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§1. INTRODUCTION

It is well-known that the majority rule is not transitive. In order to guaran-
tee transitivity we have to restrict the preferences of the voters. The first well-
known restriction is single-peakedness, which was introduced by Arrow [1951] and
Black [1948]. The median voter scheme over the domain of single-peaked pref-
erences was shown to be compatible with Condorcet’s rule. Moulin [1980] has
introduced generalized median voter schemes over one-dimensional sets of alterna-
tives. His paper includes, among other results, the characterization of anonymous,
strategy proof, and Pertian generalized median voter schemes. He also character-
ized the family of schemes which only satisfy anonymity and strategy-proofness.
As far as we know, the latest generalization of Moulin [1980] is due to Barbera,
Gul and Stacchetti [1993]. They consider generalized median voter schemes over
multi-dimensional sets of alternatives. As expected, they restrict their analysis to
multi-dimensional single-peaked preferences. One of their important results is that
multi-dimensional generalized median voter schemes are characterized by strategy-
proofness. We prove in this work that multi-dimensional generalized median voter
schemes are also coalition-proof. (An example in Peleg [1997] shows that not every
strategy-proof game form is coalition-proof.) We now shall explain and motivate

our result.

Let N be aset of n = 2k+1, k > 1, voters, let B be a (finite) set of alternatives,
and let Py be a fixed linear ordering of B. Assume that the preferences of the mem-
bers of N on B are restricted to be single-peaked with respect to P;. Then, the
median voter scheme is strategy-proof and Paretian. Moreover, the median voter’s
peak is an outcome of a strong Nash equilibrium (with respect to the true prefer-
ences). Thus, under the foregoing assumptions, the median voter scheme is group
strategy-proof. Now, if we replace the median voter scheme by a generalized me-
dian voter scheme, then Pareto optimality may vanish (see Moulin [1980]). Hence,
generalized median voter schemes may not be group strategy-proof. In this paper
we address the following problem: What is the strongest kind of group stability
which is satisfied by all generalized median voter schemes? We solve the foregoing
problem in Sections 4 and 5: Theorem 4.1 proves that every multi-dimensional gen-

eralized median voter scheme is coalition-proof. Furthermore, in Section 5 we give
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an example of a generalized median voter scheme which is not strongly coalition-
proof.

We now briefly review the contents of this paper. Section 2 contains preliminary
definitions and Section 3 introduces generalized median voter schemes. The proof
of the coalition-proofness of multi-dimensional generalized median voter schemes is
presented in Section 4. Finally, an example of a generalized median voter scheme

which is not strongly coalition-proof, is given in Section 5.

§2. DEFINITIONS AND NOTATIONS

A game in strategic form is a system G = (N, (Ai)ien, (4;)ien) Where N is
a finite set of players; A;, i € N, is the (non-empty) set of strategies of i; and
u; : XjenAj; = R is the payoff function of player i € N. (Here R is the set of real
numbers.) Let S C N, S # (). We denote Ag = x;c5d; and A = Ay. If z € A
then g denotes the restriction of x to S.

Let G = (N, (Aj)ien, (ui)ien) be a strategic game, let S C N, S # (§, and let
z € A. The reduced game of G with respect to (w.r.t) S and z is the game
G%® = (S, (Ai)ies, (u¥)ies), where uf(ys) = ui(ys, vn\s) for all ys € Ag and
iesS.

Let G = (N, (Aji)ien, (u;)ien) be a strategic game. z € A is a Nash equilibrium
(NE) of G if, for every i € N, u;(x) > u;(yi, n\q43) for all y; € A;. We now define

coalition-proofness by induction on the number of players.

Definition 2.1. (i) In a single player game G, z € A is a coalition-proof Nash
equilibrium (CPNE) if and only if it is an NE.
(ii) Let n > 1 and assume that CPNE has been defined for games with fewer
than n players. Then
(a) For any game G with n players, x € A is self-enforcing if, for all S C N,
S #(,N, zg is a CPNE in the reduced game G+,
(b) For any game G with n players, z € A is a CPNE if it is self-enforcing and
if there does not exist another self-enforcing strategy vector y € A such that

u;(y) > u;(x) for all s € N.

