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1 Introduction

The aim of this paper is to establish the existence of an essentially unique
maximal arithmetic virtual quotient action for a broad class of actions of
semisimple Lie groups. This includes all finite measure preserving ergodic
actions of such groups with finite entropy. This entropy condition is automat-
ically satisfied for actions on compact manifolds. In particular, our results
provide arithmetic invariants of such actions, namely an algebraic Q-group
and the associated commensurability class of arithemetic subgroups.

We also discuss examples of results which ensure non-triviality of this
quotient, and in particular the relationship to invariant geometric structures
and representations of fundamental groups.

2 The canonical arithmetic quotient.

The aim of this section is to prove for an ergodic, finite measure preserv-
ing, finite entropy action of a semisimple Lie group with no compact factors
on a compact manifold that there is an essentially unique maximal arithmetic
virtual quotient. Our main result is Theorem 2.16. We begin the discussion
with some general notions and notation.

Suppose a locally compact group G acts ergodically on a space X, pre-
serving a finite measure p. A finite extension of X is a G-space X' with
a measure preserving map X' — X and finite fibers. By ergodicity of the
action on X, (almost) all fibers have the same cardinality, say [. The action
on X’ can thus be defined by a cocycle a : G x X — S; (the latter being
the symmetric group), and the action being given on X' = X x {1,...,[}
(as a measure space) by ¢ - (z,y) = (9, (g, z)y). The ergodic components
of X’ will thus have a similar form (with a possibly smaller [.) Given two
finite ergodic extensions X; — X, X3 — X, one can form the fibered product
X1 xx Xy — X, which will be a finite, but not necessarily ergodic extension.
However, any ergodic component will project surjectively onto both X; and
X3. Thus, we can always find a finite ergodic extension X3 of X such that



we have a commuting diagram

Xy

and X3 C X; xx X,. For a detailed discussion of finite (and more generally
compact homogeneous space) extensions, see [Z1].

A basic example (but not the only one of importance) is of course an ac-
tion on a manifold that lifts to an ergodic action on a finite sheeted covering.

Given an ergodic G-space X, by a quotient of X we mean a G-space Y
with invariant measure together with a measure preserving G-map X — Y.
By ergodicity of G on X, the map is essentially surjective (i.e. the image is
conull) and the action on Y is ergodic. By a virtual quotient of X we mean
a quotient of a finite ergodic extension of X.

Example 2.1. Suppose G acts ergodically on X and Gy C G is of finite
index and acts ergodically on X. Suppose Y is a G-space and a (Gy quotient
for the G-action on X. Then Y is a virtual quotient for the G-action on X.
Namely, there is a natural quotient G-map X x G/Gy = X' — Y.

We now define a particular class of actions. Let H be an algebraic Q-
group, A C H an arithmetic subgroup (i.e. A is commensurable with Hz)
and K C Hg a compact subgroup. Then if H has no Q-characters (e.g.,
if the reductive Levi component of H is semisimple) then A is a lattice, so
K\ Hg/A carries a natural finite measure which is preserved by the natural
action of Zp, (K).

Definition 2.2. By an arithmelic action of a group G we mean an ergodic
action of G on a space of the form K\ Hg/A which is defined by a homomor-
phism G — Zp (K).

Example 2.3. If (G is a non-compact simple Lie group, G C Hy where
Hy is semisimple with no compact factors, and A is an irreducible lattice,
then G is ergodic on Hg/A by Moore’s theorem [Z2] and hence defines an



arithmetic action of . (Precise conditions for a subgroup of a general Hg
to act ergodically on Hg/A is an extensively studied situation. (c.f. [BM].)

We now collect some information on issues related to arithmetic actions.

For simplicity, for the remainder of this section, for a Q-group H we shall
denote Hy simply by H and refer to R-points of R-groups as real algebraic
groups. We also take G to be a semisimple Lie group with no compact factors.

Lemma 2.4. Let H be a real algebraic R-group and L. C H a connected Lie
subgroup. Suppose I' C L is a lattice and that I' C L N Hy. Finally, suppose
G C L and G is ergodic on L/T'. Then:

(i) L is a Q-subgroup, and

(i7) [[,[] = [, where | is the Lie algebra of L.

