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Abstract. We discuss general properties of stratified spaces in diffeology. This leads

to a formal framework for the theory of stratifications. In particular, we consider

the Klein stratification of diffeological orbifolds, defined by the action of local diffeo-

morphisms. We show that it is a standard stratification in the sense that the partition

of the space into orbits of local diffeomorphisms is locally finite (for orbifolds with

locally finite atlases), it satisfies the frontier condition and the orbits are locally closed

manifolds.

Introduction

A recurrent problem in the theory of stratified spaces is the competition of two structures:

the topology of the global space and the smooth manifold structure of the strata within.

There are a few proposals to reconcile the two, meaning to exhibit a smooth structure, in

some sense, that covers at the same time the ambient topology and the manifold structure

of the strata. See for example [AFLT17, JW17, MCNM18] to cite a few.

Diffeology gives a global answer to this question, thanks to the versatility of its objects. By

nature, diffeology is not hostile to singularities which are naturally absorbed, or encrypted,

in its definition. A good illustration would be the teardrop diffeology defined on the

2-sphere [IZL18, Fig. 2]. Manifolds with boundary and corners [PIZ13, §4.16] [GIZ19],

orbifolds [IKZ10, IZL18], quasifolds [IZP21], subspaces, singular quotients even with

infinite dimensions [PIZ16-a]. All these objects, or situations, are well described by

diffeology without the help of extra structures or heuristic definitions. Some of them,

like manifolds with corners, come with an obvious stratification: the vertices, the edges,

the faces etc. that are clearly identified by the diffeology only. This is the reason why the

theory of stratification in diffeology is not of same nature than in traditional differential

geometry. In particuler, there is no competition in diffeology between the global structure

and the structure of the strata since they inherit naturally, by induction, their smooth

structure from the diffeology of the ambient space [PIZ13, §1.29,1.33]. This is especially

the case for most of the examples of stratified spaces that are at the origin of the classical

theory, such as algebraic sets, manifolds with boundaries or corners, simplices etc.
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The only question remaining is to define properly what a stratified space is, to discuss its

variants and to study its particular properties from the point of view of diffeology.

The first step would be to identify the natural extension to diffeology of the usual notion

of topological stratified space. It consists, roughly speaking, to replace the word “topology”

by “diffeology”. That is what we will call the standard stratification. This is defined, on a

space X, as a partition into a setS of subsets called strata, that satisfies the three conditions

of stratified topological spaces for the D-topology of X [PIZ13, §2.8], which are: The

frontier condition, to be locally finite and the strata to be locally closed submanifold for

the induced diffeology.

It is clear however that these three conditions are not of the same nature, the most

important and fundamental property is certainly the frontier condition which epitomizes

the concept of stratification and which stipulates that the topological closure of a stratum

is a union of strata. The topology involved here is naturally the D-topology. The other

properties: That the set of strata is locally finite and the strata are locally closed manifolds

appear as secondary labels characterizing the type of stratification considered. We can

imagine a few others, locally conical for example, and so on.

On the other hand, a natural stratification defined by the action of diffeomorphisms

pre-exists on any diffeological spaces: The decomposition into Klein strata, introduced in

[PIZ13, §1.42]. This Klein stratification satisfies the fundamental frontier condition, and

admits a few variants based on the same principle [PIZ22-a]. Hence, every diffeological

space is structurally stratified. The action of the diffeomorphisms, or local diffeomor-

phisms, delivers a stratification internally hidden or embedded in the diffeology. This

stratification is irrelevant for manifolds
1

since connected manifolds are homogeneous

under the action of diffeomorphisms, local or not. Klein stratification is reserved for

diffeological spaces that are not manifolds, as it reveals the essential singularities embedded

in the diffeology, if any. We can think here again of manifolds with corners, for example.

Of course, for a general diffeological space the Klein strata may be not manifolds, but the

main property of stratifications is satisfied. This is the reason why we introduce the notion

of basic stratification in diffeology as partitions that satisfy the frontier condition. Indeed,

from the point of view of diffeology it is not necessary to enforce the structure of the strata

since they inherit naturally the induced diffeology, that make them diffeological subspaces.

Whatever the strata is, we stay inside the category {Diffeology}. On the other hand, in

classical differential geometry it is important to require that the strata are manifolds since

it is the only smooth structure known by the theory. This constraint then vanishes in

diffeology.

