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1. Introduction 

In Part I of this paper we showed how Hecke operators on L2(S2)  may be 
used to generate very evenly distributed sequences of three-dimensional rotations. 
We defined the Hecke operator T,, where S is a finite symmetric (a E S if and 
only if a-' E S )  set of rotations, by 

A key ingredient in the analysis was a bound on the absolute value of the next to 
largest eigenvalue (in absolute value) of Ts which we denote by X,(T,). For 
certain S we have 

where p + 1 is the number of rotations in S .  A simple example of such a set is 
S = { A ,  B ,  C, A-' ,  B-', C - ' } ,  where A ,  B, C are rotations of arccos( - $) about 
the X ,  Y, Z-axes, respectively. 

In Section 2 of the present paper we give a proof of the inequality (1.2) for a 
large class of Hecke operators which includes the above example. 

In Section 3 we describe a more general scheme for producing very evenly 
distributed sequences of rotations and analyze the resulting discrepancies. In this 
case we consider a group I' diagonally embedded in G ,  X SU(2), where G ,  = 
PGL(2, Q,) or PSL(2, R), and for which the projection of r on G ,  is discrete and 
co-compact. One may then order the elements of r by a "lattice type" ordering 
in G,.  The corresponding projections on SU(2) give the desired sequences. The 
estimates on the discrepancies are similar to those that were obtained for the 
sequences in Part I. These estimates are based on certain inequalities which are 
proved in Section 4. The case treated in Section 2 is a special case of this lattice 
method. In fact, when X is the tree PGL(2, Q,)/PGL(2, B , )  and the discrete 
group r is free with Ir\Xl = 1, then, by takmg the generators of r to be the 
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elements which take some x ,  E X to its neighbors, one finds that the lattice 
method and word length ordering coincide. 

In Section 4 we show how these estimates may be derived from the work of 
Deligne [l]. The notation in this paper is the same as that used in Part I and that 
work will be referred to as I. 

2. Quaternion Groups 

Let H ( Z )  denote the standard quaternion ring with integral entries, i.e., 
{a = a, + a,i + a2j  + a3kla, E Z}, i2 = j2 = k2 = -1, ij = -ji = k. For a 
E H(Z) ,  ii = a ,  - a,i - a 2 j  - a3k is its conjugate and N ( a )  = aii E Z is its 
norm. It is clear that the units of H ( Z )  are the eight quaternions f 1, f i, f j, * k. 
As is well known (see [6] ) ,  the number of representations of a positive integer n 
as a sum of four squares is 

r4(n) = 8 d .  
dln 
4 + d  

Clearly, r4 (n)  is also the number of a E H ( Z )  with N ( a )  = n. 
Consider now the set of a E H ( Z )  for which N(a)  = p ,  where p is a prime, 

p = 1 (4). In this case only one of the a, is odd. The units act on this set and it is 
easy to see that each such a' has a unique associate LI = ELI' for which 

(2.2) N ( a )  = p ,  a = l ( 2 )  and a,> 0. 

The set of a satisfying (2.2) therefore consists of p + 1 elements (by (2.1)) and it 
clearly splits into u = + ( p  + 1) conjugate pairs which we denote by 

By a reduced word of length m in S', denoted by Rm(a l ,  ii,; ., an, ii,,), we 
mean a word in a1; . -, Em in which no subwords ajZj or Eja, appear. Clearly, 
the number of such words of length 12 1 is 

( p  + 1)p'-1. 

There is a homomorphism of H(Z)*  (the group of invertible elements of H ( Z ) )  
into SU(2) given by 

I -  a, + a,i u 2  + a3i  
- a , + a , i  a,-a, i  (2.4) a = a, + a,i + a2j  + a3k + - 

The elements in SU(2) correspond via stereographic projection to rotations in 
SO(3). The correspondence (2.4) will be used throughout this section and when 
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we refer to a it is either in H(Z)*  or SU(2) or SO(3) as will be clear from the 
context . 

