Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Quantum Spectra and Transport
A conference in honor of Yosi Avron
June 30 - July 4, 2013
The Hebrew University of Jerusalem, Israel

Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Quantum Spectra and Transport
A conference in honor of Yosi Avron
June 30 - July 4, 2013
The Hebrew University of Jerusalem, Israel

Best wishes, Yosi!

Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Quantum Spectra and Transport
A conference in honor of Yosi Avron
June 30 - July 4, 2013
The Hebrew University of Jerusalem, Israel

Best wishes, Yosi!

joint work with Marcello Porta thanks to Yosi Avron

Introduction

Rueda de casino

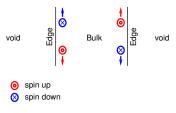
Hamiltonians

Indices

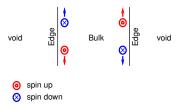
Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

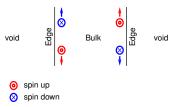


- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system



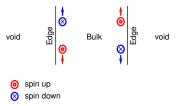
► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance.

- Insulator in the Bulk: Excitation gap For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system



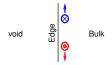
Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance. Analogy: torus ≠ sphere (differ by genus).

- Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

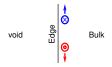


Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance. Analogy: torus ≠ sphere (differ by genus).

Contributors to the field: Kane, Mele, Zhang, Moore; Fröhlich

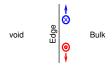


In a nutshell: Termination of bulk of a topological insulator implies edge states



In a nutshell: Termination of bulk of a topological insulator implies edge states

State the (intrinsic) topological property distinguishing different classes of insulators.

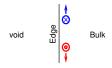


In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

Express that property as an Index relating to the Bulk, resp. to the Edge.

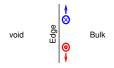


In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree?

Bulk-edge correspondence. Done?

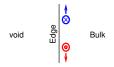


In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Yes, e.g. Kane and Mele.
- Bulk-edge duality: Can it be shown that the two indices agree? Schulz-Baldes et al.; Essin & Gurarie

Bulk-edge correspondence. Today



In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Done differently.
- Bulk-edge duality: Can it be shown that the two indices agree? Done differently.

Introduction

Rueda de casino

Hamiltonians

Indices

Rueda de casino. Time 0'15"

Rueda de casino. Time 0'45"

Rueda de casino. Time 3'23"

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

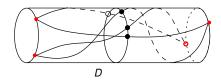
There are dances which can not be deformed into one another.

Which is the index that makes the difference?

A snapshot of the dance

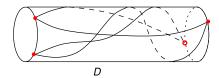
A snapshot of the dance

Dance D as a whole



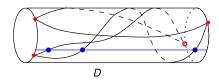
A snapshot of the dance

Dance D as a whole



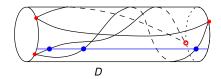
A snapshot of the dance

Dance D as a whole



A snapshot of the dance

Dance D as a whole



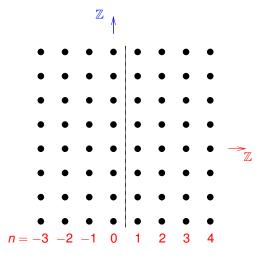
 $\mathcal{I}(D)$ = parity of number of crossings of fiducial line

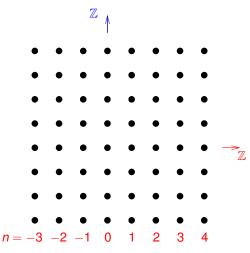
Introduction

Rueda de casino

Hamiltonians

Indices





Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

translation invariant in the vertical direction

- translation invariant in the vertical direction
- period may be assumed to be 1:

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f.

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N

Bulk Hamiltonian

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum ${\it k} \in {\it S}^1 := \mathbb{R}/2\pi\mathbb{Z}$

Bulk Hamiltonian

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\frac{H(k)\psi}{n}\right)_n = A(k)\psi_{n-1} + A(k)^*\psi_{n+1} + V_n(k)\psi_n$$

with

$$V_n(k) = V_n(k)^* \in M_N(\mathbb{C})$$
 (potential)
 $A(k) \in GL(N)$ (hopping)

Bulk Hamiltonian

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

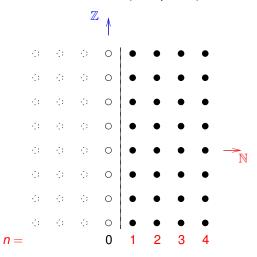
End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\frac{H(k)\psi}{n}\right)_n = A(k)\psi_{n-1} + A(k)^*\psi_{n+1} + V_n(k)\psi_n$$

with

$$V_n(k)=V_n(k)^*\in M_N(\mathbb{C})$$
 (potential) $A(k)\in \mathrm{GL}(N)$ (hopping): Schrödinger eq. is the 2nd order difference equation