Thus, in diffeology, stratifications begin with the frontier condition which is already

satisfied by its own geometry defined by the action of the group of diffeomorphisms,

or by local diffeomorphisms. However, this Klein stratification is the maximal case

1
Manifolds are usually considered Hausdorff and second-countable.
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of stratifications defined by the smooth actions of diffeological groups. Indeed since

diffeomorphisms are homeomorphism, for a smooth action of a diffeological group the

closure of an orbit is a union of orbits. This consideration leads us to the definition of

geometric stratifications, the ones defined by smooth action of diffeological groups. On

the other hand, a stratification which does not satisfy the geometric condition will be

called a formal stratification.

A simple example of a geometric stratification which is not Klein, is the partition of the real

line R : S− = {x < 0}, S0 = {0}, S+ = {x > 0}. They are the orbit of the multiplication

by a positive number. However, as topological stratification, it is equivalent to the Klein

stratification of the subspace of R2
union of: S− = {(0, y) | y > 0}, S0 = {(0,0)},

S+ = {(x, 0) | x > 0}.
Until now, we introduced implicitely three labels: The first one [B] for basic, means we

have a partition which is a basic stratification. The second one [LF] for locally finite, and

[LF] otherwise. The third label [G] when the stratification is geometric. We reserve the

label [GK] to notify a Klein stratification.

Next, we have to consider the nature of the strata. To respect the traditional approach we

will introduce the label [M] for manifold. It will indicate that all the strata are submani-

folds for the induced diffeology. We shall use the label [M] in the opposite case. We give

the example of the space of geodesic trajectories of the torus T2
, which is not a manifold,

and for which a countable infinite subset of Klein strata are diffeomorphic to a circle,

and are irrational tori otherwise. That does not prevent the theory of stratifications from

working properly, and distinguish between strata. Diffeology takes over, with the action

of local diffeomorphisms, when topology is insufficient.

In the traditional theory of stratification, particular attention is paid to whether the strata

are locally closed or not. It turns out that this condition is related to topological properties

of the spaceS of strata. In every case, the space of strata inherits the quotient diffeology

of X which describes, in some way, the transverse smooth structure. The D-topology ofS
is actually the quotient topology of the D-topology of X [PIZ13, §2.12]. This D-topology

is an Alexandroff topology [PA37] for the pre-order S⪯ S′ if S⊂ S
′
, the overline meaning

the closure for the D-topology. In every case, the space of strata of a stratified diffeological

space is a so-called PrOSet (Pre Ordered Set) for the quotient diffeology. It also turns

out that the quotient topology satisfies the T0 axiom of separation
2

if and only if the

strata are locally closed, and that is equivalent for the pre-order to be a partial order.

The space of strata is then a POSet (Partial Ordered Set), see for example [SY19]. These

considerations lead to introduce a new label [T0], to signify that the strata are locally

closed. We denote the opposite case by [T0]. The action of the irrational solenoid is an

example of a geometric stratification for which the strata are manifolds and the space of

strata is not T0. It is actually an irrational torus where the preorder is not a partial order.

2
That means that for every two points inS there is a D-open neighborhood of one of them that does

not contain the other one.
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These labels:

[B] For basic: the closure of a stratum is a union of strata.

[LF] The stratification is locally finite (or not locally finite [LF]).

[G] The strata are the orbits of a group, or a pseudo group of diffeomorphisms.

[GK] The strata are the orbits of the group of diffeomorphisms, or the pseudo group

of local diffeomorphisms.

[M] All the strata are manifolds (or not [M]).

[T0] The strata are locally closed: the space of strata is T0 separated (or not [T0]).

are the main ones we need in that article. Obviously, according to particular stratification

we could study in the future we can imagine other labels, as for example [C] for locally

conical stratification, but this does not concern us at the moment.

Now, coming back to the standard stratification of diffeological spaces, we could describe

their family by the encoding [B]-[LF]-[M]-[T0]. Another example, the stratification

defined by a smooth action of a compact Lie group on a manifold will belong to the

family [B]-[LF]-[G]-[M]-[T0]. The manifolds with corners fall in the family [B]-[LF]-

[GK]-[M]-[T0], and so on.

