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§1. DEFINITIONS AND BASIC PROPERTIES

The principal use of homotopy end and homotopy coend constructions is the
presentation of a space X or of a diagram of spaces X or made out of well defined

pieces, each of which contains certain partial information of the final object X.

In this particular reconstruction or decomposition of X each elementary piece is
given by two factors that “complements each other in some way” or more generally
each piece depends functionally on two variables (¢,d) € C°P x C where C is the
indexing category that organizes these piece into a whole structure. A typical
example is the reconstruction [Elmendorf], up to homotopy equivalence of a G-
space (i.e. a space with an action by a group G) out of the collection of fixed points
subspace X* for all subgroups H C G. Here the two factors mentioned above will

be:

o XH ={x € X|hx =z for all h € H} taken, as we vary H, as a diagram over
the opposite category O to the orbit category Oq = {G/H|H C G} of G.

ee The orbits of G i.e. the G-spaces G/H for all H C G, taken here as a diagram

over the orbit category itself.

Together they form a diagram X : C°? x C — {Spaces} with X(G/H,G/K) =
XHtimesG /K aformula that makes sense in view of the identity X = map,(G/H, X).
Thus “the basic building blocks” for a G space X are the orbits G/K of G and
each one is taken with “multiplicity” maps(G/K, X) i.e. multiply G/K by “the
number of times that it appears in the G space X”. If fact we will have a formula

ho%)end{G /K x XH} ~ X which is a homotopy version of Elmendorf’s functor.
G

On the other hand suppose we want to “decompose and build” a homotopically
A X
meaningful space of mappings of the map A — Bto X — Y ie. map| |, |
B Y

If A— B is not a cofibration or X — Y not a fibration then the space of strictly

commutative diagram

is not “homotopically meaningful” in as much as we can replace A — B by an
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equivalent A’ — B’ with

~

A ——»

Vo

~

B —=»
a commutative diagram where the horizontal maps are homotopy equivalence, and
the space of strict maps as above map(A’ — B’, X — Y’) will not have the same
homotopy type as map(A — B, X — Y). To get a meaningful mapping space
we may of course replace A — B by A° — B° an equivalent cofibration and
X — Y by X — Y/ an equivalent fibration and then take the strict mapping
space. We can achieve the same thing by constructing the desirable mapping space
directly from the pieces map(A, X), map(B,Y), map(A4, Y) by means of a homotopy
end. In the case at hand this amounts simply to taking the homotopy pull back of

the diagram
map(A4, X)

|

map(B,Y) —— map(A4,Y)

Ezample. Let f : A — B be {0,1} — {*} and g : X — Y be any map then
map(A — B, X — YY) is the strict pull back of X — 9 , v « 9  x whose

homotopy type can, of course, change upon changing g by a homotopy. While for
the desired “homotopy invariant” complex function we replace f by the cofibration
{0,1} = [0, 1], i.e. the inclusion map 0I C I where I denote the unit interval, and
then map(A" — B', X — Y) is the homology pull back of X Y < X.

In the present framework this desired homotopy meaningful complex function
appears as a homotopy coend of the diagram Hom(V,, W) over the small category
J°P x J where J = {- — -} is the “two object one arrow” category, when V,, W,
are the spaces A, B, X,Y.

Notice that for two diagrams X, Y over C the spaces Hom(X,, Y3) form a diagram

over C°? x C.

Homotopy coends and homotopy ends

Definition. (Compare [|, []) Let X : C°? x C — H be a functor to a category H in
which the notion of homotopy colimit is well defined. The homotopy coend of X
denoted by hOC(C)eIldX is defined as the homotopy colimit of the simplicial object
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BX defined as follows: In dimension k£ > 0 we have the sum in C

H X(Co,ck) = BkX

f f
CQ —1)01—)--~ —k)ck

indexed by the k-simplices cq i>cl — i>ck of the nerve of C. The face
and degeneracy maps in BX are the usual ones: if (a; fn, ..., f1) is an element of

X (o, B) where fp 0 fp_10---0 f1: @ — 3 we have

(X(Zda fn)a'; fla"' afn—l 1=0
d'x(frs--o s f1) =< (a5 f1, fio fizty---sfn) 1<i<n-—1
(X(flaZd)(aanaafn) i1=mn