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$



Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

translation invariant as before (hence Bloch reduction)

Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(H^{\sharp}(k)\psi\right)_{n}=A(k)\psi_{n-1}+A(k)^{*}\psi_{n+1}+V_{n}^{\sharp}(k)\psi_{n}$$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

▶ translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\mathbf{H}^{\sharp}(k)\psi\right)_{n} = \mathbf{A}(k)\psi_{n-1} + \mathbf{A}(k)^{*}\psi_{n+1} + \mathbf{V}_{n}^{\sharp}(k)\psi_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

▶ translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\mathbf{H}^{\sharp}(\mathbf{k})\psi\right)_{n} = \mathbf{A}(\mathbf{k})\psi_{n-1} + \mathbf{A}(\mathbf{k})^{*}\psi_{n+1} + \mathbf{V}_{n}^{\sharp}(\mathbf{k})\psi_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

▶ has Dirichlet boundary conditions: for n = 1 set $\psi_0 = 0$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

▶ translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\mathbf{H}^{\sharp}(k)\psi\right)_{n} = \mathbf{A}(k)\psi_{n-1} + \mathbf{A}(k)^{*}\psi_{n+1} + V_{n}^{\sharp}(k)\psi_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

▶ has Dirichlet boundary conditions: for n = 1 set $\psi_0 = 0$

Note:
$$\sigma_{\text{ess}}(H^{\sharp}(k)) \subset \sigma_{\text{ess}}(H(k))$$
, but typically $\sigma_{\text{disc}}(H^{\sharp}(k)) \not\subset \sigma_{\text{disc}}(H(k))$

General assumptions

Gap assumption: Fermi energy μ lies in a gap for all k ∈ S¹:

$$\mu \notin \sigma(H(k))$$

General assumptions

▶ Gap assumption: Fermi energy μ lies in a gap for all $k \in S^1$:

$$\mu \notin \sigma(H(k))$$

- ▶ Fermionic time-reversal symmetry: $\Theta : \mathbb{C}^N \to \mathbb{C}^N$
 - ▶ Θ is anti-unitary and $\Theta^2 = -1$;
 - ▶ For all $k \in S^1$,

$$H(-k) = \Theta H(k)\Theta^{-1}$$

where Θ also denotes the map induced on $\ell^2(\mathbb{Z}; \mathbb{C}^N)$. Likewise for $H^{\sharp}(k)$

• $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k,

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$.

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers).

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers). Indeed

$$H\psi = E\psi \implies H(\Theta\psi) = E(\Theta\psi)$$

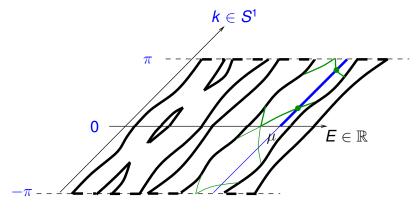
and $\Theta \psi = \lambda \psi$, $(\lambda \in \mathbb{C})$ is impossible:

$$-\psi = \Theta^2 \psi = \bar{\lambda} \Theta \psi = \bar{\lambda} \lambda \psi \qquad (\Rightarrow \Leftarrow)$$

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ▶ Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers).



Bands, Fermi line (one half fat), edge states

Introduction

Rueda de casino

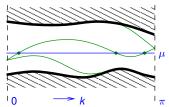
Hamiltonians

Indices

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on
$$-\pi \le k \le 0$$



Bands, Fermi line, edge states

Definition: Edge Index

 $\mathcal{I}^{\sharp} = \text{parity of number of eigenvalue crossings}$

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on
$$-\pi \le k \le 0$$

Bands, Fermi line, edge states

Definition: Edge Index

 \mathcal{I}^{\sharp} = parity of number of eigenvalue crossings

At fixed k, map gap to $S^1 \setminus \{1\}$ and bands to $1 \in S^1$: Edge Index is index of a rueda.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

has

ightharpoonup dim $E_{z,k}=N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

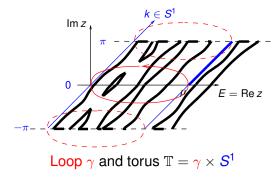
(as a 2nd order difference equation) has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

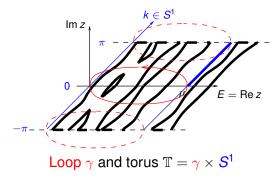
$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

has

- ightharpoonup dim $E_{z,k}=N$.
- $ightharpoonup E_{\bar{z},-k} = \Theta E_{z,k}$

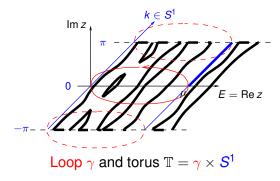


Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .



Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

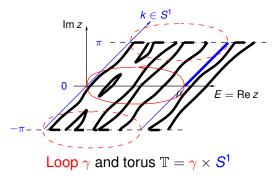


Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$



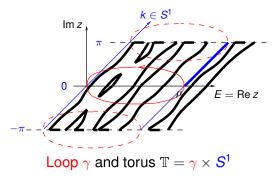
Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined?



Vector bundle E with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined? Aside ...

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

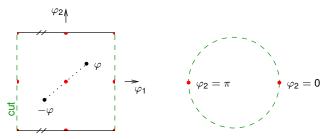
Sketch of proof: Consider

• torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

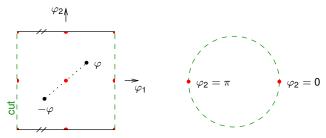
▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)



Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

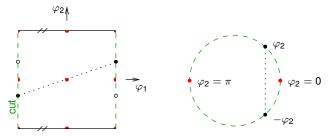


▶ a (compatible) section of the frame bundle of E

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

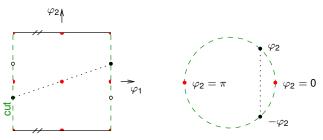


- ▶ a (compatible) section of the frame bundle of E
- ▶ the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$

Sketch of proof: Consider

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

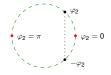


- a (compatible) section of the frame bundle of E
- ▶ the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in S^1)$$

with $\Theta_0:\mathbb{C}^N o\mathbb{C}^N$ antilinear, $\Theta_0^2=-1$

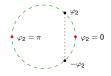
Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$



- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- ▶ At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$



- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- ▶ At time-reversal invariant points, $\varphi_2 = 0, \pi$,

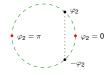
$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Time-reversal invariant bundles on the torus

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$



- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- ▶ At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

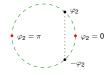
Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (Kramers degeneracy)

Time-reversal invariant bundles on the torus

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$



- $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- ▶ At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

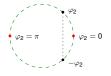
$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (Kramers degeneracy)

▶ For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, *D*

Time-reversal invariant bundles on the torus

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$



- ▶ For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, **D**

Definition (Index): $\mathcal{I}(E) := \mathcal{I}(D)$

Remark: $\mathcal{I}(E)$ agrees (in value) with the Pfaffian index of Kane and Mele.

... aside ends here.

Main result

Theorem Bulk and edge indices agree:

$$\mathcal{I}=\mathcal{I}^{\sharp}$$

Main result

Theorem Bulk and edge indices agree:

$$\mathcal{I}=\mathcal{I}^{\sharp}$$

 $\mathcal{I}=+1$: ordinary insulator

 $\mathcal{I} = -1$: topological insulator

▶ For this slide only: N = 1.

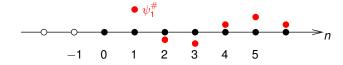
► For this slide only: *N* = 1. Schrödinger (2nd order difference) equation on the half-line

$$(H^{\sharp} - z)\psi^{\sharp} = 0$$
 (no b.c. at $n = 0$)

► For this slide only: *N* = 1. Schrödinger (2nd order difference) equation on the half-line

$$(H^{\sharp}-z)\psi^{\sharp}=0$$
 (no b.c. at $n=0$)

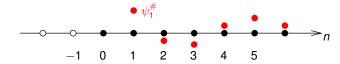
with solution $\psi_n^\sharp \in \mathbb{C}$, (n=0,1,2) decaying at $n \to \infty$ $\bullet \psi_0^\#$



► For this slide only: *N* = 1. Schrödinger (2nd order difference) equation on the half-line

$$(H^{\sharp} - z)\psi^{\sharp} = 0$$
 (no b.c. at $n = 0$)

with solution $\psi_n^\sharp \in \mathbb{C}$, (n=0,1,2) decaying at $n \to \infty$ $\bullet \psi_0^\#$

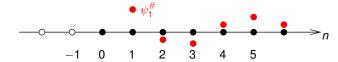


Solution is unique up to multiples

► For this slide only: *N* = 1. Schrödinger (2nd order difference) equation on the half-line

$$(H^{\sharp} - z)\psi^{\sharp} = 0$$
 (no b.c. at $n = 0$)

with solution $\psi_n^\sharp \in \mathbb{C}$, (n=0,1,2) decaying at $n \to \infty$ $\psi_0^\#$

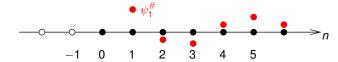


- Solution is unique up to multiples
- $\psi_0^{\sharp} = 1$ picks a unique solution,

