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Basic Ideas of String Theory

The basic idea of string theory is to replace point particles (in
conventional physics) by one-dimensional “strings.” At ordinary
(low) energies these strings are extremely short, on the order of the
Planck length,

lP =

√
~G

c3
≈ 1.616× 10−35 m .

A string moving in time traces out a two-dimensional surface called
a worldsheet. The most basic fields in string theory are thus maps
ϕ : Σ → X , where Σ is a 2-manifold (the worldsheet) and X is
spacetime.
String theory offers [some] hope for combining gravity with the
other forces of physics and quantum mechanics.
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Strings and Sigma-Models

Let Σ be a string worldsheet and X the spacetime manifold. String
theory is based on the nonlinear sigma-model, where ϕ : Σ → X
and the leading terms in the action are

S(ϕ) =
1

4πα′

∫
Σ
‖∇ϕ‖2 dvol +

∫
Σ

ϕ∗(B), (1)

the energy of the map ϕ (in Euclidean signature) plus the
Wess-Zumino term based on the B-field B. 1/(2πα′) is the string
tension. B is a locally defined 2-form on X (really associated to a
gerbe).
We have to add to this various gauge fields (giving rise to the
fundamental particles) and a “gravity term” involving the scalar
curvature of the metric on X . Usually we also require
supersymmetry; this means the theory involves both bosons and
fermions and there are symmetries interchanging the two.
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Calabi-Yau Manifolds

It turns out that not every classical sigma-model quantizes to a
consistent quantum field theory. In general one needs certain
anomalies to cancel for this to happen. For superstring theories,
anomaly cancellation requires dim X = 10. Since ordinary
(observable) spacetime is R4, 4-dimensional Minkowski space,
usually one requires X = R4 ×M6, where M6 is a 6-manifold,
often assumed compact (though this isn’t necessary).

In addition,
one usually wants to have at least N = 2 supersymmetry (twice
the minimal amount). This can be achieved by taking M to be a
complex Kähler manifold of complex dimension 3 with c1(M) = 0
(equivalently, with M admitting an everywhere non-vanishing
holomorphic 3-form). Such an M is called a Calabi-Yau 3-fold. In
this talk, we’ll be concerned with the very simplest case (beyond
the “trivial” case M = C3), M = C2 × E , where E is an elliptic
curve, i.e., a compact Riemann surface of genus 1.
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String Theories and Mirror Symmetry

There are several variants of superstring theory. For our purposes,
the most important ones are called types IIA and IIB, which
involve different chirality conditions on the fermionic fields: in IIA,
the left-moving and right-moving spinors have opposite
handedness, and in IIB, they have the same handedness. For the
case X = R4 ×M with M a Calabi-Yau 3-fold, these theories
emphasize different aspects of the geometry of M: the symplectic
geometry of the Kähler form and the holomorphic geometry.

These

string theories with M a Calabi-Yau tend to come in mirror pairs, one of

type IIA and one of type IIB, and mirror symmetry interchanges the

Kähler and the holomorphic geometry. When M = C2 × E with E an

elliptic curve, the complex geometry on E is given by a parameter τ ∈ h,

modulo PSL(2, Z), and the Kähler geometry and B-field are given by

ρ =
∫

(B + iK ) ∈ h, modulo PSL(2, Z), with B the B-field and K the

Kähler form. Mirror symmetry simply switches τ and ρ.

Jonathan Rosenberg Orientifold Duality and KR



String Theory and Duality
KR-Theory and its Variants

String Theories and Mirror Symmetry

There are several variants of superstring theory. For our purposes,
the most important ones are called types IIA and IIB, which
involve different chirality conditions on the fermionic fields: in IIA,
the left-moving and right-moving spinors have opposite
handedness, and in IIB, they have the same handedness. For the
case X = R4 ×M with M a Calabi-Yau 3-fold, these theories
emphasize different aspects of the geometry of M: the symplectic
geometry of the Kähler form and the holomorphic geometry. These

string theories with M a Calabi-Yau tend to come in mirror pairs, one of

type IIA and one of type IIB, and mirror symmetry interchanges the

Kähler and the holomorphic geometry. When M = C2 × E with E an

elliptic curve, the complex geometry on E is given by a parameter τ ∈ h,

modulo PSL(2, Z), and the Kähler geometry and B-field are given by

ρ =
∫

(B + iK ) ∈ h, modulo PSL(2, Z), with B the B-field and K the

Kähler form. Mirror symmetry simply switches τ and ρ.