Proof. We have a G-map p : L/I' — L/T" where the closures are in the
Zariski topology. Then p,(volrr) is a finite G-invariant ergodic measure on
the variety L/I', and by Borel density [Z2] is supported on a single point.
Therefore L C I', and since I' C L, we obviously have L is Zariski dense
in . Thus, [L, L] is Zariski dense in [T',T]. Since [[,[] is an algebraic Lie
algebra, it follows that [[, ] = [lie(b),lie(o)]. Thus if [ # [[,[], we get a map
L/T — T'/[I',T]T" whose image has positive dimension. Since G is ergodic on
L/T, this implies T'/[T', [T’ supports a non-trivial G-ergodic measure, which
is impossible since the image of G in T'/[[',T] is trivial. Thus, L = [L, L] and
is hence algebraic, and since I' C L C T', L is defined over Q.

Definition 2.5. Let G acting on K\H/A be an arithmetic action. We say
it is of reduced form if G is ergodic on H/A.

Lemma 2.6. Fuvery arithmetic action of G (which we recall is semisimple
with no compact factors) has a finite extension that is an arithmetic action

of reduced form.

Proof. Consider the extension of G-spaces H/A — K\H/A. Since the ac-

tion on the base is ergodic and finite measure preserving, we may choose an
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ergodic component of the G-action on H/A that projects to the standard vol-
ume on K\H/A. (c.f. the analysis in [Z1] of ergodic components in compact
group extensions.) By Ratner’s theorem [R], this measure is supported on
some L'-orbit, say L'/L' N hAh™!, for some Lie group L' with G C L' C H.
Since the projection of this L’-orbit to K\ H/A is of full measure, it follows
that there is some y € H such that K L'yl is of full dimension in H, and
hence KL’ is of full dimension. Since K is compact, KL’ = H. Thus, we
have K N L\L'/L' N A — K\H/A is a surjective measure preserving map
of manifolds of the same dimension and finite volume. This is therefore a
finite extension. Replacing L’ and its subgroups by L = A7'L’h and the
corresponding subgroups, and applying Lemma 2.4, we deduce the desired
conclusion.

Lemma 2.7. [If K\H/T is an arithmetic G-space of reduced form, and
M C H is a normal Q-subgroup containing G, then M = H.

Proof. H/M is a Q-group and we have a G-map
H/AN — H/MA (= (H/M)/(H/M)z).

Since G C M, the action on the target is trivial, and since G is ergodic
on H/A (and hence on H/MA), we have H = MA. Since H is connected,
M=H.

With these preliminaries completed, we now consider arithmetic quotients
and virtual quotients of a given ergodic G-space. Supppose H is a Q-group
and A,A" C H are arithmetic (i.e. commensurable with Hyz) and hence
commensurable. If G C H and K\H/A is a virtual arithmetic quotient
of X of reduced form, so is K\H/A’. To see this, it suffices to consider
the case A’ C A of finite index. If X' — K\H/A is a G-quotient where
X' is a finite ergodic extension of X, let X" be any ergodic component of
X" xgvma K\NH/A'. Then X" will be a finite ergodic extension of X and it
has K\ H/A" as a quotient. A similar argument shows that if A; and A, are
commensurable and X; — K\ H/A; are virtual quotients of X, then there is
a finite ergodic extension X’ of X with quotients K\ H/A; N A, (and hence
both K\H/A;.) We will speak of this situation as defining commensurable
virtual quotients of X. (We remark that if one restricts attention to quotients



of a fixed X, one cannot pass in this way between commensurable arithmetic
groups. This is only one of the reasons for working with virtual quotients.)

A basic tool in showing the existence of a canonical virtual arithmetic
quotient is that of entropy. If G acts ergodically on a space (X, 1) preserving
a finite measure y, for g € GG we denote by h(g) (or hx(g)) the entropy with
respect to p.

Definition 2.8. We say that G acts with finite entropy if h(g) < oo for all
ged.

Example 2.9. If G acts smoothly on a compact manifold, then G acts with
finite entropy.

The following is a well-known computation.

Lemma 2.10. Suppose G C H and M = K\H/A is an arithmetic G-space.
Let A C H be the maximal R-split torus. Then for g € G,

hH/A(Q) = hK\H/A(Q) = Z{logw(g)}

where w(g) is a weight of Ady|G with respect to A and w(g) > 1.

Corollary 2.11. [If G is semisimple and acts ergodically on X with finite
entropy, then the set of possible entropy functions {h(g),g € A} for virtual
arithmetic quotients of X s finite.