After having drawn the general picture of the theory of stratification in diffeology, we

focus in this paper on diffeological orbifolds. Like every diffeological space, orbifolds are

stratified by the action of local diffeomorphisms. We describe explicitely the structure of

these strata and we prove the main thorem of this article:

TheoremThe stratification of diffeological orbifolds by local diffeomorphisms is standard:
The Klein strata are locally closed manifolds. If the orbifold is locally finite in the sense
that it admits a locally finite atlas, then the stratification is locally finite. The code for such
orbifolds is then [B]-[LF]-[GK]-[M]-[T0].
Acknowledgements. We sincerely thank the anonymous referee who by his remarks

allowed us to correct and improve our work. He pointed out in particular the case of

singular Stefan foliations
3

which indeed fall within the general framework of diffeological

stratified spaces. As for his remark on Whitney’s conditions, we think that it is associated

with geometric stratifications for some families of local diffeomorphisms. We reserve this

question for a future work.

Diffeological Stratified Spaces

Beginning with stratification in diffeology, it is necessary to connect with the standard

and commonly admitted definition, for example [Klo07, Definition 1.1 and 1.8]. It will

consist, roughly speaking, to change the word “topology” by “diffeology”.

1.— Standard Diffeological Stratifications. Consider a diffeologiacal space X,

we call standard stratification of X any locally finite partition in strataS of X, such that:

3
Precisely [PS74, Theorem 3].
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(1) Each stratum is a manifold for the induced diffeology.

(2) Each stratum is locally closed for the D-topology.

(3) The strata satisfy the frontier condition: for all S,S′ ∈S ,

S∩ S
′ ̸=∅ ⇒ S⊂ S

′
.

In other words the closure of a stratum is a union of strata.

We remind that the D-topology of a diffeological space is the finest topology that makes

the plots continuous [PI85, §1.2.3] and [PIZ13, §2.8]. A subset A ⊂ X is open for the

D-topology (or D-open) if P−1(A) is open for any plot P in X.

We remind also that every subset of a diffeological space is naturally a diffeological subspace,

whose plots are the plots of the ambient space but taking their values in the subset [Ibid.

§1.33]. Now, a subspace of a diffeolgical space is a submanifold if its diffeology is a manifold

diffeology, that is, generated by local diffeomorphisms with some Euclidean space [Ibid.

§4.1].

2.— Basic Diffeological Stratifications.

The first condition for a partitionS of a space X to be a stratification is to satisfy the

frontier condition, that the closure of a stratum is a union of strata. This is the very nature

of the concept of stratification. In the standard approach, the ambient space is only a

topological space, but the strata are supposed to be equiped with a manifold structure

and maybe the first question raised by the theory is how to manage the competition

between the two structures. In diffeology, since every subset inherits a natural subset

diffeology there is no need to enforce the structure of the strata, they are always regarded as

diffeological subspaces. They can be or not manifolds but that is not anymore a necessity,

they stay in the category {Diffeology}. Note that the traditional approach has no choice,

with respect to the smooth structure of the strata, but to require them to be manifolds,

since this is the only smooth structure in classical differential geometry, defined without

additional or heuristic considerations. This is the reason that justifies the following

definition of basic diffeological stratification :

Definition. Let X be a diffeological space, we call basic stratification of X any partition
S of X in strata such that the closure, for the D-topology, of a stratum is a union of strata.

We can reword the condition of basic stratification in several ways, starting with:

For all S,S′ ∈S , S∩ S̄′ ̸=∅ ⇒ S⊂ S̄′.

Another way,

For all S ∈S , there exists Σ⊂S such that: S=
⋃

S′∈Σ
S′.

We will refer to partitions that satisfy the frontier condition above with the label [B], for

basic.
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Now, the set of strataS has a natural quotient diffeology, that is, the pushforward of

the diffeology [PIZ13, §1.43] of X by the projection

Str : X→S with Str(x) = S iff x ∈ S.

This diffeology represents the smooth tranversal structure of the stratification, in the

sense that a plot P inS is everywhere represented locally by some plot Q in X such that

P ↾ dom(Q) = Str◦Q. Moreover, the D-topology of the spaceS , equiped with the

quotient diffeology, is the quotient topology of the D-topology of X [PIZ13, §2.12]. It

will play a role later.

3.— Category of Diffeological Stratifications. A smooth map f from a

diffeological stratified space (X,S ) to another (X′,S ′) is said to be stratified if it maps

strata into strata. That is, if there exists a map φ fromS toS ′ such that:

Str◦ f = φ ◦ Str,

where Str denote the projection from the space to the space of strata. This is summarized

by the commutative diagram:

X X′

S S ′

f

Str Str

φ

Note that since Str are subduction, the map φ is automatically smooth.