Define the Hecke operator Tp : L 2 ( S 2 )  + L 2 ( S 2 )  by 

N ( a ) = p  

A simple calculation shows that 

S, = (1 + 2i,1 - 2i,1 + 2j , l  - 2j , l  + 2k, l  - 2k) 

and T,, when interpreted geometrically via (2.4) and stereographic projection, 
yields the operator T, described in the introduction. 

THEOREM 2.1. For aprimep = 1 (4), 

A&) 4 2 6  

We prove this theorem by means of the following three lemmas. To begin 
with we introduce the general Hecke operator: 

N ( a ) = n  

LEMMA 2.2. Tpy = l,(Tp), where the 1, are the Chebychev polynomials of 
second kind defined in I ,  (1.18). In terms of the complex variable 8 = 
arc cos ( ~ / 2 f i ) ,  

sin( Y + 1)8 
sin 8 I , (  A) = p"2 

This will follow from 

LEMMA 2.3. Every P E H ( Z )  with N ( P )  = p k  has a unique representation 

P = plERm(al,. . * ,  %), 

where I 4 i k ,  m + 21 = k ,  and R ,  is a reduced word of length m in al,. . 7 ,  (Yo. 

Proof of Lemma 2.2: If P = l (2)  in Lemma 2.3, then since ai = l (2)  we see 
that E = l(2); whence E = f 1. Thus every /3 = l (2)  with N ( P )  = p k  is ex- 
pressable uniquely in the form 

(2.7) P = fp'R,(a,,.  * - 9  Go), 
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where 21 + m = k .  We can therefore write 

The inner sum over all reduced words of length k - 21 in a1; * a ,  (Yo is just the 
sum over the shell at distance k - 21 in the tree, using the terminology of I, 
Chapter 1. That the right-hand side of (2.8) is l k ( q )  follows from the definition 
of 1,. 

Proof of Lemma 2.3 (see also [ 5 ] ) :  We begin with the existence of such a 
factorization. Dickson [2] has shown that the odd elements (i.e., those with N ( a )  
odd) of H ( Z )  form a left and right Euclidean ring. Furthermore, a E H ( Z )  is 
prime if and only if N(a) is prime in Z. Now p is odd and N ( p )  = p k .  We may 
therefore write j3 = U S ,  where N ( y )  = p k - l ,  N ( 6 )  = p .  By using a unit e and the 
definition of the set Sp we have 

p = yea with a E Sp.  

Iterating this we obtain p = &s1s2 - . f sk with sj E Sp. Carrying out cancellations 
gives the derived factorization. To prove uniqueness we count the number of such 
factorizations. By (2.3) this is 

8( c ( p  + + S ( k ) ) ,  
O j l < k / 2  

where S ( k )  = 1 if k is even and S(k)  = 0 if k is odd. Summing this gives 
8 ( ( p k + l  - 1 ) / ( p  - 1)). However, from (2.1) this is precisely the number of 
elements of norm p k .  This proves the uniqueness. 

Next we check the action of Tp on spherical harmonics of degree m ,  Hm(S2). 
Let u E Hm(S2), m f 0, be fixed. 

LEMMA 2.4. For a fixed E S 2 ,  the function O(z) ,  z E f~ = { zlYm z > 0 } ,  
defined by 

e( Z) = c N (  a) “u(  a3)e2n”(a)z/16,  
a = 2(4) 
a E H ( 2 )  

is a holornorphic cusp form of weight 2 + 2m for the congruence subgroup r(4) of 
the modular group. 
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Proof: We will need a theorem of Schoenberg. For an account of this 
theorem see Ogg [lo] whose notation we adopt here. Let 

be the standard quadratic form in 4 variables. The discriminant of this form is 16 
and its level (Stuffe) is N = 4. Schoenberg's theorem states that the function 

