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Abstract

It is proved that the horocycle transform Rf on real n-dimensional
hyperbolic space H is well-defined for f € LP(H) if and only if 1 <
p < 2. The function f can be recovered explicitly in LP-norm and a.e.
by the formula

dt

f(z) = const x AW(WRf)(w,t)ﬁ

where W is a suitable wavelet transform on the space of horocycles.

1 Introduction

Let E™! be (n + 1)-dimensional pseudo-Euclidean space endowed with the
inner product [z,y] = Tp11Ynt1 — T1Y1 — - -+ — TpYn. Real n-dimensional
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hyperbolic space H can be regarded as the upper sheet of the two sheeted
hyperboloid H={z € E™!|[z,z] = 1, z,,1 > 0}. Let T be the upper part of
the light cone in E™! i.e. T = {€£ € E™ | [£,£] =0, &,41 > 0}. Geometrically,
horocycles are planar sections of H by hyperplanes of the form [z,&] = 1
([8])- Each hyperplane of this type is parallel to a certain generatrix of I.
The horocycle transform Rf (&) assigns to each sufficiently nice function f
on H the integrals of f over horocycles. For a compactly supported smooth
function f one can write

Rf(€) = f(z)6([x, &) - 1) de, (1)

En.1

o [ - D Ri@ e, it 0=,

flz) = (2)

(=1)"T(2m) _1\—2m if n=2m
W/r([x,f] 1) *mRf(€)d¢, if n=2m.

Here § is the Dirac delta-function and the integrals are interpreted in a
suitable sense ([8], [20, p. 162]). In later works, other inversion formulas were
obtained using different methods (e.g. [1], [5], [6], [10], [21]). Typically, these

methods are based on the use of the dual transform R (which integrates Rf
over all horocycles passing through a fixed point x € H) and/or techniques
from harmonic analysis. For functions in more general function classes, e.g.
LP(H) or C(H), the methods do not apply.

In the recent papers ([2], [13] — [16]) explicit inversion formulas for Radon
transforms in various settings were obtained in the framework of LP-space.

The basic idea is to include R and R into suitable analytic families {R*}
and {R®} of fractional integrals in such a way that the inverse operator

* *
R~! belongs to the family { R*}. The operators R give rise to generalized
wavelet transforms. In terms of these transforms it is possible to write out

the analytic continuation of R*Rf in the form which enables us to work with
LP-functions and with continuous functions.

In the present paper we apply this method to the horocycle transform.
The required families of fractional integrals were discovered by examining the
proof of (2). The general idea is as follows (cf. [16]): since the delta function



§(t) is a member of the analytic family of distributions 37" /T'(A) (see [9])
and these distributions generate Riemann-Liouville fractional integrals (and
corresponding wavelet transforms [12]), it is natural to expect that the delta
function ([z,&] — 1) can be associated with some fractional integrals and
wavelet transforms.

The paper is organized as follows. In section 2, we give basic definitions
and auxiliary results, and establish the Solmon type estimate for the horo-
cycle transform (cf. [17], [2]). In section 3 we introduce continuous wavelet
transforms associated with R and prove the inversion formula mentioned in
the Abstract; the main result is given by Theorem 1. The argument explores
the connection between our fractional integrals and wavelet transforms with
harmonic analysis on H.

2 Preliminaries

2.1 Algebraic and geometric notions

References to this subsection are [3] and [20]. In addition to E™', H, T,
we define the spaces R" = {z € E"' |z = (z1,...,7,,0)} and R*! =
{z € EM' |2 = (21,...,2,_1,0,0)} with the corresponding rotation groups
K = SO(n) and M = SO(n — 1). The coordinate unit vectors are denoted
by e1,...,enr1. We write dk for the normalized Haar measure on K so that
Jdk = 1. Let S*! = K/M be the unit sphere in R"; w,_; = [S"7!| =
212 /T (n/2).