Diffeological stratified spaces together with stratified smooth maps as morphisms define

the category of {Stratified Diffeology}. The isomorphisms of this category are the stratified
diffeomorphisms.

4.— Geometric Stratifications. An important class of stratification is defined by

the actions of groups on spaces, Precisely:

Proposition. Let G be a diffeological group acting smoothly on a diffeological space X.
That is, a smooth morphism g 7→ gX from G to Diff(X), equipped with the functional
diffeology. Then:

The partition of X by the orbits of G is a basic stratification. We call such stratifications
geometric.

See [PIZ13, §1.57, 7.1 and 7.4] for the definitions involved in the proposition. We shall

use the label [G] to specify that a stratification is defined, or recognized, as a geometric

stratification. When a stratification is not geometric, or when we don’t know, we just say

that it is a formal stratification.
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Figure 1. The frontier condition.

Proof. Let Ox and Oy be two orbits of G. Assume that x ∈ O y and let x ′ ∈ Ox . Let U′

be an D-open neighborhood of x ′ and g ∈G such that gX(x) = x ′. Let U= g−1
X (U

′).
Since gX ∈ Diff(X), U is an open neighborhood of x and since x ∈ O y there exists

z ∈ Oy ∩U, and Oy = Oz . On Figure 1, we represent z as f (y) with f ∈G. Hence,

z ′ = gX(z) ∈U′ ∩Oy . Thus, Oy ∩U′ ̸=∅, and x ′ ∈ O y . Therefore, the closure of any

orbit is a union of orbits. The partition of a diffeological space by a smooth action of a

diffeological group is a basic stratification. □

5.— Klein Stratifications. The Klein strata of a diffeological space X have been

introduced in [PIZ13, §1.42] as the orbits of the goup of diffeomorphisms Diff(X). The

fact that they constitute a stratification was established and discussed in [PIZ22-a], as

well as their variants. The standard example of this situation is the square Sq of Figure 2.

The group Diff(Sq) has three orbits:

1. the 4-corners-orbit;

2. the 4-edges-orbit;

3. the interior-orbit.

Note that if we prefer considering connected Klein strata, orbits of the identity compo-

nent of the group of diffeomorphisms, they are nine in number and are independently

the corners, edges and interior.

Now, the notion of stratification goes hand in hand with that of singularity we will

discuss later. The idea of singularity is by definition local. We consider then the local

geometry of a diffeological space: it is defined at each point by the germ of the diffeology

there [PIZ13, §2.19]. The local geometry at each point is preserved by the action of local

diffeomorphisms, which is no more a group but a so-called pseudo-group, we denote
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NW

SW SE

NE

Figure 2. A diffeomorphism of the square.

it by Diffloc(X). Local diffeomorphisms can exchange only points with the same local

geometry. That leads to the following definition, which is the variant of Klein strata we

will use

Definition. Let X be a diffeological space, We call (local) Klein strata the orbits of its
local diffeomorphisms. The set of Klein strata is called the Klein stratification of X.

Therefore, diffeological spaces share this important property:

Proposition. Every diffeological space has a natural stratification embedded in its
diffeology, revealed by the action of the local diffeomorphisms

We shall use the label [GK] to specify that a stratification is a Klein stratification, or by

the whole group of diffeomorphisms, or by its identity component, or by the action of

local diffeomorphisms.

Note that for manifolds in particular, this stratification is trivial since a n-manifold is ev-

erywhere locally diffeomorphic to Rn
. But that remark applies also to every homogeneous,

or locally homogeneous, diffeological space, for example the irrational tori.

Remark. The frontier condition which is the essence of stratification is a priori a

topological condition: homeomorphisms preserve closure. Stratification in diffeology

inherits from topology, through the D-topology which is a by-product of it, but is not

reduced to it as the example of the square shows. It is homeomorphic to the disk which

has only two orbits, the boundary and the interior, instead of three: the vertices, the

edges and the interior. Note however that, since D-topology is a by-product of diffeology,

Klein stratification, and more generally geometric stratifications, can be defined without

the help of D-topology since local diffeomorphisms are originally defined without it.

Geometric stratifications, and Klein stratifications in particular, are pure products of

diffeology.
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6.— Diffeological Stratifications as PrOSet and POSet. LetS be a stratifi-

cation on a diffeological space X, and letS equiped with the quotient diffeology.

Consider the following binary relation onS :

S⪯ S′ ⇔ S⊂ S̄′.