e ( z ,  h )  = P(n)exp{2siQ(n)z/N2}, 

where Ah = 0 ( N )  and P ( x )  is a homogeneous harmonic polynomial of degree 
Y 2 1 (in four variables), is a cusp form for r ( N )  of weight 2 + Y .  Thus it suffices 
to show that u(a{)lV(a)m with (Y = u + bi + cj + d k  is such a homogeneous 
polynomial in a, b, c, d .  Without loss of generality we may assume that 5 is the 
South Pole in S2.  A simple calculation then gives 

n = h ( N )  
n ~ ~ 4  

~ ( a l ) N ( a ) ~  = N ( ( Y ) ~ U (  ~ ( a ) ( 2 ( c u  1 - db),2(du + bc),c2 + d 2  - u 2  - b2)) .  

Now u(l) is the restriction of a homogeneous harmonic polynomial of degree m 
in three variables to the unit sphere. Such a polynomial can be written as the sum 
of polynomials of the form 

3 

( 4 1 x 1  + 4 2 x 2  + 4 3 X 3 l r n  with c t; = 0. 
j - 1  

We may therefore assume u to be of this form. Then 

N ( a ) " u ( a l )  = ( ~ [ , ( c u  - db) + 2 4 2 ( ~ d  + bc) + 4 3 ( c 2  + d 2  - a* - b 2 ) ) m .  

This is clearly homogeneous of degree 2m in a ,  b, c,  d .  It is also harmonic as is 
easily checked using Z;-,[: = 0. 

We return now to the proof of Theorem 2.1. We write the series 

as 

where 

00 

a ,  = v m  c 
a = 2(4) 
N ( a ) - v  



406 A. LUBOTZKY, R. PHILLIPS, AND P. SARNAK 

We may invoke the deep Ramanujan estimates which have been established by 
Deligne [l]  for cusp forms of this type. These give 

Ia,l << y ( 2 + 2 m ) / 2 - 1 / 2 + E  
E 

for all E > 0. - - p t + 1 / 2 + E  

(The implied constant depends on u and {.) Thus we have 

(2.9) 

Writing p = 4 v  we see that p E k and, if p = +a in the above sum, then 
/3 E H ( Z ) ,  N ( P )  = p and /3 = 1 (2). The relation (2.9) then becomes 

(2.10) E > 0, 

for p E k+. In particular, for p = p k ,  p = 1 (4 )  we have, by Lemma 2.2, 

k / 2  + E k  (2.11) 

We may now complete the proof of Theorem 2.1. Let u E H,,,, rn # 0, be an 
with eigenvalue A. Choose y E S 2  such that u ( 3 )  # 0. eigenfunction of 

Applying (2.11) and using Lemma 2.2, we obtain 

for E > 0, where X = 2ficos8. Hence 

E > 0, k > 0. 

Since E is arbitrary, this implies that 8 is real and hence that 

IX l  s 2 6  

We end Section 2 with the following remarks. 

1. From the discussion and in particular the unique factorization of quatern- 
ions into any prescribed order it follows that, for p ,  q = 1 (4), prime p # q, 

TpTq = Tpq = T&. 
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Thus the Hecke operators Tp on L 2 ( S 2 )  commute with one another and hence 
may be simultaneously diagonalized on each of the spaces H,,,. 

2. Let u denote a permutation of the integers (1,2,3) and set 

then it is clear that Po permutes the ai in Sp and hence that 

POTs = T,Po. 

The action of Po in R 3  consists simply of permuting the co-ordinate axes. Thus 
T, commutes with the symmetry group of the cube. Since the irreducible unitary 
representations of this group have orders 1, 2 and 3, we can expect degeneracies 
in the eigenvalues of the Tp of the same orders. 