LD X (er, )

Definition. Let X : C°? x C—H be a functor to a category H in which homotopy
limits are defined. The homotopy end denoted by hoend X is the total space (or
homotopy limit) of the cosimplicial object £*X defined as follows. In codimension

k > 0 we have the product in ‘H

H X(co,cx) = LFX
co Ly ey —rerr I8y
indexed by the k-simplices of the reverse of C. The coface and codegeneracies are
defined as usual. Namely k+ 1 maps d; for 0 < ¢ < k into a typical factor X (co, cx)
of E’f“X associated to c¢g i) cL— -+ ﬂ)ck is the projections followed induced

maps

where for 0 < 2 < k£ we compose and otherwise use the opposite variance of X :

C°P x C to get elements in ¢; or cx_; for dy and d.

Special cases: The most common occurrence of ends and coends arise when one
starts with two similarly shaped diagrams and take certain functors of two variables
such as products, joins, smash products or mapping spaces. These are examples
of homotopy bar and cobar constructions compare [??]. For example a typical

homotopy coend construction occurs as a ’homotopy tensor product’ of two functors
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of opposite variance as we saw above in the theory of G-spaces. Namely one starts
with two functors: X; : C? — § and X5 : C°? — § are given and so we may
define X (¢,d) = X;1(c) x X3(d) and thus X : C? x C — S is a functor as needed.
Alternatively another Y; : C — S is given and one defines U : C°? x C — S by
U(c,d) = map(Xi(c), Yi(d))-

definition. The homotopy tensor product or homotopy coend of X; and X5 is the

coend of X; x X5 and is denoted by X; ®, alch X,. Dually the homotopy end of
the functor mapg(Xaz, Yz) : calc®® x C — S will be denoted by mapl(Xs, Y2)

Ezample. F¢®F F? ~ x when F¢:C — S, F? : C? — S. In this case F4, F¢

are free so th homotopy coend is equivalent to the coend F¢ ®¢ F?.

Basic properties.
Following [Mac p. 221 (3)(4)] the basic properties of hoend and hocoend are

(1) homotopy invariance. Any weak homotopy equivalence of diagrams yields a weak

equivalence of their homotopy coends and homotopy ends.
(2) Adjunction. map(hocgend X, W)= ho%(gsnd map(X, W) where W isin S, X €

SCOP ><C.

(3) Commutation. map(W, hognd X) = hognd map(W, X).

Proof. All these follow formally from corresponding properties of holim and ho-

colim.

In the situation above for example property (2) has the form

map(A ®% B, W) = mapl(A, map(B, W))

for any diagrams of opposite variance A and B and a fixed space W.

Yoneda’s lemma, strict and homotopy versions.

Here we recapitulate a well-known generalization of the two natural isomor-
phisms R ® g M ~ Homp(R,M) ~ M for any (left) module M over a ring with
unit R. Notice that in these equations the symbol R denotes three different objects:
a ring, a right R-module in R®z M and a left R-module in Hompg (R, M). Given a
category D we denote by Ip the D°P x D set with D(d,d’) = Hom(d,d") = D(d,d’).

Then we have:
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Yoneda’s lemma. For any functor G : D — Ens there are natural isomorphisms
and homotopy equivalences:
(2) Hom) (Ip,G) ~ G =Homyp(Ip, G).
or alternatively for any A € D one has isomorphism of sets: for any A € D
(1) HOHID(—, A) ®% G~ G(A) =@ XD HOIIID(A, —).
(2) (Homp(A,—),G) ~G(A).

Proof. The isomorphism Homp(—, A) ®p G — G(A) is gotten as the adjoint of
the map
Homp(z, A) — Hom(G(z), G(A))

which is gotten by applying the functor G to a given arrow x — A in D whereas
the 77 is defined as “evaluation on idg € Homp(A, A). Namely to each morphism
of functors Homp(A4,—) — G we associate its value in G(A) on the element
ids € Homp(A, A).