Jonathan Rosenberg Orientifold Duality and KR



String Theory and Duality
KR-Theory and its Variants

D-Brane Charges and K -Theory

Physicists talk about both closed and open strings. Both kinds of
strings are given by compact manifolds, but in the “open” case
there is a boundary. So to get a reasonable theory one has to
impose Dirichlet or Neumann boundary conditions on some
submanifold Y of X where the boundary of Σ must map. These
submanifolds are traditionally called D-branes, “D” for Dirichlet
and brane from membrane.

The D-branes are even-dimensional

(basically, they are complex submanifolds) in type IIB and

odd-dimensional in type IIA. They carry Chan-Paton bundles. The

D-branes carry topological charges associated to the nontriviality of the

Chan-Paton bundles. The classes of these bundles push forward under

the Gysin map to charges in the (twisted) K -theory of spacetime, in even

degree for type IIB and odd degree for type IIA. There are

Ramond-Ramond charges in the K -group of opposite parity.
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Orientifolds

One can construct many more string theories out of the basic Type
II theories by considering orientifold theories. In these theories, the
spacetime manifold X is equipped with an involution ι. The
inclusion ϕ : Σ → X of a string worldsheet into X is required to be
equivariant for the involution Ω on Σ given by the worldsheet parity
operator. The Chan-Paton bundle on a D-brane then has to have a
conjugate-linear involution compatible with ι, and so D-brane
charges live in (a variant of) KR∗(X , ι), which is the K -theory of
bundles with such an involution. We’ll discuss this later.

The involution ι does not have to be free. In general, its fixed set
will have several components, called O-planes (“O” for orientifold).
On a given O-plane, the restriction of the Chan-Paton bundle must
have a real or symplectic structure, giving a class in KO∗ or KSp∗

of the O-plane. We refer to O+ and O− planes in these two cases.
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Elliptic Curve Orientifolds

To get a consistent orientifold string theory on an elliptic curve,
the involution must be holomorphic in type IIB, anti-holomorphic
in type IIA. Since elliptic curves are algebraic, that means that a
IIA elliptic curve orientifold is basically the same as a smooth
(projective) elliptic curve defined over R.

Since elliptic curves are
classified by the j-invariant in C, such a real structure exists if and
only if the j-invariant is real. Furthermore, by a classical theorem
of Harnack, the real points of a smooth projective curve of genus g
have species s, that is, the number of connected components,
equal to any number from 0 to g + 1 (2 in our case). So we get
the following picture of the moduli space of type IIA elliptic curve
orientifolds. (The IIB picture is reversed.)
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Elliptic curve Orientifolds (cont’d)
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Normal Forms

Complex and algebraic geometers as far back as the 18th and 19th
century gave normal forms for elliptic curves. Most familiar is the
Weierstraß form

y2 = x3 + ax + b,

giving a parameterization x = 4℘(z), y = 4℘′(z) in terms of
Weierstraß elliptic functions. However, for our purposes, it is
better to work with the Jacobi/Legendre normal form

y2 = ±(1± x2)(1± k2x2)

and a parameterization in terms of Jacobi elliptic functions sn, cn,
etc. Real curves of different species are obtained by varying the
signs.
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Dualities in String Theory

A rather amazing discovery of the “second string revolution” is that there

appear to be many nontrivial dualities between different string theories,

that is theories with a very different appearance, living on different

spacetimes, that still predict the same physics. Mirror symmetry gives

some, but not the only, examples of such dualities. Other basic examples

are T-dualities, that involve replacing circles in spacetime by dual circles,

and interchanging winding and momentum modes.