It is clearly reflexive and transitive, that is, a pre-order onS .

It is a well known fact that the quotient onS of the topology of the total space X is an

Alexandrov topology. Since the quotient of the D-topology of X is the D-topology ofS
[PIZ13, §2.12], one could say anachronistically that the diffeology ofS is an Alexandrov
diffeology.

4

The open subsets of the D-topology onS are the upper sets for the relation⪯, that is,

any union of cones:

Cone(S) = {S′ | S⪯ S′}

Remark. In some case the Alexandrov D-topology of the spaceS is trivial with the

Alexandrov diffeology ofS non trivial. This is the case of the geometric stratification of

the 2-torus by the irrational solenoid:

t T2(z1, z2) =
�

z1e2iπ t , z2e2iπαt �,

where t ∈R, (z1, z2) ∈T2
and α ∈R−Q. In this case every orbit of R is in the closure

of any other orbit, since the closure of any orbit is the 2-torus itself. As we can notice, in

this case one have for all S,S′ ∈ S , S⪯ S′ and S′ ⪯ S. The pre-order⪯ is not a partial

order, but the diffeology ofS =Tα is not trivial [DI83]. ▶
Now, it happens that the D-topology of the space of strata satisfies an axiom of separation,

the minimal T0. That is, for any two point S,S′ ∈S there a D-open neighborhood of

one of them that does not contain the other one. In this case:

Theorem. (See [SY19]) The D-topology of the space of strata satisfies the T0 axiom of
separation if and only if the preorder⪯ is a partial order, that is, antisymetric: S⪯ S′ and
S′ ⪯ S implies S= S′. This is equivalent to the fact that the strata are locally closed. 5

If that is the case we say thatS is a POSet. We shall use the label [T0] to specify that

the space of strata is a POSet, which is equivalent to the strata being locally closed or the

preorder being a partial order, and we will note [T0] otherwise.

7.— Manifold or Not Manifold. Since diffeology includes so many various subcat-

egories it is not surprising to have stratifications for which the strata are not manifolds,

at least not all of them. A simple example would be the space of (oriented) geodesics of

4
If we need it, an Alexandrov diffeology could be a priori a diffeology whose D-topology is an Alexandrov

topology. This definition could be amended in the future if necessary.

5
For every point of S there is a neighborhood V in X such that S∩V is closed in V.
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the 2-torus, let us denote it by X=Geod(T2). It is described in the blog post [PIZ16-b].

Without going into details, let us say that

Geod(R2)≃ S1×R and Geod(T2)≃Geod(R2)/Z2,

with the following action of Z2
:

k(u,ρ) = (u,ρ+ u · k),

where k = (m, n) ∈ Z2
, k is the action of k on T2

, (u,ρ) ∈ S1 × R, u · k is the

scalar product of u ∈ S1 ⊂ R2
by k ∈ Z2 ⊂ R2

. A point in X will be denoted by

x = class(u,ρ) = (u, classu (ρ)).
Actually this kind of diffeological space, locally diffeomorphic to the quotient of an

Euclidean space by a countable subgroup of the affine group, has been categorized recently

as quasifolds, their diffeological version [IZP21].

The fibers of the projection pr1 : (u,τ) 7→ u from X to S1
are the rational or irrational tori

Tu =R/[cos(θ)Z+ sin(θ)Z], with u = (cos(θ), sin(θ)), according to the dependence

over Q of cos(θ) and sin(θ). They are manifolds (circles) only when the line Ru is

rational, that is, when there are two integers m, n such that m cos(θ) + n sin(θ) = 0.

The space X is a group bundle.
6

It is proved in [PIZ22-b] that the restriction to a fiber Tu of a diffeomorphism f ∈
Diff(X) is a diffeomorphism to some fiber Tu ′ . Hence, f projects on a diffeomorphism

of S1
. On the other hand, we know that two torus Tu and Tu ′ are diffeomorphic if and

only if u and u ′ are conjugate modulo GL(2,Z) [DI83]. That is, if there exists a matrix

M ∈GL(2,Z) such that

Mu = λu ′,

with λ= ±||Mu||. The map f 7→M is then a morphism from Diff(X) to GL(2,Z).
It happens that this morphism is surjective [ibid.]. That is, if u, u ′ ∈ S1

are equivalent

modulo GL(2,Z) there exists a diffeomorphism f of X such that f (Tu ) =Tu ′ .