Similarly the map G ®p Homp (A4, —) — G(A) for a contravariant G : D? —
Ens is the adjoint of natural transformation G — map(Homp (4, —), G(A)) be-
tween two the contravariant functors. This transformation sends g, € G(z) to
the map that assigns to an arrow a : A — X the value G(a)(g,) € G(A) where
G(a) : G(z) — G(A) is the map induced by a.

Proof for the homotopy coend see section (-) bellow..

The homotopy version is proved similarly by a diagonal argument.
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§2. HOMOTOPY COEND FOR FREE DIAGRAMS

Orbits, free orbits..

Often it is helpful to calculate homotopy (co)ends via free resolutions. In fact we
shall see that if X (or Y)is a dimensionwise free diagram (see below) then X ®% Y
is homotopy equivalent to the strict coend X ®p Y and similarly for map’ (X, W).
We recall from [] [] that a D-space e : D — S is called a D-orbit if colimp e ~ .
Since we are working with simplicial diagrams over a discrete indexing category D
we will be concerned with D-orbit that are D-sets, namely e : D — Ens. With
every object d € D one can associate a canonical orbit set namely F?: D — Ens
with F4(d') = Homp(d,d') = D(d,d’). Since every member = of Fi(d') is the
image of id € F%(d) under z itself we see that co%)im F?% = x so that F'?® is a D-orbit
set. This special orbits are called the free orbits of D it clearly satisfies Yoneda’s
lemma mapp,(F?, X) = X(d). We have defined a functor F : D°? —s SP that
associate to each d € DP the D-set F¢. Since for each d — d’ there is a functor
F¥ — Fd the association d — F? is contravariant. In other words we can
rewrite F' as a functor Fp = F : D°? x D — &Ens by adjunction. Notice that F' is
a representable functor to which one might apply Yoneda’s lemma, notice also that

with the previous notations F' = Ip.

Free D-sets.

Now given an arbitrary D-set S : D — Ens than clearly one can decompose
S into its D—orbits via S = [[S, where S, is a D-orbit, & € colimS. If all
these orbits are free D-orbits ‘élhen we say that S is a free D-set. An orbit F
is free if there is d € objD and an element ¢ € FE(d) which freely generates E
namely the correspondence F'¢(d') — E(d') that carries f : d — d' € F4(d') to
D(f)(i) € E(d') is an isomorphism F? —5 F of D-sets. More precisely a free D-set is
a D-set ® : D — Ens together with a generating (subset) natural transformation:
G %5 & where G : D%5 — Ens where D¥s the discrete category of D and g is a

map of functors such that g has the obvious universal property:

S

Free D-spaces.
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Definition. A D-space X : D — § is called dimensionwise free if for all n > 0 the
D-set X,, : D — Ens is free.

Definition. A D-space X : D — S is called free D-space X has a graded D%*-set

of generators which is closed under degeneracies.
The following is not hard to prove using induction on dimension.

Theorem. For any D-space X there exists a free D-space resolution r : X free —
X where X77¢ is a free D-space and r(d) X/7°¢(d) — X (d) is a weak homotopy

equivalence for all d € objD.

Ezample. If X is a space with a discrete group action G x X — X we can take
Xfree 5 X to be the projection EG x X — X. If A — B is the diagram from

example above then its free resolutions the diagram 01 — I.

One way to define homotopy colimit for diagrams of simplicial sets i.e. objects

of S€ is first resolving them as above by free diagrams and then using the following:

Theorem. If W is a dimensionwise free D-space then the natural map
hocolim W — colim W
D D

1s a weak equivalence.

The proof proceeds by a diagonal argument using the special case of discrete

spaces:

Proposition. If E: D — Ens is a free discrete D-set then the natural map
hocl())limE — colim F

15 a weak equivalence.

Proof. Since hocolimp and colim £ commutes with disjoint union it is sufficient to
consider the case £ = F'? the free orbit generated at d. In that case hocglim Fis

easily seen to be contractible.
Proof of Theorem. We use the equivalence hocolimp X = diag(hocolimp X,,).

In a similar way one proves:
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Theorem. If X is dimensionwise free D-space then for any DP-space Y and fi-
brant D-space W the natural maps:

() Yob X =V ep X

(ii) mapl (X, W)= mapp(X, W)

are weak equivalences.