Leaving aside the possible obvious deformations of continuous
parameters, there are quite a number of distinct type II orientifold
string theories on elliptic curves. These differ in the following
(discrete) invariants:

the species s = 0, 1, 2 in the type IIA cases;

topology of the involution and the + or − charges (real or
symplectic Chan-Paton bundles) of the O-planes;

whether the B-field has value 0 or 1
2 in the type IIB cases.
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T-Duality Groupings

Physicists (including Agnotti, Witten, Gao-Hori) had conjectured
that these various theories should break up into 3 groupings, with
the theories in each group all related to one another by T-dualities.
The arguments for this were based on highly non-rigorous physical
intuition. We set out to determine if this is the case, and to try to
find explanations for these groupings using algebraic geometry and
algebraic topology. The groups listed by type and fixed set are:

IIB, trivial inv., B = 0 IIB, trivial inv., B = 1
2

IIB, free inv.
IIB, {+, +, +, +} IIB, {+, +, +,−} IIB, {+, +,−,−}
IIA, species 2 IIA, species 1 IIA, species 0

IIA, species 2, mixed signs
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Atiyah’s KR-theory

A variant of K-theory, called KR or Real K-theory (with a capital
R!) was introduced by Atiyah in the famous paper “K-theory and
reality” in 1968. This is a theory defined on the category of Real
spaces, locally compact spaces X with an involution ι (a
self-homeomorphism of X with ι2 = 1). The motivating example is
X the complex points of an algebraic variety defined over R, with ι
the action of Gal(C/R).

For (X , ι) a compact Real space, we define KR(X ) (usually the ι
will be implicit) to be the Grothendieck group of the Real vector
bundles over X , pairs (E , χ), with E a complex vector bundle over
X and χ : E → E a involutive conjugate-linear isomorphism
compatible with ι. Note that when ι is trivial, this is equivalent to
giving a real vector bundle over X , and E is just its
complexification.

Jonathan Rosenberg Orientifold Duality and KR



String Theory and Duality
KR-Theory and its Variants

Atiyah’s KR-theory

A variant of K-theory, called KR or Real K-theory (with a capital
R!) was introduced by Atiyah in the famous paper “K-theory and
reality” in 1968. This is a theory defined on the category of Real
spaces, locally compact spaces X with an involution ι (a
self-homeomorphism of X with ι2 = 1). The motivating example is
X the complex points of an algebraic variety defined over R, with ι
the action of Gal(C/R).
For (X , ι) a compact Real space, we define KR(X ) (usually the ι
will be implicit) to be the Grothendieck group of the Real vector
bundles over X , pairs (E , χ), with E a complex vector bundle over
X and χ : E → E a involutive conjugate-linear isomorphism
compatible with ι. Note that when ι is trivial, this is equivalent to
giving a real vector bundle over X , and E is just its
complexification.

Jonathan Rosenberg Orientifold Duality and KR



String Theory and Duality
KR-Theory and its Variants

KR periodicity

We extend KR to a theory with compact supports on locally
compact spaces. As usual it comes with a cup-product coming
from the tensor product of vector bundles. Let Rp,q be Rp ⊕ Rq

with the involution ι that is the identity on the first summand and
−1 on the second summand. (Caution: Atiyah calls this Rq,p with
p and q reversed. People seem to be divided 50/50 on the
notation.) Let Sp,q denote the unit sphere in Rp,q; topologically
this is Sp+q−1, but the involution depends on p and q. For
instance it is the antipodal map in the case of S0,q. Let
KRp,q(X ) = KR(X × Rp,q). The Bott element β lives in
KR1,1(pt).

Theorem (Atiyah)

Cup-product with β is an isomorphism KRp,q(X ) → KRp+1,q+1(X )
for any X and any p, q. Thus KRp,q(X ) only depends on p − q,
and it’s periodic with period 8 in this index.
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Special cases of KR-theory

If the involution is trivial, KRp,q(X ) ∼= KOq−p(X ).

Theorem (Atiyah)

There are natural isomorphisms KR(X × S0,1) ∼= K (X ) and
KR(X × S0,2) ∼= KSC (X ) (self-conjugate K-theory of Anderson
and Green). KR(X × S0,4) is 8-periodic. For p ≥ 3 there are short
exact sequences

0 → KR−q(X ) → KR−q(X × S0,p) → KRp+1−q(X ) → 0.

Theorem (Karoubi-Weibel (Topology 2003))

If the involution ι on X is free, then KR−q(X ) is 4-periodic.