Clearly, a CPNE of a game G is an NE of G. The following definition is closely
related to Kaplan’s definition of semi-strong equilibrium (see Kaplan [1992]).
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Definition 2.2. Let G = (N, (A;)ien, (ui)icn) be a strategic game and let z € A.
x is a strong CPNE if
(a) z is an NE of G;
(b) for every S C N, S # 0, and every NE ys of G, there exists i € S such that
ui () > ui(ys, Tn\s)-

Clearly, a strong CPNE of G is a CPNE of G.

NE’s , CPNE’s and SCPNE’s are ordinal concepts, that is, they are generalized
in a straightforward manner to ordinal games (N, (A;)ien, (Pi)ien), where N and
A; are defined as above and p; is a preference (i.e. a complete and transitive binary
relation) on A. If C is a set and f: A — C is an “outcome function”, then every
profile (P;);cn of preferences on C induces a profile (p;);cn of preferences on A by
ap;b iff f(a)P;f(b) for all a,b € A and i € N. We write (N, (A;)ien, f, (B;)ien) for
(N, (Ai)ien, (pi)ien)-

§3. GENERALIZED MEDIAN VOTER SCHEMES

In this section we recall some definitions of Barberd, Gul and Stacchetti [1993]

which are essential for our work.

Definition 3.1. For integers a < b, [a,b] will denote the set {a,a + 1,...,b}. An
{-dimensional box B is a cartesian product of £ integer intervals: B = ><§:1Bj

where B? = [a?,b’] and o/ < .

Let B be an /-dimensional box. We consider B as a metric subspace of the space
e .
R® with the Li-norm. (The Li-norm of a € R® is ||al| = 3" |a?].) A linear order
=1
on B is a complete, transitive, and antisymmetric binary relation on B. If P is a

linear order on B, then 7(P) will denote the (unique) maximum of P on B.

Definition 3.2. A linear order P on a box B is multi-dimensional single-peaked
with bliss point a € B if and only if (i) 7(P) = «, and (ii) fP~ for all 8,y € B
satisfying [l — [ = [la = 5] + |15 = ~/-

If B is an /-dimensional box, then we denote by @ = 7(B) the set of all single-

peaked preferences with bliss point in B. Let B be an /-dimensional box and let

N ={1,...,n} be a (finite) set of players.
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Definition 3.3. A social choice functions is a map ¢ : 7% — B. A social choice

function ¢ is a voting scheme if there exists a function f : BY — B such that
o(P1,...,Py) = f(r(P),...,7(P,)) forall (Py,...,P,)ex"
(f will also be called a voting scheme).

We shall be interested in the following class of voting schemes. First we need an

auxiliary definition.

Definition 3.4. Let B = [a,b] be a one-dimensional box and N = {1,... ,n}. A
left-coalition system on B is a correspondence W : B — 2N satisfying the
following conditions:

(3.1) Ifé e B,C e W(£),and D D C, then D € W (§);

(3.2) If {,m € B and & < n, then W (&) C W(n) and

(3.3) W(b) =2V,

Left-coalition systems induce voting schemes in a natural way. For each =

(a1,...,0,) € BY and £ € B, let C’(g,ﬁ) = {i € N|o; < £} be the coalition to the
left of €.

Definition 3.5. Let B = [a,b] be an integer interval and let W(-) be a left-coalition
system on B. The voting scheme f : BY — B, defined as follows:

f(a) = min{¢|C(a, &) e W(€)} for all « € BY
is called the generalized median voter scheme (GMVS) induced by W(-). When
B = x%_, B’ is an {-dimensional box, the voting scheme f : BN — B is a GMVS
if f=(f1,...,f* and each fJ is the GMVS induced by some left-coalition system
Wi(-) on BY.

§4. GMVS’s ARE COALITION-PROOF

Let B be an /-dimensional box, let N = {1,...,n}, and let f : BY — B be a
GMVS. For P = (Py,...,P,) € 7 we consider the strategic game

G(f;Pi,...,P)=(B,...,B; f; P1,... ,P,).

Here B is the set of strategies of player ¢ € N; f is the outcome function; and
Py,..., P, are the preferences of the players on the outcome space. f is coalition-
proofif for every P = (Py,..., P,) € 7, the n-tuple o= g(P) = (r(P1),...,7(Pp))
is a CPNE ofG(fN;Pl,... , Pn). )
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Theorem 4.1. Every GMVS is coalition-proof.
Proof. We shall prove our claim by induction on the number of players n.