The geodesic distance between points x, y € H is defined by cosh d(z,y) =
[z, y]. The isometry group of H is G = SO,(n, 1), the locally compact con-
nected group of pseudo-rotations of E™! which preserve the bilinear form
[z, y]. The subgroup K is the isotropy subgroup of the point O = (0,...,0,1) €
H, called the origin in H. We then have the homogeneous space identification
H =G/K.

The group G possesses a Cartan decomposition G = KAK and an Iwa-
sawa decomposition G = K AN where A is an Abelian subgroup of the form

I, 0 0
A=Sa=a; = 0 cosht sinht | [t€R },
0 sinht cosht



and N is a nilpotent subgroup of G given by

In—l _Utr Utr
N=<{n=n,=| v 1-—w?*2 |v|*/2 |v € R"(row vector)
v —w?/2 1+|v[?/2

Then A normalizes N, i.e. a; 'n,a; = ne-+,. The Haar measure dn on N is
given by Lebesgue measure dv on R™ !, so that [, f(n)dn = [g.-. f(ny)dv.
Any ¢g € G has a unique expression g = kan up to the centralizer M of A in
K. Any x € H can be written uniquely in the form x = n,a; o O. This leads
to the horocycle coordinates on H given by:

2 2
T = nya; 0O = ae-t, 0 O = (e 'v,sinht + %et, cosht + |1)767:). (3)

In terms of the decomposition x = n,a; o O, the invariant Riemannian mea-
sure dz on H has the form dz = e ?*'dtdv, where p = (n — 1)/2 (the letter
p has this meaning everywhere throughout the paper).

Horocycles in H can be defined as translates of the orbit N o O under G.
Any horocycle has the form ka;N o O for some k € K and ¢t € R (¢ gives the
signed distance of the horocycle to the origin O). We denote the space of
horocycles by =. The group G is transitive on =, and the subgroup M N of
G leaves fixed the “basic horocycle” N o 0. Hence we have the homogeneous
space identification = = G/MN. Let & = (0,...,0,1,1). Each horocycle
ka;N o O is identified uniquely with the point & € I' according to

E=ka;o& =€ ko& = e'bw), (4)

where w = koe, € S" 1 b(w) = ko & = w+ e,y € I In accordance
with (4), the invariant measure on I' is defined by d¢ = e*'dtdw, dt being
Lebesgue measure on R and dw the usual surface measure on S™~! (]20], p.
24).

Finally notice that for each 2 € H and each w € S"~! there is a unique
horocycle passing through z and given by the point e'b(w) € T" with

t = (z,w) = —log[z, b(w)] (5)

(cf. [3], p. 80). This quantity is usually called the horocycle distance function.



2.2 The horocycle transform and its dual

Given & € T, let € be the horocycle defined by € = {z € H| [z, £] = 1}, and,
given z € H, let £ = {£ € T'|[x,£&] = 1} be the set of points of the cone '
corresponding to all horocycles passing through x. We denote by d:z and
d;¢ the induced Lebesgue measures on {? and & respectively. According to
(1), for sufficiently nice functions f : H — C and ¢ : ' — C the horocycle
transform and its dual are defined by

RI(€) = /g f@)der and  Ro(z) = / (€t

respectively. If £ = e'b(w) = e’k o & and z = go O, g € G, then in group
theoretic terms these transforms read as follows

RF(E) = Ry f(t) = /N F(kamn 0 O) dn (: /R f(katnUoO)dv>, (6)

Ro(z) = wns / olgk o &) dk, (7)

K

The following statement gives another representation of the dual trans-
form.

Proposition 1 For each g € G and each w € S"™!,

| elahog)dr= [ errotipeiroripogyak (9
K

K

provided that one of these integrals exists.

Proof. We write (8) in the equivalent form I;¢(g) = I,¢(g), where

Lp(g) = /Sn_1 ¢(g 0 b(w)) dw,

Biplo) = [ R0y (cr0b(e) do.