This “explains” the 4-periodicity of KSC . But the theorem is false
/ in general; it contradicts the 8-periodicity of KR−q(S0,4).
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KR for free involutions

In the case X compact and ι free, what happens more precisely is
this. Locally, X ∼= Y × S0,1 (where S0,1 is two points,
interchanged by the involution), and KR∗(X ) ∼= K ∗(Y ). However,
this is not true globally. However, there is a spectral sequence, the
analogue of the Atiyah-Hirzebruch spectral sequence,
Hp(X/ι,KRq(S0,1)

::::::::::
) ⇒ KRp+q(X ). Here KRq(S0,1)

::::::::::
is a sheaf

locally isomorphic to Z for q even, and is 0 for q odd.

However,
more detailed examination shows that the sheaf is trivial (just Z)
for q ≡ 0 (mod 4) and is the non-trivial local coefficient system Z

:

determined by the 2-to-1 covering X → X/ι for q ≡ 2 (mod 4).
Thus E2 of the spectral sequence is 4-periodic. But in general, the
differentials and extensions associated with the spectral sequence
are not 4-periodic. This is what happens for S0,4 → RP3.
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An example of the spectral sequence for KR

Recall that KSC∗ = KR∗(S0,2). So take X = S0,2, X → X/ι a 2-to-1

covering map. We have E p,q
2 = 0 unless p = 0 or 1 and q is even. For

q ≡ 0 (mod 4), we have E p,q
2 = Hp(S1, Z) = Z for p = 0, 1. For q ≡ 2

(mod 4), we have E p,q
2 = Hp(S1, Z

:
). This cohomology with local

coefficients is the same as Hp
group(Z, Z), where Z is the Z-module

isomorphic to Z as an abelian group, but on which 1 (the generator of

the group) acts by −1. The spectral sequence looks like:

q p = 0 p = 1

4

OO

Z Z
3 0 0

2 0 Z/2

1 0 0
0

periodicity ∼=

::

Z Z // p.

We see that KSC∗ is 4-periodic with groups Z, Z, 0, Z/2.
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Connection with noncommutative geometry

All the standard variants of K -theory — K , KO, KSp, KSC , and
KR — can be unified by thinking of them as topological K -theory
for various Banach algebras (in fact, C ∗-algebras) over R. For X
locally compact, we have

K−q(X ) = Kq(C0(X )),

KO−q(X ) = KOq(C
R
0 (X )),

KSp−q(X ) = KOq(C
H
0 (X )),

KSC−q(X ) = KOq(C
R
0 (X )⊗ T ),

where T = {f ∈ C ([0, 1]) | f (0) = f (1)}. In addition, if (X , ι) is a
Real space, then KR−q(X ) = KOq(C0(X , ι)), where

C0(X , ι) =def {f ∈ C0(X ) | f (x) = f (ιx)}.
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Twistings from noncommutative geometry

All of the K -groups K , KO, KSp, KSC , and KR have twisted
versions that are special cases of the K -theory of real
continuous-trace (CT) algebras. I originally studied these back in
the 1980’s for purely operator-algebraic reasons, but they also arise
in modern physics.

A complex C ∗-algebra A is said to have
continuous trace if Â is Hausdorff and if the continuous-trace
elements

{a ∈ A+ | Tr π(a) < ∞∀π ∈ Â, and π 7→ Tr π(a) continuous on Â}

are dense in A+. A real C ∗-algebra A is said to have continuous
trace if its complexification does. Note that commutative real
C ∗-algebras automatically have continuous trace.
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Structure theory of CT algebras

A structure theory for (complex) continuous-trace algebras was
developed by Dixmier and Douady in the 1960’s. They showed
that if X is locally compact and second countable, and if A is a
separable (complex) CT algebra with spectrum X , then A is
determined up to stable isomorphism (or Morita equivalence) by a
Dixmier-Douady class δ ∈ H3(X , Z). This class classifies a
principal PU-bundle over X , and since PU(H) = AutK(H), there
is an associated bundle of algebras A over X with fibers K, and
A⊗K ∼= Γ0(X ,A).

The real case is more complicated. A real CT algebra is built out
of three pieces of real, quaternionic, and complex type,
respectively. These are locally isomorphic to CR

0 (X )⊗K(HR),
CR

0 (X )⊗K(HH), and C0(X )⊗K(HC), respectively.
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Twisted K-theory

Twisted (complex) K -theory of X with twisting δ ∈ H3(X , Z) can
be defined simply to be K∗(A), where A is a CT algebra with
spectrum X and Dixmier-Douady class δ. When δ = 0, A is Morita
equivalent to C0(X ), and we get back K−∗(X ).