Case I. X,Y are discrete spaces. In that case we can assume X,Y are free D, DP-
sets. Since — ®p — commutes with disjoint union we can take X to be free orbits

and Y any orbit

Y ® F =Y (d)

Y ®@" Fé ~ Y (d)

which is just the Yoneda’s lemma.
Now if X is a free D-space we get similar result by a diagonal (or total space)

argument on the (co)-simplicial space that defines — ®% — and map’ (-, —).

Remark. More generally: given a functor W : C? x D — §, assume that its
adjoint W : D? — 8P or W : D — S gives a D (or D-diagram) of free

D-spaces (free D°P-spaces) then the map
hocoend W — coend W
is a weak equivalence.

§3. FIXED POINT DIAGRAM FOR D-SPACES

One of the main tools of the theory of G-space for a group G is the decomposition
of the space X to its subspaces of fixed point X? C X for H C G and the
reconstruction of X from the collection {X#} compare [Elmendorf], [Segal]. This
technique generalized to more general situation that includes D-spaces in [DF], [D-
K]. After briefly recalling this technique we combine it with the homotopy coend
colimit functor so as to write various spaces associated to a D-space as homotopy
coends. In particular we will write the (strict) colimit of X as a homotopy colimit
over a category of “orbits” associated to D. In what follows we will be concerned

with discrete small categories so that in case of G-spaces for a group G we assume
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here that the group G is a discrete group. However, most of our results can be
generalized to simplicial and topological small categories D.

We first recall the assemblage construction of Elmendorf: (compare ...)

Let G be a discrete group acting on a simplicial set X. Consider the category
O = OF of all the G-orbits i.e. the G-sets G/H for H C G.

Form the O°P-space ®x : O’ — S defined by ®x(G/H) = Homg(G/H, X) =
X*H = the points in X fixed by H, with the obvious induced map X¥ — X# for
any G-map G/H — G /K. Conversely given an arbitrary diagram ® : O — S
of spaces one can “assemble” them into a G-space Xg with X ~ ®(G/H) by
the coend functor as given by Elmendorf so that the H-fixed point space of Xg
is homotopy equivalent to the value ®(G/H) prescribed the arbitrary diagram &.
Namely Xo = ® Q0 I

Orbit-set functor for a general diagram.

Our purpose here is to generalized the above procedure in the spirit of [D-K,DF]
for a diagram of simplicial sets over any small discrete category. One of the main
benefits that will be a way to present the strict colimits of any diagram X : D —
S as a homotopy colimit of an associated diagram ®x over a category of orbits
0. This presentation which extends also to strict coends allows us to compare
the strict colimit and with the homotopy colimit, since it will present both as
homotopy coends over the same category of orbits. The main innovation here is
the replacement of the fixed point space X* = map,(G/K, X) for the G-space case
by the orbit-points space namely X¢ = mapp (e, X) for any orbit e and D-space X.

Construction of the diagram of spaces of orbit points.

Given a small category D we associate it with the (large) category all D-orbits
O = Op which is the full subcategory of S? consisting of discrete orbits @ C Ens?
(see §2 above). In fact there is a natural analogue to the diagram of fixed point
mentioned above ®x = { X} from above: Namely to any D-space Y we associate
the functor ®y : Op — S by Py (e) = mapp(e,Y'). This is a representable functor
on Op and therefore by Yoneda’s lemma 77?7 we can write an identity ®y @01 =Y,
where I : O < SP is the inclusion functor.

Notice however, that O is not a small category (see example ... below) and we

will not deal with the precise meaning of this coend over large categories instead
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we proceed to consider small subcategories of Op.

Ezample. Let J = {# — e} be the small category of two object with one non-
identity map between them. Then any map V — W is a J-space and any map
W — % to a point is a J-orbits. Therefore the category O of discrete J-orbits

is precisely the category of all sets.

Let £ C Op be a full small subcategory of Op. With each D-space X we
associate an £-space X¢ : & — S given by X¢(e) = mapp(e, X) for e € &, with
X¢(e —» €') given by the induced mapp(e’, X) — mapp(e, X).