Let us show that quickly. Assume that u ′ =Mu/||Mu||, with M ∈GL(2,Z). Consider

the map F from S1×R to itself defined by

F : (v,ρ) 7→ (v ′,ρ′), with v ′ =
Mv
||Mv ||

and ρ′ =
ρ
||Mv ||

.

It is clearly a diffeomorphism. Now, let k ∈ Z2
and (v ′′,ρ′′) = F(v,ρ+ v · k). Thus

v ′′ =
Mv
||Mv ||

and ρ′′ =
ρ+ v · k
||Mv ||

.

But,

ρ′′ =
ρ+ v · k
||Mv ||

=
ρ
||Mv ||

+
v · k
||Mv ||

=
ρ
||Mv ||

+
Mv
||Mv ||

· (M−1)t k ,

6
Not a diffeological fiber bundle in the sense of [PI85] since the fibers are not diffeomorphic.
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where the supscript t denotes the transposition. Hence,

v ′′ = v ′ and ρ′′ = ρ′+ v ′ · k ′ with k ′ = (M−1)t k ∈ Z2.

Therefore,

F ◦ k(v,ρ) = k ′(F(v,ρ)).
So, there exists a smooth map f from Geod(T2) = (S1 ×R)/Z2

to itself such that

class◦F= f ◦ class. This map f is a diffeomorphism of Geod(T2)which projects on

M acting on S1
, and satisfies by construction f (Tu ) =Tu ′ .

S1×R S1×R

Geod(T2) Geod(T2)

F

class class

f

Now, the group R acts on S1×R additively on the second factor, for all s ∈R and (u, t ) ∈
S1 ×R we denote s(u, t ) = (u, t + s). This action commutes with the action of Z2

,

s ◦k = k ◦ s . It defines then an action of R on Geod(T2) by s(u,τ) = (u, classu (t+ s))
with τ = classu (t ). This action is transitive on the fibers Tu . Thus, composing the action

of M ∈GL(2,Z) above with this action of R, we conclude that the orbits of the group

Diff(X) are the subspaces

O(u,τ) =
⋃

M∈GL(2,Z)

TM(u), with M(u) =
Mu
||Mu||

.

Thus, except for the rational lines Ru , which constitute one orbit of GL(2,Z), the Klein

strata are not manifolds. The space of Klein strata identifies with the quotient:

X/Diff(X)≃ S1/GL(2,Z).

Therefore, we shall use the label [M] to specify that the strata are all manifolds and [M]

otherwise.

Remark. The connected Klein strata, orbits of the identity component of the group of

diffeomorphisms, are the fibers Tu of the projection pr1 : X→ S1
. In that case the space

of strata is S1
and the stratification is [T0].

8.— The Example of Manifolds with Corners.

Manifolds with corners have been introduced in diffeology as spaces locally diffeomorphic

to some corners Kn = [0,∞[n , equiped with the subset diffeology [PIZ13, §4.16 Note]. It

is proved there that smooth real functions on Kn
, in the sense of diffeology, are restrictions

of smooth functions defined on an open neighborhood of Kn
in Rn

. Later this result

has been extended to any differential k-form [GIZ19]. In this paper, the Theorem 2 states

that the local diffeomorphims of the corner Kn
can exchange only points of the same

strata S, defined by the number of vanishing coordinates, between 0 and n. Therefore,
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the Klein strata of a manifold with corners are the union of the images of the strata of the

corner Kn
, by the charts of the manifold.

9.— Singularities of Diffeological Spaces. Klein strata are associated with the

idea of singularity. They discriminate the points of the diffeological space according to

their geometry. However, the singularity is a relative concept, a point is not singular by

itself but relatively to others. This means for the square, for example, that the corners are

singular to the interior points, as are the edges, but they are not equivalent to each other.

The definition of singularity dwells precisely in the preorder associated with the local

Klein stratification. To be accurate we should distinguish between two cases: when the

precedence relation is a partial order and when it is not.

Definition. Let X be a diffeologial space such that its Klein stratification, by local
diffeomorphisms, defines a partial order. Then, a point x is singular with respect to another
point x ′ is the strata S of x precedes the strata S′ of x ′. That is, S⪯ S′.
In this case the notion of singularity is totally handled by the D-topology. When the prece-

dence is not a partial order, it is more complicated. We could introduce an equivalence

relation: S∼ S′ when S⪯ S′ and S′ ⪯ S, and declare that x is singular with respect to x ′

if S⪯ S′ with S ̸∼ S′. However, if that would work for some geometric stratifications like

the irrational solenoid, for which all strata are diffeomorphic and equivalent to each other,

it is clearly not satisfactory for the Klein stratification of the space of geodesic trajectories

of T2
, since they would be all equivalent to each other without being diffeomorphic. This

shows the limit of topology in this case, and force to consider the notion of singularity

more carefully.