Proof. This follows from Lemma 2.10, standard results about the repre-
sentation theory of G, and the following two facts about extensions. If
X — Y is a quotient of ergodic G-spaces with finite invariant measure,
then hx(g) > hy(g); and if the extension is finite hx(g) = hy(g).

Definition 2.12. If X; — Y; = K;,\H;/A; are virtual arithmetic quotients
of X, we say that Y1 > Y, if by passing to commensurable virtual arithmetic
quotients X] — Y, = K;\H;/A., we can find

i) a common finite ergodic extension X' of X]; and

ii) a Q-surjection § : Hy — Hy such that 0(K,) C Kz, 0(A}) C AY, so that



X = Y
X' 10

X; = Y
commutes.

We observe that Y; = Y; amd Y; > Y] if and only if Y; are commensurable
virtual quotients. Furthermore, if ¥; and Z; are commensurable, then Y] = Y;
if and only if Z; = Z,.

For the remainder of this section G is a semisimple Lie group with no
compact factors, and X is an ergodic G-space of finite entropy.

Lemma 2.13. There is a virtual arithmelic quotient action of X, K\H/A,
in reduced form such that

i) H is semisimple; and

ii) K\H/A is maximal (up to commensurability) among all virtual semi-
simple arithmetic quotients (i.e. those of the form C\L/T" with L
semisimple) of reduced form.

Proof. Choose a semisimple virtual arithmetic quotient of reduced form,
K'\H'/A" which has a maximal entropy function among all such virtual quo-
tients. This exists by Corollary 2.11. Consider the algebraically simply
connected algebraic covering group of H' defined over Q, say ¢ : H — H’,
such that the inclusion G — H' lifts to a smooth homomorphism G — H
and such that K\ H/A is a virtual arithmetic quotient for some K C ¢~ '(K’)
and A C ¢7'(A’). By the descending chain condition on compact subgroups
we can further assume K is minimal with this property. We now claim that
K\ H/A satisfies assertion (iz).

If not, then we have X' — C\L/I' — K\ H/A for some finite extension
X' of X, where C\L/T' — K\H/A is induced by a Q-surjection § : L. — H.
Let N = ker(#). Then we can write [ = h @ n to be a direct sum of Q-ideals.
The projection of g to n must be trivial for otherwise the maximality of the
entropy function of K\ H/A would be contradicted by Lemma 2.10. However,
if we have g C b, and C\L/I" is of reduced form, it follows from Lemma 2.7
and the choice of H that L = H, i.e. 6 is a Q-isomorphism. Finally, by
minimality of K, §(C) = K.



Lemma 2.14. There is a virtual arithmetic quotient in reduced form that is
mazimal (up to commensurability).

Proof. Fix K\ H/A to be a virtual semisimple arithmetic quotient satisfying
the conclusion of Lemma 2.13. Now consider all larger virtual arithmetic quo-
tients of reduced form, and choose one of maximal entropy function among
all such, say C\M/I" — K\ H/A. Finally consider all virtual arithmetic quo-
tients of reduced form K\ P/A > C\M/I'. To prove the Lemma, it suffices
to see that the possible values of dim(P) is bounded.

Let N =ker (P — M). Then N is a Q-group. Suppose N is not unipo-
tent. Then letting p : P — P/Rad,(P), we see that p(E)\p(P)/p(A) is a
virtual arithmetic quotient in reduced form strictly larger than K\ H/A. Fur-
thermore, it is of reduced form (since £\ P/A is) and since (G is semisimple,
P = [P, P] by Lemma 2.7. In other words, p(P) is also semisimple, which
contradicts the choice of H. Thus, we may assume N is unipotent. Since
C\M /T has a maximal entropy function, Lemma 2.10 implies that G central-
izes N. Thus, Zp(N) is a normal Q-subgroup of P, and we have G C Zp(N).
By Lemma 2.7 again Zp(N) = P, i.e. N is central in P.