For example, let G be the full subcategory of O from above consisting of orbits
S — * where S is a finite set, then for any J-diagram X — Y the associated G-
diagram consists of the finite fibred powers of X over ¥ namely [[,, X with various

projection as maps.
First properties of X¢.
Proposition. For any D-set X, if £ is a full small subcategory of D-orbits con-

taining all the orbits of X then there is a natural isomorphism of sets

colim X€ — colim X.
Eor D

In the proof we need the following lemma:

Lemma. For any D-set X and any D-orbit e there is a natural decomposition
mapp (e, X) = [ [map(e, Xa)
«

where X = [[{Xa : a € colimp X} is the decomposition of X into D-orbits X,.

Proof of Lemma. Any map e — X factor through some orbit in X namely the

orbit over colimp e = * — colimp X.

Proof of Proposition. By the lemma the £° set X¢ is isomorphic to [[{X¢ : a €
colimp X'}. So it is sufficient to consider the case when X = X, is itself an orbit.
But for a D-orbit X, the £%P-space X& is a £°P-orbit since £ contains X, itself by
assumption. Therefore any map f : e — X, factors through e i>Xa ﬂ)Xa SO

that XE(f)(id) = f.
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o x is free.

In some way the deepest property of the diagram ®x that distinguishes it from
X itself is that it is O°P-free while containing, as we shall see, all the homotopy
information in X since we can recover X from ®x a thing that cannot done with

X free the free D-space approximating of X .

Theorem. For any D-space X the corresponding ®x : O — S is a dimension-

wise free O°P-space.

As usual the main lemma here is that the same is true for a discrete X i.e. for

any D-set.
Lemma. If X : D — Ens is any D-set then ®x : OP — Ens is a free D-set.

Proof. Since by lemma 77 above ®x = [[®x_, where a € colim X and X =[] X,
is the decomposition of X into D—orbits,ait is sufficient to consider the case when
X = FE is a D-orbit. Now by assumption £ € O°. By lemma 7?7 above @ is itself
an O°-orbit i.e. colimper @5 = *. We claim it is a free O° orbit generated by the
element (id : E — E) € ®g(E). To see this we write F¥(e) and compare it to
Dp(e):

F5.,(e) = Hompor (E, e) = Homp (e, E) =

= mapp(e, ) = ®g(e).

Proof of theorem. Since we only claim that in each dimension n > 0 the D-space ® x
is a free D-set we consider (®x),(e) = mapp(e®A[n], X) = mapp(e, X,,), e € Op.

Thus the theorem follows directly from lemma ?? above for the D-set X,,.

Assemblage. Given a small category &€ C O of D-orbits and a diagram over &
namely W : £ — S one can “realize” W as a D-diagram by assembling the spaces
{€(e)|e € £} into an D-space |W|p “with the same £-information as W””. In order
to do that we recall that if in a typical homotopy coend A ®% B the functor B,
in addition to being a C-space, may also be a U-space for some (small) category U
then A®" B is also a U-space: Explicitly the value of A ®g B on an element v of U
(be it a object or a morphism) is given by (A ®" B)(u) = A ®" (B(u)). With this

reminder we define the “D-realization” of W':

Wip =Wk
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where I : £ — S? is the inclusion functor that assigns to each D-orbit e € £ C SP

that orbit itself as a member of SP. Thus |W|p € SP and we claim:

Proposition. For each orbit e € £ there is a natural equivalence
mapp (e, |W|p) =~ W(e).

In other words |W|p has the prescribed space W (e) as its space of e-orbit points.

Proof. This is proven in [D-K] for the strict coend but the same argument goes

through here too.

Ezample. Let G = Z/pZ. In this case we have only two orbits (Z/pZ,{e}). The

diagram O has the shape ¢ — Z./ ~ has two object and p different maps: Any
P

O-diagram is a pair of spaces Xo —> X; where X; has Z/p action and Xy maps

into the space of fixed points. We can then form the pushout W in the diagram:

BGXXO—>EXGX1

| !