By the way, note also that the irrational torus has no singularity, which is not surprising

since it is a group. It is, in this case, another kind of singularity which resides in the global

nature of the space, and comes from the mismatch between its trivial topology and its

non-trivial diffeology.

The Case of Orbifolds

10.— Diffeological Orbifolds. An orbifold is a diffeological space X which is

everywhere locally diffeomorphic to a quotient Rn/Γ, for some integer n and where Γ is

a finite subgroup of GL(n,R), which may change from one point to another [IKZ10].

A chart of X is any local diffeomorphism f from Rn/Γ to X. A setA of charts covering

X is called an atlas. We assume in general the atlas to be locally finite, that is, every point

x ∈X is in the image of a finite number of charts. We denote by class : Rn→Rn/Γ the

canonical projection, and F= f ◦ class. The set

F = {F= f ◦ class | f ∈A}

is a generating family of X called the strict generating family associated with the atlasA .

For examples:
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(A) Consider the map Φm : C → C with Φm(z) = z m
, then C equiped with the

pushforward of the standard diffeology of C by Φm is an orbifold diffeomorphic to

Qm =C/Um , withUm the group of mth-roots of unity. We call it the cone orbifold.

(B) Another simple example, the corner orbifoldK2 = [R/{±1}]2 is the image in R2
of

the map sq2 : (x, y) 7→ (x2, y2)

(C) We have also the typical example of teardropT whose diffeology on S2 ⊂R3 ≃C×R
is illustrated by the Figure 3. Let N = (0,1) be the North pole. The following set of

C

Figure 3. The Teardrop as a diffeology on the sphere.

parametrizations ζ defines an orbifold diffeology on S2
with aUm -cyclic singular north

pole. Let U be an Euclidean domain,

ζ : U→ S2
with ζ(r ) =
�

z(r )
t (r )

�

, and |z(r )|2+ t (r )2 = 1,

such that, for all r0 ∈U,

(1) if ζ(r0) ̸=N, then there exists a small ballB centered at r0 such that ζ ↾B is

smooth.

(2) If ζ(r0) = N, then there exist a small ball B centered at r0 and a smooth

parametrization z in C defined onB such that, for all r ∈B ,

ζ(r ) =
1
p

1+ |z(r )|2m

�

z(r )m

1

�

.

11.— Local Centered Charts. Let X be an orbifold and x ∈ X. Let f ∈A be a

chart defined on some D-open subset U ⊂ Rn/Γ and let F = f ◦ class. Let Ũ be the

domain of F, Ũ= class−1(U)⊂Rn
. Let r ∈ Ũ such that F(r ) = f (class(r )) = x .

Proposition. There exists a Γ-invariant Euclidean scalar product on Rn and for the
associated metric, there exists a ballB(r,ε) centered in r with radius ε such that:

(1) For all r ′ ∈B(r,ε), StΓ(r
′)⊂ Γr , with Γr = StΓ(r ) the stabilizer of r .
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(2) The map jr : classΓr
(r ′) 7→ classΓ(r

′) is a local diffeomorphism fromB(r,ε)/Γr

to Ũ/Γ. The composite f ◦ jr is a local diffeomorphism fromB(r,ε)/Γr to X. We
call it a centered chart on x .

Proof. Since the group Γ ⊂GL(n,R) is finite, one considers the new Euclidean scalar

product defined by:

u · v = 1
#Γ

∑

γ∈Γ
〈γu,γv〉,

where the brackets denote the ordinary scalar product. This scalar product is obviously

Γ-invariant. For this new metric, letB(r,ε)⊂ Ũ be a ball centered in r with radius ε:

For all r ′ ∈B(r,ε), for all γ ∈ StΓ(r ) : γ(r ′) ∈B(r,ε).

Indeed, on the one hand: ||γ(r ′−r )||= ||r ′−r ||< ε. On the other hand, ||γ(r ′)−r ||=
||γ(r ′− r )||, since γ ∈ StΓ(r ). Thus, ||γ(r ′)− r ||< ε and γ(r ′) ∈B(r,ε).
Next, there exists ε ∈R such that:

γ
�

B(r,ε)
�

∩B(r,ε) =∅ for all γ /∈ StΓ(r ).