3. The Lattice Method 

In this section we introduce a different scheme for ordering rotations in SO(3) 
which enables us to obtain many more examples of well-distributed points in S 2 .  
We start with two groups: G ,  which denotes either PSL(2, R) or PGL(2, Qp) ,  and 
G, which is SO(3). We use the notation Q, to stand for R (i.e., “ p  = 00”). Let I‘ 
be a discrete co-compact subgroup of G = G ,  X G,. Since G, is compact the 
projection of I‘ on G, ,  call it r,, is discrete while its projection on G,, call it I‘,, 
is typically dense. Since r is a subgroup of G ,  X G,  it acts on the homogeneous 
space X X S 2  G , / K ,  X G 2 / K , ,  where K ,  is a maximal compact subgroup of 
G ,  and K ,  = SO(2). The coset space X is the hyperbolic plane in the case 
p = 00 and it is a homogeneous tree of degree p + 1 in the case p < 60 (see 
Serre [13]). Our method for ordering the elements of I‘, is as follows: 

(i) For p < 00, fix x ,  [ E’X and consider all y E r for which d, (yx ,  6) 5 n .  
Here d ,  is the distance on the tree. Since rl is discrete, this set is finite., Our 
points in G ,  are then the projections of this finite set of y’s in I’,. Because this 
method of ordering depends on the lattice I‘, in G ,  and its action on X, we call 
this the lattice method. Only in special cases does this give the ordering of I’, by 
word length in the generators. Obviously the lattice method is more general. 

(ii) For the case of R we choose x ,  [ E Ij, the upper half-plane, and consider 
all y E I‘ for which d,(yx,  6) 5 T (here d ,  is the distance in f j ) .  Again these are 
finite sets and their projections in r, furnish us with an effective ordering for r,. 

3.1. The p-adic case ( p  < 00). In order to study the distribution properties of 
these y, E r, we introduce the harmonic analysis of L2( r \ X X S’).  That is, 
consider all f: X X S2 + C satisfying 

(i) f (yz)  =f(z) for all y E r and z E X X S‘, 
(ii) LET1,XjS4f((X, U ) ) l 2  d 4 Y )  < 0O. 

Next we choose an orthonormal basis +j(x ,  y )  for this space which is an 
eigenbasis for the commuting selfadjoint operators, A the Laplacian on S 2  and 
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A,  “the Laplacian on the tree”: 

A , f ( ( x ,  Y ) )  = c f((& A); 
d ( t , x ) = l  

(3.1) 

here x ,  5 E X and y E S 2 ;  A,, is a “Hecke operator” but not a Hecke operator 
in terms of the generators of I’. Thus we may write, for j = 0,l; . -, 

+ , ( x ,  y )  is the constant function so that A, = p + 1, p, = 0. The numbers p J  
are special in that they are eigenvalues of A on S 2  and hence must be of the 
form m ( m  + l), m 2 0, m E Z. We may therefore group the +J according to 
the values of p, and rewrite them as I$,,,, r = 1,2; - ., I , ,  where , + 
m ( m  + l)t#Br, , = 0; I, will be seen to be (2m + 1) Ir, \ XI. We expand in 
a basis of H,: 

I $ r , m ( X ,  Y )  = C a : , m ( x ) Y , Y ( Y > ,  
l 4 l m  

the Y ’s being the standard spherical and ultra-spherical functions normalized to 
have L 2 ( S 2 )  norm 1. The condition + r , m ( y z )  = ( P r , , ( z )  translates to 

(3.3) 

(3 -4) a r , m ( Y x )  = R ( y ) a r , m ( x ) ,  

where ar,  , is the vector ( a ; : , .  - -, a:,)tr and R is the obvious representation of 
r in H,. Equations (3.2) then become 

(3.5) ‘ p a r ,  rn + ’ r ,  m a r ,  m = 0. 