Set g = Ka k" (K, k" € K, a, € A). One can readily see that I1¢(g) =
Lyp(g) if and only if I¢'(a,) = Ly¢'(a,), ¢'(€) = @(k' 0 &). Thus it suffices
to prove (8) for g = a,. By passing to polar coordinates on S* ! and taking
into account the equalities

a, o e, = (coshr)e, + (sinhr)eyr1, a0 ey = (sinhr)e, + (coshr)e, 1,

we have

Li(a,) = /_1(1 — ) ></ p(v/1— 120

1 Ssn-2
+ (ncoshr + sinhr)e, + (nsinhr + cosh r)e,11)d0dn,

1 1 —72)(n-3)/2 1—729 te,
Izgo(a,«):/ (1-7%) / (\/ T20+Te,+enit
— Sn—2

1 (coshr—7 sinh r)»—1 cosh r—7sinh r

) dfdr. (9)

The second expression can be reduced to the first one by changing the variable
(put 1/(coshr — 7sinhr) = psinhr + coshr). =

Corollary 1 Forz € H,

Re(z) = /S | (el (w)) s (10)

Known properties of these transforms are the content of the following
lemmas. For convenience of the reader we supply them with simple proofs.

Lemma 1 (cf. formulas (2.8) and (3.1) from [6]). We assume that f and ¢
are locally integrable on H and I" such that the integrals below ezist a.e.

(1) If f is a K-invariant function on H, i.e. f(x) = fo(xny1), then Rf is
K-invariant, and

o0

"' R, f(t) = 2" w,_g fo(s) (s —cosh )’ ds (11)

cosht

oo _ t
=2 s [ her=1) (r= ) du, u=cosh . (12)

(i1) If ¢ is a K-invariant function on T, i.e. ¢(§) = @o(€nt1), then Ry is
K-invariant, and
* 2”71(%72

RSO(l“):W/_T%(es) (coshr—cosh s)?~'eP*ds, coshr=xz,,1. (13)



Proof. (i) Since f is K-invariant, then one can ignore £ in (6), and by
(3) we have

Ruf(t) = /R  fam o O)do = /R  f(maco 0)do
v]?

= 6_2”t/ fo( cosht + kA
Rr—1

which gives (9). The representation (10) can be obtained from (9) by putting
cosht = 2u? — 1.
(ii) By making use of (9), we obtain

e_t) dv

% 1
Rgp(x)zwn_Q/ (1—72)p_1(coshr—7sinhr)_ngao(C ! _ )d’i’

1 oshr—7sinhr

—_ Yn2 / (sinh?r — (coshr — 6_5)2)”_165(2”_1)%(65) ds

(sinhr)»=2 J_,

which coincides with (11). =

Lemma 2 (Duality; cf. [10] , p. 103). Let f and ¢ be functions on H and
I, respectively. Then the duality relation

/F P(€)R(€) de = /H Ro(@) f(z) dz (14)

holds provided that at least one of the integrals is finite for ¢ and f replaced
by || and | f|, respectively.

Proof. By setting £ = e'b(w), w = k o e,,, we write the left-hand side of
(14) in the form (cf. (6))

/ 20t dt/ (e'b(w / f(kazny, o O) dv.
Sn—1 -1

Put v = e tu, ayny 0 O = nya; 0 O = y, [ky,b(w)] = e~t. Then the above
expression can be written as

/Sn ld“’/ ([ky, b(w)]"b(w)) f (ky)[ky, b(w)] ™ dy

/ dw / ~@@b(w)) f ()2 =) dy
Sn—1



which coincides with the right-hand side of (14). m
We use the above results to characterize the behavior of R on LP(H)
mentioned in the Abstract.

Proposition 2 If f € I?(H), 1 < p < 2, then Rf(§) exists a.e. and

/F\Slﬁ_"\li\ — 1 |Rf(&)|d€ < Crs ||, » (15)

provided 1 + (n — 1)(1/2 — 1/p) < < min(1,1/2+n/p'), 1/p+ 1/p' = L.
Further, there exists an f € LP(H) such that Rf(§) = oo, for every p > 2.

Proof. Let (&) = e (cosht — 1)~#, where £ = e'b(w). By (11),

Ry(x) = const x (coshr — 1)Y/27P(coshr 4+ 1)17™/2 coshr = zp,41.