► For this slide only: N = 1. Schrödinger (2nd order difference) equation on the half-line

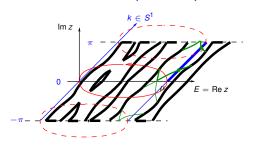
$$(H^{\sharp} - z)\psi^{\sharp} = 0$$
 (no b.c. at $n = 0$)

with solution $\psi_n^{\sharp} \in \mathbb{C}$, (n = 0, 1, 2) decaying at $n \to \infty$ $\psi_0^{\#}$



- Solution is unique up to multiples
- $\psi_0^{\sharp} = 1$ picks a unique solution, except if n = 0 is a node

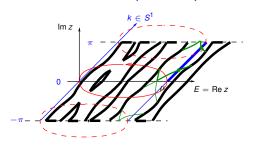
Proof of Theorem (sketch)



Fermi line (one half **fat)** edge states torus

- ψ , ψ^{\sharp} solutions (bulk, edge) at z,k decaying at $n \to +\infty$
- ▶ Bijective map $\psi \mapsto \psi^{\sharp}$, so that $\psi_n = \psi_n^{\sharp}$ $(n > n_0)$
- $\exists \psi^{\sharp} \neq 0 \mid \psi_{n=0}^{\sharp} = 0 \Leftrightarrow z \in \sigma(H^{\sharp}(k))$
- ▶ There is a section of the frame bundle F(E), global on \mathbb{T} , except at edge eigenvalue crossings
- Cut the torus along the Fermi line; let T(k) be the transition matrix
- ▶ There $T(k) = \mathbb{I}_N$, except near eigenvalue crossings
- As k traverses one of them, T(k) has eigenvalues 1 (multiplicity N-1) and $\lambda(k)$ making one turn of S^1

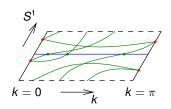
Proof of Theorem (sketch)



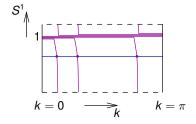
Fermi line (one half **fat)** edge states torus

- ψ , ψ^{\sharp} solutions (bulk, edge) at z,k decaying at $n \to +\infty$
- ▶ Bijective map $\psi \mapsto \psi^{\sharp}$, so that $\psi_n = \psi_n^{\sharp}$ ($n > n_0$)
- $\exists \psi \neq \mathbf{0} \mid \psi_{n=0}^{\sharp} = \mathbf{0} \Leftrightarrow z \in \sigma(H^{\sharp}(k))$
- ▶ There is a section of the frame bundle F(E), global on \mathbb{T} , except at edge eigenvalue crossings
- Cut the torus along the Fermi line; let T(k) be the transition matrix
- ▶ There $T(k) = \mathbb{I}_N$, except near eigenvalue crossings
- As k traverses one of them, T(k) has eigenvalues 1 (multiplicity N-1) and $\lambda(k)$ making one turn of S^1

Proof of Theorem: Dual ruedas

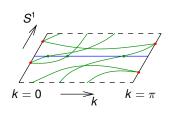


Edge rueda: edge eigenvalues

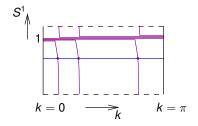


Bulk rueda: eigenvalues of T(k)

Proof of Theorem: Dual ruedas



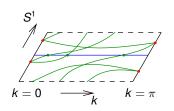
Edge rueda: edge eigenvalues



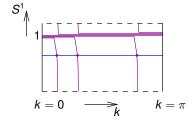
Bulk rueda: eigenvalues of T(k)

Ruedas share intersection points.

Proof of Theorem: Dual ruedas



Edge rueda: edge eigenvalues



Bulk rueda: eigenvalues of T(k)

Ruedas share intersection points. Hence indices are equal $\hfill\Box$

Further results:

In case the Bulk Hamiltonian is doubly periodic:

Further results:

In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus

Further results:

► In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus and (j-th pair of) Bloch solutions as bundles E_j.

Further results:

► In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus and (j-th pair of) Bloch solutions as bundles E_j. Then

$$\mathcal{I} = \prod_j \mathcal{I}(E_j)$$

with product over filled pairs

Further results:

In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus and (j-th pair of) Bloch solutions as bundles E_j. Then

$$\mathcal{I} = \prod_j \mathcal{I}(E_j)$$

with product over filled pairs

- A direct link between indices of Bloch bundles and the edge index via Levinson's theorem.
- 3d topological insulators (weak and strong indices: 3+1)

Open questions:

▶ No periodicity (disordered case)?

Summary

Bulk = Edge

 $\mathcal{I}=\mathcal{I}^{\sharp}$