As in I, we write 

(3.5)’ A r , m  = 2ficos(’r,m); 

A ,  acts componentwise and this vector-valued operator is selfadjoint with respect 
to the inner product 

( a , b )  = C a ( x )  b ( x ) * .  
E r,\x 

The two eigenvalue problems (3.2) and (3.5) are easily seen to be the same if (3.2) 
is restricted to the eigenspace with p, = m ( m  + 1). From this follows that 
I,,, = (2m + l)lr, \ XI. The orthonormality of the I$r, , is equivalent to 

(3.7) 



HECKE OPERATORS AND DISTRIBUTING POINTS 409 

Viewing u: , , , (x ) ,  indexed by r = 1,2; a * ,  I , ,  and the pairs {(v, x ) ;  lvl 5 m, 
x E r 1 \ X }  as an I, x 1, matrix (specificallyAa8 = a : , , ( x )  for (Y = I;.., I,, 
/3 = (v, x)), (3.7) asserts that A is unitary. We conclude that 

r 

For a fixed point x E X we consider the functions +r, , (x ,  y )  as functions on 
S 2 .  These are not orthogonal on S 2 ;  however we still have 

LEMMA 3.1. 
(a) X)~ll+,.,m(z)12 = (2m + 1 ) / 4 ~ ;  
(b) i f f ,  g E L2(S2)  and 

then 

m 'nl 

f ( y ) g ( y )  d 4 Y )  = c c L ( r ,  m M r 9  4 L m - 0  r==l  

Remark. The relation (a) is a generalization of (2.11) in I. 

Making use of (3.8) and then of (2.11) in I, we get 

To prove (b) we note that 
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Y 

Summing over rn we obtain (b). 
With these preliminaries out of the way we can now prove 

THEOREM 3.2. If tlr,m is real for ( m ,  r )  # (O,O), then the spherical cap 
discrepancy of the N-points' { y 2 y ;  d ( y l x ,  [) = n }  satisfies 

(3.9) 

Proof: Let k ( z ,  l )  be a point pair invariant function on X X S 2  of the form 

(3.10) k ( z ,  l )  = k n ( x ,  < m y ,  171, 

where z = ( x ,  y ) ,  5 = ( 5 , ~ )  and 

1 if d , ( x , t )  5 n ,  
otherwise ; kn(x ,  6) = { 

E is an arbitrary point pair invariant on S2. The automorphic function 

~ ( z , l )  = C k ( z , y l )  is in L 2 ( r \ x X  s*)  
Y = r  

and so may be expanded as 

m 1, 
(3.11) K ( z ,  0 = C C h(Xr,m, p r , m ) + r , m ( z ) + r , m ( l ) *  

m=O r = l  

Here 

'In this case, N = ( p  + l)p"-'/Ir'~ \XI + O(p"'*). 
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and after "unfolding" K ,  this can be rewritten as 

By the harmonic analysis on the tree in Section 1 of I applied to Ap, 

C k n ( x ,  t ) + r , m ( t ,  77) = k A ( ' r , r n ) + r , m ( x ,  77). 
€ E X  

Hence the left-hand side of (3.12) is 

Thus 
a 

(3.13) h ( X r , m ,  p r , m )  = k A ( d r , m ) i ( m ) ,  

and inserting (3.13) into (3.11) we get 

m=O r - 1  

On the other hand, 

Combining this with (3.14) we obtain the key identity: 

The set-up here is now almost exactly the same as that for the proof of Theorem 
2.5 in I. Since we have assumed for ( r ,  m) f (0,O) (i.e., CP,,, not the constant 
function) that d r , , ,  is real, we have, as in Section 1 of I, 
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The partial isometry result in Lemma 3.1 then allows us to proceed exactly as in 
the proof of Theorem 2.5 in I to establish the bound (3.9). 

The bounds for TN in Theorem 2.2 of I also hold for this sequence. The proof 
is the same as before except that now one uses (3.15) and the partial isometry in 
Lemma 3.1. One also obtains the analogues of Theorems 2.7 and 2.8 of I as 
follows: Let 5 E X be fixed. For f(y)  an arbitrary function on S 2  we define 

F ( z )  = k,(x, t ) f ( Y )  

and 

(3.16) G ( 4  = C F ( Y 4  = C f ( Y 2 Y ) .  
YEr d ( Y l X ,  o s n  

G is r automorphic and hence may be expanded as 

(3.17) G ( Z )  = C 2 ( r ,  m)+r,rn(x, Y ) ,  
r .  m 

where 

The analogues of Theorems 2.7 and 2.8 of I now follow from the previous 
arguments and Lemma 3.1. 