Step 1. n = 1.

Let B = x%_; B/ be an {-dimensional box and let f : B — B be a GMVS. If
P € n(B) then 7(P) is a dominant strategy in G(f; P) = (B; f; P), because f is
strategy-proof. Hence 7(P) is an NE of G(f; P).

Assume now that every GMVS with k players, 1 < k£ < n, is coalition-proof.
Let N ={1,...,n}, let B = ><§:1Bj be an /-dimensional box, let W7 : B — 2N
be a left-coalition system on B7, j = 1,...,4, and let f : BY — B the GMVS
which is induced by W7(-), j = 1,...,£. Furthermore, let Py,..., P, € m(B), and
a; = 7(B;), i = 1,...,n. We shall prove that a = (a1,...,an) is a CPNE of
G(f; Pr,...,Pp).

Step 2. o is self-enforcing.
For each S C N, S # (,N, and each j = 1,...,/, define the (reduced) left-

coalition system Wg’a on B’ by
TeWi () eTulie N\S|aol <¢ewi()

for allT C S and all ¢ € BJ. As the reader may easily verify nga is a left-coalition

system on B’ (w.r.t. the set of players S). Denote by fS’g the GMVS which is
induced by Wi, j = 1,...,£. Then G(f*%; (Pies) = (BS; £% (P)ics) is the
reduced game oNf G(f;P,...,P,) wr.t. S and a. By the induction hypothesis
@ = (;)ics is a CPNE of G(fs’g; (P;)ies). Because this is true for each proper

subset of N, « is self-enforcing.

Step 3. g is a CPNE.

Assume, on the contrary, that g is not a CPNE. Then, there exists 3 € BY
such that (i) @ is self-enforcing (in the game G(f; Py,...,P,)), and f(,B)N;é f(g);
and (ii) f(,@)}if(g) for i = 1,...,n. We denote s = f(g) and t :Nf(,@). Let
s= (&L .. .Tge) and t = (n',...,n%). We distinguish the following possibil;:cies.

(4.1) There exists m € {1,...,£} such that &™ < n™. Let @ = {i € N |
a* < €™ and [ > £™}. Q is non-empty because £™ < n™. Without loss

of generality Q@ = {1,...,r} and of* < ... < a/". Now replace sequentially, in
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g™ = (B, ...,0m), B™ by o, i = 1,...,r. There exists k, 1 < k < r such
that f™(af*, ..., agt 1, By -, 0y) = 0™ and f™(af, ..., o, B, -5 Bn) =
¢ < n™. By the choice of k af* < (. Thus, all the members of @* = {1,...,k}
strictly prefer o™ | Q* to 8™ | @* at B (o™ | Q* = (&f* | i € Q) etc.). (That is,
Q* can improve upon 3 by playing (aNm | Q*,87™ | Q*), where 3™ = (87 | j €
{1 01\ {m}).)

(4.2) There exists m € {1,...,£} sucht that n™ < &™. Let Q ={t € N | a* >
€™ and O™ < £™}. Clearly, @ # 0. Without loss of generality @ = {1,...,r}
and af* > ... > ™. Now replace sequentially, in g™ = (87", ...,0), 8™ by o,
i=1,...,7. Forsome k, 1 <k <r, f™al",...,o0" B ,---,07) =¢>n",
and ¢ < of'. Thus, all the members of Q* = {1,..., k} strictly prefer ™ | Q* to

g™ | Q* at E

We call a coalition @) regretful if there exists m € {1,...,£} such that @ can
improve upon (3 by playing (o™ | Q,5~™ | Q). f(gz) # f(B) implies that (4.1) or
(4.2) is true. Hgnce, we have proved the existence of a non—er:lpty regretful coalition.
Let T be a (non-empty) regretful coalition of minimum size. The following claim

1s true.
Claim 4.2. For eachm=1,... ¢ f((e™T,3~™|T), BN \D)P,f(B) for all i € T.

Proof of Claim 4.2. Let 1 < m < {. We denote
T_-={ieT|o* <™}, To={ieT|a"=n"}, and T4 ={i €T |aj* > n"}.