BG x * w

Claim. There are natural maps X, — W and Xo — W2/P% which are homotopy

equivalence commuting up to homotopy with the map Xo — X1, WE/PL — W,

In order to be able to recover the weak D-homotopy type of X from a diagram
X¢ associated to some category of orbits £ it is necessary and sufficient that the
spaces X (d) themselves will appear in X¢ as spaces of fixed points. Since for a

free D orbit F'% one has
XF* = mapp(F%, X) ~ X (d)

we get:

Proposition. If for all d € objD the D-free orbit F¢ is a member of £ C Op then

there is a weak homotopy equivalence

X |p = X.

Remark. Notice that this is an analogue of the equivalence |SingX| — X between

the realization of the simplicial set SingX associated to a space X.
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Remark. In general for any £ C Op the E-space X¢ as defined above contains all
the information about X that is “seen” by the orbits in £. If £ contains a single
orbit say e, (d) = * then X{¢} is precisely the inverse limit of X e.g. if D is a group
G this is the fixed set X¢. The space |X¢|p is an approximation to the space X
by a D-space which is as free as possible while containing all the information about
X about orbit of type £. In the extreme case if £ contains all the orbits that
actually appear in X, i.e. all the D-orbits that appear in the decomposition of any
X, : D — Ens into orbits for all n > 0, then the D-homotopy type of |X¢|p is

independent of £ and

Proposition. For any two £,E% C Op that contains any orbit that appear in a

given fibrant D-space X one has a D-homotopy equivalence

1 2
1 X& |p = | X% |p.

Notation. In this case we denote X¢ by ®x (fixed point set diagram of X).
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§4 CHAIN COMPLEX

Homotopy coend and ends can be considered profitable in the category of chain
complexes over some ring with unit R. In this case one gets a version of the usual

definitions of the derived functors of tensor product and the Hom functors.

Theorem. If L, M, are left R-modules and N is a right R-module then there are
natural isomorphisms:
(i) Hy(N ®% L) = Tork (N, L).
(ii) H*(map’ (L, M)) = Extk (L, M).
where in these formulae we denote by L, M, N the chain complexes bounded below

which are non-zero only in dimension zero.

Proof. We consider the ring R as an additive category with one object where the
elements of R are the morphisms of that category. Then a free orbit over this
category is a copy of R and a free R-diagram of abelian groups is a free R-module

in the usual sense i.e. a module isomorphic to a direct sum &, R.

From now on we will assume that £ C Op contains all the D-orbits that appear

in the spaces involved.

§5. THREE FORMULAE

Orbit operations. We now rewrite several orbit functors on D-diagrams in terms
of corresponding orbit functors on an associated category of orbits.

By the term orbit functor we mean a right adjoint functor on D-spaces whose
value on the typical D-space is determined by its value on D-orbits. For example
the colimit functor sends each orbit to a single point and a D-space to its space of
orbits, i.e. the colimit.

We re-write both the homotopy colimit and the strict colimit of X in terms of

homotopy coends on ®x.

Proposition. The following natural maps are weak equivalences in S for any D-
space X : D — S.

(1) dx /[T = dx @0 I — X.

(2) &x ®F * — Px ®0 * = colimp X.

(3) ®x ® Ip — hocolimp X.
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where Inp is the O-space defined by Irp(e) = hocolimp e = epp. Here O denote

any small category of orbits that includes all the free orbits and all the orbits in X .

Proof. To show ®x ®’(‘9 I ~ X we first notice that since ®x is a 7?7 of free O°P
set it is sufficient to show the strict coend isomorphism: ®x ®p I ~ X. Next
we use the fact that (®pl) commutes with disjoint union and since ®xyry ~
®x [[ Py we can assume w.l.o.g. that X is a D-orbit, colim X ~ x. In that
case X = e ®x(¢’) = mapp(e/,e). So that we have & : O%P x O — Ens with
d(e,e') = P.(e') = mapp(€',e), and by Yoneda’s lemma ® ®p I = I, in particular
®. ®p I = I(e) = e as needed.

Note if X is a diagram of spaces X : D — S since @ x is defined dimensionwise
(@z)ﬁf) = mapp(e X D[n], X) = mapp(e, X,,) and same goes for the coend (Px Qp

Y), = (®x), ®p Y, we have a natural isomorphism for any X:
Ox ®p I ~ X.