In Section 4 we shall give examples of quaternion groups I' for which the 
assumptions in Theorem 3.2 are satisfied. 

3.2. The Hyperbolic case ( p  = 00). Next we consider the situation where 
G, = PSL(2, R), so that X is the hyperbolic plane 6 .  In this case our examples of 
discrete groups G ,  X G, are as before quaternion groups. Let K be a real 
quadratic extension of Q. Let D be a quaternion algebra over K which splits at 
one archimedean place and which ramifies at the other. If I' is chosen to be the 
group of elements, in a maximal order of D ,  of norm 1, then r 4 PSL(2, R) X 
SO(3) discretely and is co-compact. Our examples for the rest of this section will 
be such r's or congruence subgroups thereof. 
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In this set-up our operators are A,, A,, where A, is the Laplacian on f~ and 
A ,  on S 2 .  As operators on L 2 ( r  \ b X S 2 )  they have a common set of eigenfunc- 
tions which form an orthonormal basis: 

(3 -19) 

In Section 4 we show, using the theory of automorphic forms and in particular 
the Jacquet-Langlands correspondence and a bound of Selberg [ 121, that for 
(A,, p j )  # (0,O) we have 

(3 -20) 

If the general GL(2) “Ramanujan conjectures’’ were true, then we would have 

(3 -20)’ A, 2 $. 

We turn to the analysis of the distribution of the point { y 2 y } .  One could 
proceed exactly as we did in the p-adic case. However because the measure on b 
is not atomic we lose considerable leverage and the results are quite weak. A 
different approach, using the techniques from a paper by Lax and Phillips [8] on 
the distribution of lattice points, leads to better results. Nevertheless they still are 
quite a bit weaker than the p-adic results. We now describe this second method. 

THEOREM 3.3. Let r be as above, and suppose xa is the charczcteristic 
function of a set A C S2 satisfying condition ( * )  of Section 2, Part I. Then 

Here NT denotes the number of group elements {y, ;  d ( y l x ,  4 )  5 T }  
asymptotically is 

which 

(3 -22) 

Proof As before, if we limit ourselves to the eigenspace of A, made up of 
spherical harmonics of degree m, we can transform the automorphic conditions 
(i) and (ii) of subsection 3.1 to the condition (3.4) on square integr ,ble vector-val- 
ued functions in r,\b with values in a (2m + 1)-dimensiona‘ vector space V. 
We then consider the action of the wave operator on automc phic functions of 
this kind: 

u,, = Lu, L = A, + $, 
(3.23) 

u ( x , o )  = 0, u , ( x , o )  = 2 r f ( x ) .  
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For f we choose the automorphc vector-valued function 

(3.24) f ( x )  = c N P ) k , ( P ; ’ x ,  t)e9 
P I  

where k ,  is again a two-point invariant function on 
&function, 6 E rl \ Ij and e is a fixed vector in V. 

less than a, by 

approximating the 

Denote the eigenpairs of L,  corresponding to eigenvalues of A1 of magnitude 

( (  + j ,  v;), j = 1,. * * 9 rm] 

Note that vJ’ = a - X j  for j 5 rm. Then the solution of (3.23) can be written as 

(3.25) u ( x ,  f )  = x(ajexp{v,f} + bJexp{ - ~ ~ l } ) + ~ ( x )  + u(x, f), 

where 

We note that the constant associated with O ( E )  depends only on v+ , / v j ,  which 
can be estimated by Sobolev inequalities in terms of 

and 

It is therefore independent of both j and m; u(x ,  t )  is a solution of the wave 
equation orthogonal to the +j.  