The Lie algebra p is defined over Q and we choose a subspace n’ C p such
that n’ is defined over Q and n @ n’ = p. (We note that n C p is a central
ideal, but n’ is only a linear subspace defined over Q.) Let B:n’ xn’ — n
be given by B(z,y) = proj,([z,y]). Since n C 3(p), I = n' & B(n' x n’') is
an ideal in p and [ is defined over Q. We have dim(n') < dim(M), so if
dimP > dimM + (dimM)?, then I C p is a proper Q-ideal. Thus J = [I, ] is
a proper (Q-ideal that is also an algebraic Lie subalgebra. Furthermore, since
n is unipotent we can choose n’ such that some conjugate of g is contained
in 0, hence in I, and since g is semisimple, in J. It follows from Lemma
2.7 that some conjugate of GG does not act ergodically on P/A, and hence ¢
does not either. This contradicts the fact that £\ P/A is in reduced form.
Therefore, we must have dimP < dimM + (dimM)?, and this proves the
lemma.

To discuss uniqueness of maximal virtual arithmetic quotients, we first
remark that if H is a Q-group, A is an arithmetic subgroup, and G acts on
H/A viaw: G — H, then G will also act via g — hr(g)h™" for any h € H.
If h ¢ Hg, the resulting actions will not a priori be commensurable. More
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generally, we consider the following situation.

Definition 2.15. Let K\H/A be an arithmetic G-space defined via a ho-
momorphism w1 : G — Zy(K) Let z € Zy(m(G)) and h € H. Then
G also acts on hzKz""h™"\H/A via 7y : G — Zy(hzKz"'h™"), where
ma(g) = hmi(g)h™"'. We call two such arithmetic actions R-conjugate.

Clearly, any two R-conjugate arithmetic actions are isomorphic in the
category of G-actions, and in particular, one will be a quotient of an ergodic
G-space if and only if the other is. We also remark that one is in reduced
form if and only if the other is.

We can now state the main result of this section.

Theorem 2.16. Let GG be a semisimple Lie group with no compact factors.
Let X be an ergodic G-space with finite invariant measure and finite entropy.

Then:

(1) There is a mazimal (up to commensurability) virtual arithmetic quo-

tient of reduced form, say A(X).

(2) A(X) is unique up to R-conjugacy. More precisely, if Y is another such
virtual quotient, then A(X) and Y have R-conjugate commensurable
virtual arithmetic quotients.

(3) If Y is any virtual arithmetic quotient of X of reduced form, then Y <
7, where Z is an R-conjugate of A(X).

(4) Any virtual arithmetic quotient of X is a quotient of some finite ergodic
extension of A(X).

Proof. Let K\H/A satisfy the conclusions of Lemma 2.14. Let C\L/I" be
any other virtual arithmetic quotient of X in reduced form. Passing to
commensurable actions, we can assume there is a finite ergodic extension
X' of X and measure preserving G-maps ¢ : X' — K\H/A and ¥ : X' —
C\L/T. Letting u be the relevant measure on X', then v = (¢, V), is a finite
G-invariant ergodic measure for the diagonal action on K\ H/AxC\L/T’, that
projects to the standard measure on each factor. Then it is not difficult to see
that we can lift v to an ergodic measure v/ on H/A x L/T" that projects to the



standard measure on both factors and projects to v. By Ratner’s theorem,
this measure is supported on the orbit of a Lie group .J, diag(G) C J C H x L.
It follows that .J projects surjectively to both H and L. Thus, we can write
the J orbit supporting v/ as J/A where A = (A x II'l™') N J for some [ € L.
Give L the @Q-structure obtained by conjugating the given structure by [.
Then by Lemma 2.4, .J is a Q-group, A C .J is an arithmetic subgroup, and
the projection J — H is a Q-surjection. Furthermore the projection of J/A
to K\H/A x C\L/I' = K x C\H x L/A xT'is (K x C)\(K x C)J/A =
(K x C)yn J\J/A. Thus, letting D = (K x C')N.J, we have that D\.J/A is
an arithmetic G-space which is a virtual arithmetic quotient of X in reduced
form, and for which we have, via the projection, D\J/A > K\H/A. This
shows that they must be commensurable. Via a conjugate Q-structure on
J, we see also that D\J/A > C\L/I'. Assertions (1) and (2) then follow

directly, and (3), (4) follow from these and earlier results in this section.

3 Examples

If we write A(X) = K\ H/Hz, then (the commensurability class of) Hz is
canonically attached to the action of G on X. There are a number of results
that relate this discrete group to m(X).

Theorem 3.1 [Z2] Let M be a compact real analytic manifold. Supose GG is
a simple Lie group with R-rank (G) > 2, and that G acts on M preserving an
ergodic volume density and a real analytic connection. Assume further that
m (M) is (abstractly) isomorphic to a subgroup of some arithmetic group.
Then there is a Q-group L and a local embedding G — L such that

(i) AM) = C\L/Lg.
(ii) Ly C m(M).