In a similar
fashion, since AutK(HR) = PO, which is a K (Z/2, 1) space,
algebras locally Morita equivalent to CR

0 (X ) are classified by an
invariant w ∈ H2(X , Z/2), which one can think of as a
Stiefel-Whitney class or the real analogue of the Dixmier-Douady
class, and one gets twisted KO-groups KO−j(X ,w) =
KOj(CTR(X ,w)), which appear, for example, in the Poincaré
duality theorem for KO of non-spin manifolds. And since
AutK(HH) = PSp, which is also a K (Z/2, 1) space, we also get
groups KSp−j(X ,w) for w ∈ H2(X , Z/2).

Jonathan Rosenberg Orientifold Duality and KR



String Theory and Duality
KR-Theory and its Variants

Twisted K-theory

Twisted (complex) K -theory of X with twisting δ ∈ H3(X , Z) can
be defined simply to be K∗(A), where A is a CT algebra with
spectrum X and Dixmier-Douady class δ. When δ = 0, A is Morita
equivalent to C0(X ), and we get back K−∗(X ). In a similar
fashion, since AutK(HR) = PO, which is a K (Z/2, 1) space,
algebras locally Morita equivalent to CR

0 (X ) are classified by an
invariant w ∈ H2(X , Z/2), which one can think of as a
Stiefel-Whitney class or the real analogue of the Dixmier-Douady
class, and one gets twisted KO-groups KO−j(X ,w) =
KOj(CTR(X ,w)), which appear, for example, in the Poincaré
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KR-theory with a sign choice

For some applications to physics, we need another variant KRα of
KR-theory for Real spaces (X , ι) with an added decoration: a
choice α of a ± sign on each component of the fixed set X ι. This
is required to have the following properties (which almost but
don’t quite determine it). Let Y± be the union of the fixed set
components with sign ±, and let Z = X r X ι. Let X± = Z ∪ Y±.
Thus X = X+ ∪ X−, X ι = Y + ∪ Y−, and X+ ∩ X− = Z .

1 KR∗
α(X+) = KR∗(X+), and

KR∗
α(X−) = KH∗(X−) ∼= KR∗+4(X−). (KH is the

quaternionic analogue of KR. The dimension shift by 4 comes
from the fact that KSp∗ ∼= KO∗+4.)

2 KR∗
α satisfies Bott periodicity with period 8 and is functorial

for maps of Real spaces preserving the sign decoration.
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Constructing KR-theory with a sign choice

Given a Real space (X , ι), we attach the real C ∗-algebra
C0(X

+, ι)⊗KR to X+. This has topological K -theory KR−∗(X+).
To X− we attach the real C ∗-algebra C0(X

−, ι)⊗H⊗KR, which
has topological K -theory KH−∗(X−). These algebras “agree” over
Z since H splits over C (in the sense of the theory of central
simple algebras). So we clutch together and get an algebra whose
topological K -theory we can call KR−∗

α (X ). There is an exact
sequence

· · · → KR−j(Z ) → KR−j
α (X ) → KO−j(Y +)⊕ KSp−j(Y−)

δ−→ KR−j+1(Z ) → · · · .
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General twisted KR-theory

All of these twistings, including the sign choice on the fixed sets,
have been unified in work of Moutuou. He constructs and
computes a graded Brauer group of graded real CT algebras over a
Real space (X , ι). The equivalence relation is Morita equivalence
over X and the group operation is graded tensor product (over X ).

For our purposes we don’t need the grading, so we get a Brauer
group of real CT algebras which turns out to be

BrR(X , ι) ∼= H0(X ι, Z/2)⊕ H2
ι (X ,S),

where the first summand is the group of sign choices and the
second group is equivariant sheaf cohomology for the Real sheaf S
of germs of S1-valued continuous functions and we use the
complex conjugation involution on S1. The second summand
encodes the (Real) Dixmier-Douady class. When X = X ι, this
summand reduces to H2(X , Z/2), since Z/2 is the fixed-point
subgroup of the circle.
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KR theories for elliptic curve orientifolds

Here is the calculation of the KR groups (with twists, decorations,
as appropriate) for all holomorphic (IIB) and antiholomorphic (IIA)
involutions on an elliptic curve.

