE CITED 

i. P. Fatou, "Sur les equations fonctionnelles," Bull. Soc. Math. Fr., 47, 161-271 (1919). 
2. P. Fatou, "Sur les equations fonctionnelles," Bull. Soc. Math. Fr., 48, 33-94, 208-314 

(1920). 
3 G. Julia, "Memoire sur l'iteration des fonctions rationnelles," J. Math. Pure Appl., 

8, 47-245 (1918). 
4 M. Ju. Lyubich, "Entropy properties of rational endomorphisms of the Riemann sphere," 

Ergodic Theory and Dynam. Syst., ~, 351-386 (1983)o 
5 A. Preire, A. Lopes, and R. Mane, "An invariant measure for rational maps," Bol. Soc. 

Bras. Math., I_~4, 45-62 (1983). 
6 Io N. Baker and A. Eremenko, "A problem on Julia sets," Ann. Acad. Sci. Penn., 1__2, 229- 

236 (1987). 
7 P. Fatou, "Sur l'iteration analytique et les substitutions permutables," J. Math., ~, 

343-362 (1923). 
8 G. Julia, "Memoire sur le permutabilite des fractoins rationnelles," Ann. Sci. ~cole 

Norm. Sup., 3._99, 131-215 (1922). 
9 J.F. Ritt, 'Permutable rational functions," Trans. Am. Math. Soc., 2__5, 399-348 (1923). 

10. A. E. Eremenko, "Sone functional equations connected with the iteration of rational 
functions," Alg. Anal., !, No. 4, 102-116 (1989). 

ii. M. Yu. Lyubich, "The dynamics of rational mappings: the topological picture," Usp. 
Mat. Nauk, 4._~i, No. 4, 36-95 (1989). 

12. A. ~. Eremenko and M. Yu. Lyubich, "The dynamics of analytic transformations," Alg. 
Anal., !, No. 3, 1-70 (1989). 

13. P. Montel, Lecons sur les Pamilles Normales de Ponctions Analytiques et leurs Applica- 
tions, Gauthier-Villars, Paris (1927). 

1130 



14. W. Thurston, "On the combinatorics of iterated rational maps," Preprint, Princeton Univ. 
and Inst. of Advanced Study, Princeton (1985). 

15. A. Douady and J. H. Hubbard, "A proof of Thurston's topological characterization of 
rational functions," Report No. 2, Inst. Mittag-Leffler (1985). 

16. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, 
Cambridge (1966). 

17. A. Douady and J. H. Hubbard, "On the dynamics of polynomial-like mappings," Ann. Sci. 
~cole Norm. Sup., 18, 287-343 (1985). 

18. F. Przytycki, "Riemann map and holomorphic dynamics," Invent. Math., 85, 439-455 (1986). 

GENERALIZATION OF THE PALEY-WIENER THEOREM IN WEIGHTED SPACES 

V. I. Lutsenko and R. S. Yslmukhametov 

i. Introduction 

Let X be a linear topological space of complex functions defined on some subset T c 
Rn (C"), and assume that a system of functions e <t,z>, z e ~, is complete in this space. 
Then the generalized Laplace ~ransform, which takes a linear continuous functional S on X 
to a function ~(z) = (S, exp(<t, x>)), z ~ ~, establishes an isomorphism between the ad- 
joint space X* and a linear topological space of functions defined on ~. 

Many mathematicians have devoted their work to the problem of describing the adjoint 
space in terms of generalized Laplace transform. For example in [i] the projective limit 
of weighted Banach spaces of the form 

{ / ~  ti (D): II / II = sup [[ ] (z) [ /exp (--~ ( - - ln  d (z)))] < ~ }  
2 

was considered, where D is a convex, bounded region in C", d(z) is the distance from a 
point z to aD and ~ is a convex function, and a complete description was given of the ad- 
joint space in terms of the generalized Laplace transform. In [3, 4] some generalization 
of the Paley-Wiener theorem for weighted Hilbert spaces. 

The present article is devoted to the problem of describing adjoint spaces in terms 
of the Laplace transform on the space 

L=(l,W) = { /~L,o~ (1): III IIc,c~,w) = '  aef f~, I/(t)l,/W(t)dt < ~ }  , 

where I is a bounded interval on the real axis and i/W(t) is a measurable function on I. 

THEOREM i. Let W(t) be a function on I bounded from below by a positive constant and 
bounded from above on each compact subinterval of I. Let h(x) = sup (xt--ln ]/W(t))- Young's 

conjugate function of the function In [W(t), and define p~(x) by the condition 

,x+p~(x) 
~-o,(x) [~  (x) - -  h' (t) ] dt --~ t .  

Then 

i. The generalized Laplace transform ~(z) of the functional S on L2(I, W) is an entire 
function satisfying the condition [~[(z)[ < C S exp (h(x)), 

II ~' I1" = ~. ~. [ ~' (x + iy)I S e -~(~) p~ (x) dE' (x) dy -~ ~e II S II~,(l,w). 

Division of Physics and Mathematics and Computing Center, Bashkirskii Division, Acad- 
emy of Sciences of the USSR. Translated from Matematicheskie Zametki, Vol. 48, No. 5, pp. 
80-87, November, 1990. Original article submitted April 19, 1988. 

0001-4346/90/4856-1131512.50 �9 1991 Plenum Publishing Corporation 1131 