Next we avail ourselves of the relation (5.12) of [8]: 

I ( T , E )  = f i T  (coshT- coshf)-’”sinhtu(x,t)df 
0 

(3.27) = J f ( x ’ )  dx’ 
d f x ‘ ,  X fST  

The error term results from the fact that k ,  is an approximation to the &function 
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with support of radius E and that in an annulus of radius T and width E there can 
be O(EeT) lattice points to within an error of O(e2T/3) .  Since R is a unitary 
representation, this too is independent of m. 

Substituting (3.25) and (3.26) for u ( x ,  r )  in (3.27), we find (see page 321 of 
[8]) that, for m > 0, 

where 

and 

f i T  (3.29)' w ( x ,  T )  = 7 1 (cosh T - cosh t)-'l2sinh r u ( x ,  t )  dr. 
0 

The main contribution to the error term comes from (3.26) and this time the error 
does depend on m, having r, as a factor. 

It remains to estimate w ( x ,  T )  and here the development2 in [8] yields, after 
a few obvious modifications, 

(3.30) 

moreover, this bound does not depend on m. Combining this with (3.27) and 
(3.28) we get 

2The relation (5.80) in [12] is not quite correct and should be replaced by 
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Hence setting E = Te-T/3 we see that, for m > 0, 

(3.32) 1 R ( y ) e l  = 0 ( T e 2 T / 3 )  + r,O(exp{(v, + $ ) T } ) .  

Using the Selberg bound (3.20) for vl,  i.e., v1 5 $, we see that 

4 Y l X  7 0 5 T 

(3.33) 

In terms of the orthonormal basis { YL} in H,, the vector e = { e j }  corre- 
sponds to 

f r n ( Y )  = C e i y L ( ~ )  E H m  

and R ( y ) e  to f,(yy). Hence making use of the relation (2.11) of I we see that 

We also need an upper bound for r,, that is the number of automorphic 
vector-valued eigenvalues of A1 of magnitude less than $. By the minimax 
principle this will be less than the number of eigenvalues for vector-valued 
functions on rl/Ij with each component having a free boundary. Thus 

(3.35) r, c (2m + 1). 

We now proceed as in the proof of Theorem 2.7 of I. We begin by mollifying 
X A , :  

and then project x; ,  into H,: 

(3 -36) 

here we have invoked the selfadjointness of Aa. Making use of (2.7) of I, it follows 
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from (3.34) (3.35) and (3.36) that 

(3.37) 

Interpolating IIAax>,II between a = 1 and a = 2, we find that 

< & 1 / 2 - 2 a  IIAUx"A,II = 

Inserting this into (3.37) and setting a = 1 + 1 / T  and E = T'/5e-T/'0 we see 
that 

(3.38) 1, = O(T1/5e-T/'O). 

If the Ramanujan conjecture holds so that v 1  = 0 and rm = 0, then 

(3.33)' 

(3.37)' 

Interpolating between a = 
4 + 1 / T  and E = Te-2T/9 finally gives 

and 1, we get IIAax>*II 5 c / E ' / ~ + ~ / ' .  Setting a = 

(3.38)' I ,  = 

Although this is an improvement on (3.38) it is still considerably worse than the 
analogous p-adic result. 

4. Lattice Method Groups 

In this section we present examples of groups r 4 PGL(2, Q,) X SO(3) and 
r 4 PSL(2, R) x SO(3) which satisfy the conditions of Theorems 3.2 and 3.3. 
We shall make use of the general representation-theoretic formulation as well as 
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results of the theory of automorphic forms (as described for example in Gelbart 

We begin with the p-adic case: Let D be a definite quaternion algebra defined 
over Q, p a prime at which D splits and let G’ be the algebraic group of the 
invertible elements of D. Set f’ equal to the group G’(H[l/p]). The diagonal map 

~41). 