By the conditions on g, for f € LP(H), the right-hand side of (14) is an
absolutely convergent integral. Consequently (14) is valid and it follows that
Rf is defined a.e. Substituting into (14) and applying Holder’s inequality
gives the estimate. The examples in the case when p > 2 can be constructed
easily by considering K-invariant functions and using (11). =

Remark 1 Conceivably, an analog of the above result can be obtained for
general rank one symmetric spaces of non-compact type by making use of the
formulas (2.8) and (3.1) from [6]) together with the corresponding duality
relation. Undoubtably, the result can be extended to symmetric spaces of any
rank, however the computational aspects of the above proof do not seem to
generalize easily.

2.3 Approximate identities on H

Approximate identities have been introduced in the symmetric space setting
by various authors, e.g. [18] or [4]. Here we introduce a modification appro-
priate for our needs. Given an integrable function kg : (0,00) — C, consider
the convolution operator

K.f(z) = /H ke, ) £(v) d, (16)



where £ > 0, and the kernel is given by

(7_2 _ 1)1—n/2

= 0

9 9

2(r — 1))
Convolutions of this form arise naturally in the inversion procedure for the
horocycle transform given in the next section.

Lemma 3 Let f be a measurable function on H.
(i) If ko has a decreasing integrable magjorant, then

K*f < const x f*, (17)

where f*(x) is the Hardy-Littlewood mazimal function on H defined by

1
f(x) =sup ———
) = S0 B Jaan

|f(y)] dy,

B(z,r) is a geodesic ball of radius r centered at x.
(ii) Let f € LP(H) for some 1 < p < co. Then

: wn-1 [
}:1_1;% Kef = cOfa Co = 2 . /0 kO(S) d87 (]‘8)

in the LP-norm. Further, if ky has decreasing integrable majorant, then the
limat holds a.e.

(i) If f € Co(H) = {f € C(H) | f(x) — 0 as d(O,z) — oo}, then the limit
holds uniformly on H.

Proof. (i) By passing to polar coordinates on H, we get

K.f(z) = &2 / h MM)MT F(x) d(cosh )

€ 0

= /000 ko(s)u(2 +es)ds (19)

where M, f(z) is the mean value of f over the geodesic sphere of radius r
centered at z, u(t) = 27 'wp 1 Marcosu(t/2) f, t > 2. Properties of M, f for
f € ILP(H) and f € Co(H) were studied, e.g., in [11], [2]. Without loss
of generality one can assume f > 0. Since ky has a decreasing integrable
majorant, then



1 [2th c
[ Kf| < esup o u(t) dt = < supy(h) (20)
heR 2—h h>0

(for t < 0, u(t) is defined by zero), where v(h) = h™' [[*" Mycosnr f dr,
¢ = const. Consider the function

t
'l/)(t) = wn—l‘/l (52 - 1)n/2_1Marcoshsf dS = /B f(y) dy

(z, arcosht)

Let v(t) = |B(z, arcosht)|. Since

t
u(t) = / dy = c / (r — 1" ar,
[z,y]<t 1

then v(t) = O((t?2 = 1)™™/2) for t < 2 and v(t) = O(t"') for t > 2. Hence
¥(t) < v(t)f*, and integration by parts yields

w—l

1+h
(k) = [ -
cf*
h

1+h
< [((1 +h)2 1) 214+ h) + / v(t)(t? — 1) 2tdt| < Af*,
1
A being independent of h. This estimate together with (20) implies (17).
(ii) Let us prove the limit relation (18). By (19),

Wn—1

2

as ¢ — 0 in the LP-norm (and uniformly for f € Cy(H)) owing to the
properties of M, f (see Lemma 2.1 from [2]). The a.e. conversgence is then
a consequence of (17) due to the estimate [|f*||, < ||f]l, (for p = 1 the
corresponding weak estimate holds; see [7], [19]). =

K.f—cf= / kO(S) [Ma,rcosh(1+es/2)f - f] ds — 0
0

3 Inversion of the Horocycle Transform

With the horocycle transform and its dual we associate the following frac-
tional integral operators

me=%¢Lﬂmmmom, (21)

10



*

R (o) = cna [ (€)oo, €) . (22)
Here Rea >0, a#1,3,..., cuo=2"7"2T((1-0a)/2)/T(a/2),

ha(e,€) = I[o,€] = 1°7 o,6] 72 = [l €12 = [a, ] 2" [o, ] 12

These operators share properties with the horocycle transform and its dual,
namely, duality

/H f(2) R() dz = / Re1(€) o(€) de.