Type Fixed Set Real Space KR Groups

IIB T 2 S2,0 × S2,0 KO∗(T 2)

IIB T 2 with w2 S2,0 × S2,0 KO∗−1 ⊕ KO∗−1 ⊕ K ∗

IIB {+ + ++} S1,1 × S1,1 KO∗+2(T 2)

IIB {+ +−−} S1,1 × S1,1 KSC ∗+2 ⊕ KSC ∗+1

IIB {+ + +−} S1,1 × S1,1 KO∗+1 ⊕ KO∗+1 ⊕ K ∗

IIB ∅ S2,0 × S0,2 KSC ∗ ⊕ KSC ∗−1

IIA S1 q S1 S1,1 × S2,0 KO∗+1(T 2)

IIA S1
+ q S1

− S1,1 × S2,0 KSC ∗+1 ⊕ KSC ∗

IIA S1 not a product KO∗ ⊕ KO∗ ⊕ K ∗−1

IIA ∅ S1,1 × S0,2 KSC ∗+1 ⊕ KSC ∗
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Connections with physics

The chart on the last slide nicely matches what was predicted by
physicists just using physical T-duality arguments. The orientifold
theories on an elliptic curve fit into 3 families, where the theories in
a family are related to one another by T-dualities. To these 3
families we could add a 4th family, the case of ordinary type IIA or
IIB string theory with no orientifold structure (or equivalently,
orientifolds on a disjoint union of two elliptic curves, where the
involution switches the two factors), for which we get K ∗(T 2).

A few of these theories have special names. The IIB theory with
the trivial involution and a w2 twist is what Witten (1998) called
“Toroidal compactification without vector structure.” Witten
predicted dualities of this theory with IIA orientifold with quotient
space the Möbius strip, which has fixed set S1, and also with the
IIB theory with fixed set {+,+,+,−}, and these predictions agree
with our calculations.
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Confirmation from Algebraic Geometry

It turns out that algebraic geometry provides independent evidence
for the T-duality groupings. The arguments for this are a bit
complicated, but basically the idea is to look at the
Jacobi/Legendre normal forms and study the behavior of the
Jacobi functions under the involutions. Complex conjugate zeros of
the parameterizing Jacobi functions are associated to O+-O−

pairs, whereas real zeros correspond to (unpaired) O+-planes.
Again everything matches with the physics predictions.
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Connection with the Baum-Connes Conjecture

So far we just computed the twisted KR groups and observed that
within the T-duality groupings, they are abstractly isomorphic. But
from where does one get the actual isomorphisms between these
groups?

It turns out these come from the real Baum-Connes
conjecture, which asserts that for a discrete group G , there is an
isomorphism (given by a specific index map)

µ : KOG
∗ (EG ) → KO∗(C

∗
R(G )).

Here EG is the universal proper G -space. If G is torsion-free, the
left-hand side is just KO∗(BG ). The conjecture is a theorem for G
amenable and in many other cases.
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Example

Let’s take G to be the following solvable group:

G = 〈a, b, c | ab = cba, c2 = 1〉.

For this group, EG = R2 and each side of the Baum-Connes
conjecture splits into two pieces. The index map µ canonically
splits into a direct sum of two different Baum-Connes maps. First
of these is the Baum-Connes map for Z2 (corresponding to setting
c = 1), which gives an isomorphism

KOj(T
2)

∼=−→ KR−j(S1,1 × S1,1), or (after applying Poincaré

duality) KO2−j(T 2)
∼=−→ KR−j(S1,1 × S1,1).

The other summand
turns out to be the

KO2−j(T 2,w)
∼=−→ KR−j

(+,+,+,−)(S
1,1 × S1,1).
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For this group, EG = R2 and each side of the Baum-Connes
conjecture splits into two pieces. The index map µ canonically
splits into a direct sum of two different Baum-Connes maps. First
of these is the Baum-Connes map for Z2 (corresponding to setting
c = 1), which gives an isomorphism

KOj(T
2)

∼=−→ KR−j(S1,1 × S1,1), or (after applying Poincaré

duality) KO2−j(T 2)
∼=−→ KR−j(S1,1 × S1,1). The other summand

turns out to be the desired isomorphism

KO2−j(T 2,w)
∼=−→ KR−j

(+,+,+,−)(S
1,1 × S1,1).
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