G H - + G’( Q,)  X G’(W) = PGL(2, Q,) X (SU(2) X W * )  i [:I) 
furnishes us with a map f + PGL(2, Q,) X SO(3). We denote the image of f 
under this map by I‘. Such a r is discrete and co-compact (see VignCras [14]). 

We claim that r meets the requirements of Theorem 3.2. To see this, let 
f ( x ,  y )  be a function on I? \ X X S2 satisfying 

Recall that X is the p + 1 regular tree identified with PGL(2, Q,)/PGL(2, H,) 
and that A x  and Ay are, respectively, Laplacians on the tree and S 2 .  

THEOREM 4.1. If p f 0 or if p = 0 and X # *(p  + l), then (XI  5 2 6 .  

Proof: Let GA be the adelic points of G’. The function f may be used to 
define an automorphic form on GA as follows: By the strong approximation 
theorem for the reduced norm 1 quaternions GI (cf. Kneser [7]) together with 

A 5  = Q * R T n Z , * ,  
P 

(4.2) 

we have 

(4.3) 

where K ,  = G’(H,), G; stands for G’(Q,), etc. Further since 

(4.4) 

we have 

(4.5) r \ X X  SU(2) z r \ G ;  X G&/K,H z Gb\GA/nK,Z,, 
4 

where Z denotes the center. 
Hence the function f may be extended to be defined on HAGb \ GI, and is an 

eigenfunction of the Hecke operators at p and 00. By using the other Hecke 
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operators (for the other primes) we can define a function on ZAGb \ GA which is 
an eigenfunction of all the Hecke operators and the eigenvalues X and p will be 
unchanged. 

By standard methods (see [3]) one may construct from this function an 
automorphic representation of GA, call it T’ = T;, whose T, component corre- 
sponds to A, and is of class 1. This representation is not one-dimensional if 
A, # & ( p + 1) or if p # 0. By the Jacquet-Langlands correspondence (Gelbart 
[3], Theorem 10.5) we may associate with T’ a cuspidal representation T of 
GL(2, A). Furthermore, T; 2 T, and vm is in the discrete series of GL(2, R) and 
is of weight 2 + 2m, where m is the degree of the spherical harmonic f ( - ,  y ) .  

Thus T corresponds to a holomorphic cusp form f” for I‘,(N) of weight 
2 + 2m (cf. Gelbart [3]); here r , ( N )  is some Hecke congruence subgroup of 
level N ,  where N is the conductor of T. Since T, is of class 1, p t N .  Now the 
Hecke operator Tp will leave f invariant, in fact 

since T; = T,. We may conclude by Deligne’s theorem (see [l]) that 

Next we consider the case p = 60. In this case, we let D denote a quaternion 
algebra over a real quadratic field k of class number one, which splits at one 
infinite place and ramifies at the other. Let G’ be the group of norm one 
quaternions of D and let f‘ be the group of elements of D with integer entries 
and of norm one. 

As before we have 

(4-7) f + G& X G&, = SL(2,R) X SU(2) 

and hence 

(4.8) f + PSL(2,R) x SO(3). 

We set r equal to the image of f‘. Finally suppose f ( x ,  y ) :  f$ x S2 + Q= satisfies 

(4.9) f ( y z )  = f ( z )  for all y E r, z = (x, y ) ,  

(4.10) A,f = A f ,  A y f  = p f .  

THEOREM 4.2. If  ( A ,  p )  # (0, 0), then 

(4.11) Xh &. 
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Proof: As before we can construct out of f an automorphic function on GA 
(here A is the adele ring of k )  and then an automorphic representation of G;\. 
Again by the Jacquet-Langlands correspondence we obtain an automorphic 
representation T of GL(2, A). This representation gives rise to a modular form of 
the Hilbert modular group which is holomorphic in one variable and non-holo- 
morphic in the other. The assumption ( A ,  p )  # (0,O) implies that it is a cusp 
form. It follows from the work of Gelbart-Jacquet [4] or the method of Selberg 
(cf. Sarnak [ll]) that A 2 A, as needed. 
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