Furthermore, they intertwine the action of G on Hand on T, i.e. R*f(go&)=

R*f,(&) and ]*%o‘go(g ox)= f*iagog(:c), where f,(z)=f(g o ) and similarly for

Pg-
The following lemma links these fractional integrals with the horocycle
transform and its dual.

Lemma 4 Let f and ¢ be smooth compactly supported functions on H and
I respectively, and let 1o (t) = 2° ¢, 0~ 1P+1/?) |sinh(t/2)|*"" . Then

ROf(€) = / ra(t) Rof(s — 1) dt, € = e*b(w), (23)

R

Reo@) = [ ra@) [ emre ooy dofds, 4

and the following relations hold

lim R°f = Rf,  lim R%p = Ry (25)
a—0t

a—0t

Proof. In order to prove (23) we write £ = e’k o &. Then [z,£] =
e’k o x,&)] and from (21) we have

a—1

R*f(£) = cnya /H flkox) |e?[x, &)]? — e *[x, &) 2|

x e~ (P+1/2)s [z, 50)]_p_1/2dx.

11



We now express the integral using horocycle coordinates (3) in the form
z =ano0. Then [2,&)] = Zny1 — T, = e %, and therefore

R f(&) = Cn,a/ / f(kam o O) |e(s_t)/2 — e’(sft)/Q‘afl e /DD g gt
RJ/N

This is equivalent to (23) by (6). The equality (24) can be derived from (22)
by putting & = e'b(w), d€ = e*tdtdw, [r,£] = exp(t — (z,w)) (cf. (5)), and
further, t = s+ (x,w). The limit relations (25) follow from (23) and (24) due
to normalization (cf. [9], Ch. I, Sec. 3.5). m

In view of (25), the horocycle transform and its dual can be regarded as

members of the analytic families of operators { R*} and {R"}, respectively.
This is the key observation in our approach. The form of the kernel h, in
(21) and (22) was discovered taking into account calculations in [20, p. 164].

Following the philosophy given in [2, 14, 16], it is natural to expect that
the fractional integral R* can be inverted by the dual operator via the formula

(R*)~! = R"™™  Consequently, the inversion formula for the horocycle
transform would take the form (o = 0)

f=R"RY. (26)

However, the integral defining R'~™ is divergent in general, hence the right-
hand side of the above formula must be interpreted via analytic continuation
in a suitable sense. In what follows, this analytic continuation is carried out
via a wavelet-like transform.

Specifically, fix a complex-valued function w € L!(0,00). The wavelet
transform of a function ¢ living on I' is given for x € H, and ¢t > 0 by

r €12 _ g £]-1/2
wotwt) =+ [ pteyu( LN goge

The name wavelet transform is appropriate as the function w (called a
wavelet) will be required to satisfy certain growth and moment conditions
(specified later). The structure of (27) is motivated by the formula

* *© dt
R%p(z) = const X /0 W(p(x,t)tlj, 0 <Rea <1, (28)

12



which can be checked by interchanging the order of integration in the right-

hand side. This formula can be used to give the analytic continuation of R*
for Rea < 0.
(From (26) and (28) one expects inversion of the horocycle transform via

dt

(@) = cw/o WRF (1)

for suitable wavelets w. The following makes precise the above formula.