But again since ®x is dimensionwise free ®x ®x (=) ~ dx % (-).

As for (3) we rewrite by 1)
hocglimX ~ X @, x~ (Bx ®’(19 I @k, *
which by associativity we rewrite as
bx % (I k., ) = &x @ Inp.

In order to show (2) we use three statements. First, the diagram ®x is dimension-
wise free, second for any dimensionwise free diagram Y the map hocolimyY —
colimY is a weak equivalence and third that colimp ®x ~ colimp X. Each one
of these statements was proved above and (2) follows directly from these three

statements.
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86.. AN APPLICATION: CELLULAR INEQUALITIES

Much of the above development was motivated by our attempt to understand
from a different point of view Bousfield’s key lemma about symmetric products.

Recall:

Bousfiled’s key Lemma. Let Y be a 1l-connected fibrant space. If the func-
tion complex map, (X, Q2Y) ~ x is contractible for some X then the induced map
map, (X, QY) ~ map, (SP*X,QY) is a homotopy equivalence, for any 1 < k < oo.

A weaker version of this lemma follows from the cellular inequality: ¥X <
SPFX/X. For example for k = oo, if X = StV S, then SP>®(Stv S1) = S x S1
and SP>(S!v 81)/St v S ~ S? which of course is $(S* v St)-cellular. For the
full statement of the key lemma as well as the above inequality we consider here
the cofibre of the map of pointed hoc%lim* X — colDimX for an arbitrary pointed
D-space X : D — S,.

We will now work in the category of pointed spaces S, since we want to consider

cellular inequalities.
Theorem. If X is a D-space with A < mapp(e, X) for any D-orbite : D — Ens

that appear in X, then the following cellular inequality holds:

Y2 A < cofibre(hocolim, X — coiljim X)
D

Ezample. ¥2X < cofibre(EY, xs, X™ — SP"X).

Corollary. For any diagram X : D — S, the cofibre of

hocolim, X — colim X
D D

1s one connected.

Proof. Since S® < Y for any Y we have S? < cofibre which is equivalent to being

one connected.

Corollary. For any space X we have XX < SP*X/X where k > 0 and SP* is

the symmetric power of X.

Proof. The proof proceeds, as outlined in [DF-4.1.6] without full justification, by

expressing the desired cofibre as a pointed homotopy coends of certain functor K :
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D — S,. We first rewrite both hocolimp X and colimp X as a homotopy coend
over the orbit category O associated to the diagram X. We assume of course that
O is a small full category of D-orbits that contains all the orbits that appear in X.
According to formulae (??) above the map hoc%lim* X — coql)imX is equivalent
to hoc%end ®x X Ipp — hocoend ® % x, with cofibre C'. Since taking cofibre
commutes with taking homotopy coend (both are homotopy colimit operations) we

can calculate the cofibre C as a pointed homotopy coend

C = coend(cofibre®x x Inp — $x X t)

=coend ®x * Ipp

where * denotes here the join operation A x B ~ Y(A A B) between two pointed
spaces A, B.
Here we use the fact that colim e = * for each orbit of D so that e, p = hocolimp e

is connected. Therefore for each e

Ox(e) * Inp(e) ~S(Px(e) App(e)) > Z(AASH = D2 A.

More generally

Theorem. Let X satisfy the condition of () above at Y : D°? — S, then the
cofibre of Y @1 X — Y ®¢ X is X2 A-cellular.

§7. A SPECTRAL SEQUENCE FOR THE

GENERALIZED HOMOLOGY OF hocoendp Xe

Using the dimension fibration on a bifunctor F' : C? x C — S i.e. a diagram of
spaces over C°? x C or a C°P-diagram of C-diagrams of spaces, we build a spectral
sequence that starts with a kind of Hochschild homology associated with C and
abuts to h.(hocoend F'). For this we recall that if A € R°’-mod and B € R-mod
then A® B € R x R-mod and Tor®"*B(R A x B) = Tor®(A, B). As we saw
above we can write

hocoend F = C(—, =) ®%p o F

which for chain complexes gives exactly the usual construction of HH.

This leads to a spectral sequence

HOCth (C, th) = hi+j hocoend F.
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