The proof of this result (for which we refer the reader to [Z2]) uses a
combinaton of superrigidity for cocycles, Ratner’s Theorem, and Gromov’s
work on rigid transformation groups.
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In [L.Z], we obtianed much sharper results with engaging hypotheses (and
without the geometric hypotheses.) We briefly recall some definitions, refer-
ring the reader to [LZ] for a more detailed discussion.

Let M be a compact space for which covering space theory holds. Assume
we have a continuous action of GG on M where G is a connected Lie group.
Then G acts on any covering space M’ of M. Suppose there is an ergodic
finite invariant measure g for the GG action on M.

Definition 3.2

(i) The G' action on M is called engaging szN? is ergodic on M' for every
finite covering M" — M.

(i1) The G action on M is called totally engaging if for every non-trivial
convering p : M' — M, there is no G-equivariant measurable section
of p.

Remark 3.3
(i) Totally engaging implies engaging.

(ii) Arithmetic actions are totally engaging. (See [LZ].)

To state the main results of [LZ] and their relation to A(M), we need one
more definition from [LZ].

Definition 3.4. ([LZ, Definition 4.1]) Suppose H; are algebraic k-groups,
1= 1,2,..., and H; = L; x U; are Levi decompositions defined over k. We
call Hy and Hy k-isotopic if there is a k-isomorphism Ly — Lg, such that
under this isomorphism wi(= Lie algebra of U;) are k-isomorphic L; modules.

The main results of [LZ] exhibit the relationship of A(M) to represen-
tations of m1(M). Roughly, they assert that with engaging hypotheses, a
representation of m (M) yields an arithmetic quotient of M and hence of

A(M).
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Theorem 3.5 ([L.Z, Theorem 5.1]) Let G be a connected simple Lie group
with R-rank (G) > 2, and suppose G acls on a compact M, preserving a
finite measure and engaging. Let o : (M) — GL(n,R) be any linear rep-
resentation, with image I' = o(m(M)) an infinite group, and Zariski closure
I' C GL(n,R). Then I is s-arithmetic. More precisely, there is a real alge-
braic Q-group H, an embedding I' — Hq (and hence necessarily in Hyg for
some finite set of primes S) and subgroups I's, C I'g C 1" such that:

(i) H contains a group R-isotopic to T’

(ii) [h,b] = b.
(11i) [I': Tp) < o0

(iv) T is profinitely dense in I'g

(v) T's is commensurable with Hy and is a lattice in H.

Furthermore, (perhaps by passing to a finite cover of G), there is a local
embedding G — H such that C'\ H/TU'y, is a virtual arithmelic quolient of
M. In particular, C\ H/T o, < A(M), where A(M) is the canonical mazimal

arithmetic quotient.

Theorem 3.6 ([L.Z, Theorem 5.2]) With the hypotheses of Theorem 3.5, and
the additional hypothesis thatl the action is totlally engaging, we may take
' = To. In particular, T is arithmetic.

One of the motivating questions for the developments in the study of
actions of simple groups of higher rank can be formulated as follows:

Question 3.7 If R-rank (G) > 2, when does A(M) = M?

Constructions of “non-standard” actions on manifolds (see [B]) have in-
volved constructions along sets of zero measure. Thus, at the level of measure
theory, there are still no known examples in higher rank for which equality
does not hold. Without the higher rank assumption, however, A(M) may
be a very proper quotient of M. This can be seen via the examples of
Furman-Weiss [FW] (which they discussed for different purposes.) Namely,

12



let G = O(1,n) and I' C G be a cocompact lattice with a surjective homo-
morphism A : I' — Z. Let Y be a compact Z-space with ergodic invariant
measure and positive entropy. Let I' act on Y via h and let X = (G x Y)/T
be the induced G space. Then X is a compact G-space, with finite entropy.
Furthermmore, by continously varying the entropy of the Z-actions on Y,
one can continuously (and non-trivially) vary the entropy for elements g € G
acting on X. Since the entropy for arithmetic actions is controlled by Lemma
2.10, this shows that for most such X we will have A(X) # X, as they cannot
have equal entropies. In fact, one can have such examples with A(X) = G/I'.
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