Theorem 1 Let f € LP(H) for some 1 < p < 2. Let w : (0,00) = C satisfy

esssup(l + s)* |w(s)| < oo, for some pu > n; (29)
>0

0 ) n—1

/ sw(s)ds =0, forj=0,2,...2[p], p=—g (30)
0
Then

lim [ WRF(e, )™ = e ¢ 31
lim @0 = e.f(x), 1)

£

where the limit is understood in the LP-norm and a.e., and

o
F(—p)/ s*w(s)ds, if n is even,
Wn—1Wp—2 0

; (3)

Cn =
(_1)P+1
2p!
Moreover, if f € Co(H) N LP(H) for some 1 < p < 2, then (81) holds

uniformly.

/ s*w(s)logs ds, if n is odd.
0

The proof will depend on several preliminaries concerning the wavelet
transform (27). The growth condition (29) and moment conditions (30) are
the reason we call (27) a wavelet transform.

For functions ¢ defined on I', consider the operator

Bo(z) = / o (€) B[, €]) de. (33)

13



The wavelet transform given by (27) has this structure and we need to de-
termine conditions on the kernel b so that By is defined when ¢ = Rf for
f € LP(H) and some 1 < p < 2. For this it is useful to express the operator
group theoretically as follows. Let x = g o O and write £ = gka; o &. Then

By (z) = wp—1 /Oo [/K p(gkay o &) dk] b([0, a, 0 &]) €*'dt

()
SO

=Wy 1 M'o(x) b(e') e?*'dt, (34)

—0o0

where M'p(x) is an averaging operator in brackets. The last formula is
justified provided one of the integrals is finite with ¢ and b replaced by ||
and |b|, respectively.

Lemma 5 Let 0 < 3 < p. Assume that b : [0,00) = C and ¢ : ' — C are
non-negative and measurable with

75 = esssup s* P (1 + 5)*b(s) < oo.
>0

Then
Be(@) < crmpattd [Pl -1 P e ds ae,  (35)
where cg s independent of b.
Proof. We start from (34) to obtain
By(z) < ypwp_1 /00 ]\*/[tgo(:r) e(ﬁ_p)t(et + 1)t
or as an integral over I,

Bio() < yatns /

r

wlgo€) [t + 2] de,  w=go0.

Changing the variable we see it suffices to estimate the quantity in brackets
where ¢ is replaced by ¢! o £. For this in the case |£| > 1 we have

O, 6) = 9 _° it (9710 Onn +1)7¥ _ €l 1 1e[ - 17
’ €2 g — 1|7 (9710 &0 (g7 0 E)pss + 1)
e e
T (gteo)nt]

14



Now (g7 0 &)1 = [z,€] and if we write this in coordinate form (z =
(cosh s, sinh sw), & = e'b(w')), then (¢! 0 &), 11 = e'(cosh s — sinh s (w - w')),
the dot representing ordinary Euclidean inner product. Hence, (g 10&), 1 >
et = et=4=:0) The rest of the estimation is straightforward. If |¢| < 1, then
Qx,€) < (|€]/(97 0 €)py1)?? which does not exceed xf;f (< :cflif) up to
a constant multiple. m

For the next lemma we introduce the notation

w1 (s) = s~V 2w (sY?)

and the associated fractional integral operator

Iwy (u) =

1 -
W/O (u — s)*  w(s) ds. (36)

Lemma 6 Let f € LP(H) for some 1 < p < 2 and let w € L'(0,00) satisfy

esssup(1 4 5)2° T jw(s)| < oo (37)
s>0

for some (3 € [0,min(1, p,1/2+n/p')].
(i) If f and w are nonnegative, then for eacht > e >0 and x € H,

WRf(z,t) < ca et z0%7 |If1l, (38)

with some constant cg ., independent of f.
(ii) Let fy(coshr)= M"f(x). Then

WRS(5,0) = 20 poncscneat™ [ fulor=1) 2 (A7) ar ao)

where fy(coshr) = M" f(z).
Proof. Set ¢ = Rf. Then W has the form of the operator (33) with
b(s) = 7?‘18_"/211)(|31/2 - 8_1/2| /1).