We have to consider seven cases.

(4.3) T_ # 0, Ty # 0, and T # (). Without loss of generality Tp = {1,...,7},
T_={r+1,...,r+k}and o], <... <% ,, Ty ={r+k+1,... ,q}, where g is
the number of members of T', and ", .| > ... > ag". First, for i € T replace §;"
in g™ = (B, ...,00) by a". Clearly f™(a™|To, 8™|N \ To) = n™. Now replace
sequentially in (a™|Ty, S™|N \ Tp) B by o for i = r+1,...,r + k. By the
minimality of T' and (3.i), i=1,2, f™(a™|To UT_,™|N \ (To UT-)) = n™. (The
role of (3.i), i=1,2, is to guarantee that the order of replacement, first Ty and then
T_, does not matter.) Similarly, we may show, by replacing sequentially ™ | T

by o™ | Ty, that f™(a™|T,B™|(N\T)) =n™.
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A careful examination of the proof of (4.3) reveals that if at least two out of the
three sets T_, Ty and Ty are non-empty, then f™(a™|T,™|N \T) =n™. Thus it
remains to consider the following three cases.

(4.4) Ty # 0, T- = T+ = (). Clearly, in this case f™(a™|T,8™|N\T) = n™.

(4.5) T_ # 0, Ty = T, = (. Again, an examination of the proof of (4.3) reveals
that ¢ = f™(a™|T,B™|N \ T) satisfies ( < n™ and ¢ > o, i € T. Hence, the
claim is proved in this case.

(4.6) Ty #0, To = T— = (. An examination of the proof of (4.3) reveals that
¢=f™a™|T,™|N\T) satisfies ( >n™ and ( < af*, i € T.

Let T be a (non-empty) minimal (in size) regretful coalition. We conclude from
Claim 4.2 that f(g|T,B|N\T) # f(B) and f(g|T,,8|N\T)Pif(,8) forall¢ € T. Thus

T,
T # N. Now consider the reduced game (BT; f E; (P;)ier). By the induction

hypothesis «|T is a CPNE of this game. Hence T has an internally consistent
improvement upon 3. As T # N this is impossible because (3 is self-enforcing.

Thus, the desired contradiction has been obtained. Q.E.D.

§5. AN EXAMPLE

We shall show by means of an example that GMVS’s may not be strongly
coalition-proof. Let £ = 3, BY = {0,1} for j = 1,2,3, and N = {1,2,3}. We
define a GMVS f by means of the following left-coalition systems: W7 : B/ — 2V
is defined by W7(0) = {S C N | S has at least two members} and W7(1) = 2V,
for j =1,2,3. Let B = x?_, B’ and let e/ be the j-th unit vector in R?, j =1,2,3.
We define three additive (v : B — R is additive if u(z + y) = u(z) + u(y) for all
z,y € B) utility functions on B as follows: u1(0) = 0, ui(e!) = 4, uy(e?) = —1,
and u1(e®) = —2; ua(0) = 0, uz(el) = —1, ua(e?) = 4, and ua(e?) = —2; uz(0) = 0,
uz(el) = —1, uz(e?) = —2, and uz(e3) = 4. Let P; be the preference relation rep-
resented by u;, i = 1,2,3. Then P; is single-peaked with bliss point e, i = 1,2, 3.
Now f(el,e?,e?) = (0,0, 0) because of our definition of W7(0), j = 1,2, 3. However,
(0,0,0) is not Pareto optimal. Indeed, let 7; be defined by 4, (0) = 0, 4;(e') = 1,
@1(e2) = 2, 41 (e3) = 4, and let 1y = @3 = 41 also be three additive utility functions
on B. Denote by P, the preference relation represented by ;, 1 = 1,2,3. Clearly,
T(E) = (1,1,1) = e, i = 1,2,3, and f(e,e,e) = e. Also, f(e,e,e)P;f(el,e?, e?),

i = 1,2,3. Moreover, because of our definition of W7(0), j = 1,2,3, (e, e,e) is an
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NE of the game (BY; f; Pi, P», P5). Hence, the truthtelling strategy (e!,e?,e3) is
not a strong CPNE.
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