We will first demonstrate that W is well-defined for f € LP(H) via the
previous lemma. For simplicity assume that w and f are non-negative. By
Lemma 5 and Proposition 2 we need to show that for t > ¢,

s (1 4 5)Pw(|s'? — 572 /1) < gt

15



provided that 3 satisfies 0 < § < p and the hypothesis of Proposition 2
(i.e. B8 € [0,min(1,p,1/2+ n/p')]). This is a straightforward, albeit tedious
calculation as follows. Let s = €¢%* and v = [sinh u/|, then

V1i+v24+wv, ifu>0
V1i4+v?2—wv, ifu<0
1

Vit +o

e“:coshu—i-sinhu:{
>V1it+v2—v=

Consequently, for t > ¢,

26 ,
1150121 4 5) (542 — 2] Jt) = (2 COtS};U) w(2 |511tlhu|>
&

< 4Pt7H(1 4 0?)P (m + U) w(%})

2
< et (1 +v)P (%)

c 1+ st/2 26+1
< () g
t s>0 1+s

Now we will verify (39). From (34) we have the formula

2 |sinh(s/2
W@(w,t) = t*leh1 Msgo(x) w(w) e(p71/2)sd8.

—0o0
With ¢ = Rf, a simple group theoretic argument shows that

*

Mép(z) = Rfy(s).

The latter may be computed using (12):

Rf.(s) = 22p_1wn—26_ps/ fo(21 = 1) (1 — w®)P~dr,
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where u = cosh(s/2). Substituting in the formula for W¢ we have

W, ) = 2 Wn1n=2 /_ h [ / T -1 (r — cosh?(s/2))~"ar]

t o0 osh?(s/2)

22p 11 Wy e8] o0 B
_ 2 Yn1Wn2 tlw 2 /0 [/cosh2(s/2) fo(21 — 1) (7 — cosh®(s/2))” 1dT]
w (2 sinh(s/2)

. ) cosh(s/2) ds.

Making the change of variable u = cosh?(s/2) and interchanging the order
of integration, we get the following

oty = 2 [ e [T €,

Now the change of variable n = 2\/u — 1/t yields:

oQ 2\/7'—1/7: 9 9 p—l
t
Wo(z,t) = 22pwn_1wn_2/fz(2'r - 1) / w(n) <'r -1- T”) dndr.
1

0

The last formula coincides with (39). Please note the use of Fubini’s theorem
is justified by (i). m

The following Corollory relates the integral in the left-hand side of (31) to
a structural form similar to an approximate identity. The proof of Theorem
1 will then follow by verifying that indeed we have an approximate identity.

Corollary 2 Let f and w satisfy the conditions of Lemma 6, and let g(s) =
s I wy (s). Then

/:O %Mdt=/llke([%y])f(y) dy, (40)

hr) = S O (220, (1)

2 g2 g2
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Proof. Using (39) and interchanging the order of integration we have

7%@’@& = 2P(p)wn_1wn_27fx(2f—1)7[¢w1(4( )) dtd

t2

£

4(m-1)/e?

= T(p)wn_19n > / fo(27-1) / fiwl(»z)dZ%

_ ol s 7 £ (2r—1) (4(7_1)) 0

e2

“’" n2 / M f 2(coshr — )) sinh r dr.

2

The last expression is equivalent to (40). Application of Fubini’s theorem
was possible due to Lemma 6(i). =

Finally, we will obtain the proof of Theorem 1 by verifying that k. defines
an approximate identity. This is accomplished via the following statement
which is a consequence of Lemma 2.4 from [14].

Lemma 7 Let w € L'(0,00) satisfy (29) and (30). Set v = p+ (u —n)/4.
Then fooo s7|wi(s)| ds < 0o and the function g from (41) enjoys the following
properties:

(i)

O(sP™1), i
o) = { B b TOSSE N s <0 (@)

(ii)
I(-p) / shwy(s)ds, if pg N,

7 g(s)ds = (43)

(_1)p+1 ) .
' s’wi(s) logsds, if p € N.
P 0
The above Lemma shows that the kernel (41) satisfies the conditions of
Lemma 3. Hence we deduce that

my [T b= (o), = 2 [T ()0

4

5—)0
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with the limit interpreted in the required senses. One can easily check that
the constant ¢, above coincides with that in (32).
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