Indeed, let γ /∈ StΓ(r ), and let rγ = γ(r ). Then, rγ ̸= r , and since Γ is finite — so is the

number of γ that are not in StΓ(r )— there exits ε ∈R such that the ballsB(r,ε) and

B(rγ ,ε) = γ(B(r,ε)) are disjoint, for all γ /∈ StΓ(r ).

Now, consider the map jr : classΓr
(r ′) 7→ classΓ(r

′), defined onB(r,ε)/Γr to Ũ/Γ.

Explicitely:

jr : {γ(r ′) | γ ∈ StΓ(r )} 7→ {γ(r
′) | γ ∈ Γ}.

The map jr is injective:

j−1
r : classΓ(r

′) 7→ classΓ(r
′)∩B(r,ε).

Next, the map jr is a smooth injection since the class projections are subductions.

B(r,ε) Ũ

B(r,ε)/Γr Ũ/Γ

⊂

classΓr
classΓ

jr

Then, let s 7→ σs be a plot in Ũ/Γ but taking its values in jr (B(r,ε)). Since classΓ is a

subduction, there exists locally a smooth lifting s 7→ r ′s in Ũ such that σs = classΓ(r
′
s ).

We assume that the lifting is defined on a small ball. By connexity r ′s belongs toB(r,ε)
or one of the balls γ

�

B(r,ε)
�

with γ /∈ StΓ(r ). If that is the case, then s 7→ γ−1(r ′s ) is

a smooth local lifting with values inB(r,ε). Hence, j−1
r is smooth and jr is an induc-

tion. An induction is a diffeomorphism onto its image. Now, since U is the quotient

of Ũ by a group of diffeomorphisms, the projection classΓ is not just a subduction

but a local subduction and then a D-open map [PIZ13, §2.18 and Exercise 60]. Thus,
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classΓ(B(r,ε)) = jr
�

classΓr
(B(r,ε))
�

is D-open. Therefore, jr is a local diffeomor-

phism [Ibid. §2.10] and f ◦ jr is a chart of X. □

12.— Klein Strata. We choose the variant definition of Klein strata of a diffeological

space as orbits of local diffeomorphisms. They satisfy the basic frontier condition of

stratified spaces [PIZ13, §1.42] and [PIZ22-a].

Let X be an n-orbifold, letA be an atlas of X and we keep the definitions and notations

introduced in the previous paragraph. Let x ∈ X, let f be a chart defined on some

D-open subset of Rn/Γ, let F= f ◦ classΓ and r ∈ dom(F) such that F(r ) = x .

Definition. The stabilizer StΓ(r ) of r in Γ is called isotropy of x in the chart f .
Proposition. [IKZ10, Lemma 20-21] Two different charts on x give equivalent isotropies,
conjugate by an element of GL(n,R).
Now we can characterize the Klein strata of the orbifold X

Proposition. Two points x and x ′ in X are on the same Klein stratum if and only if
their isotropies are conjugate modulo GL(n,R). In other words, if f and f ′ are two charts
of X on x and x ′, with notations introduced previously:

∃M ∈GL(n,R) : ∀γ ∈ StΓ(r ), MγM−1 ∈ StΓ′(r
′),

which can be shortened to:
Γ′r ′ =MΓr M−1.

Proof. Let g be a local diffeomorphism, defined on some D-openO , such that g (x) = x ′.
Let f : U → X be a chart of X and F = f ◦ classΓ , with F(r ) = x and r ∈ Ũ =
class−1

Γ (U) = dom(F). LetB(r,ε) be the domain of a local centered chart fr = f ◦ jr ,

as defined above. Let Fr = fr ◦ classΓr
with Γr = StΓ(r ). Let f ′ be a chart over x ′,

F′ = f ′ ◦ classΓ′ , r ′ ∈ dom(F′)with F′(r ′) = x ′. There exists a local lifting ψ defined

on some open neighborhood of r inB(r,ε) to Ũ′ such that

F′ ◦ψ=loc g ◦Fr .

We can admit that dom(ψ) =B(r,ε), possibly for a smaller ε. The Lemma 20-21 of

[IKZ10] claims that this lifting ψ is a local diffeomorphism.

B(r,ε) Ũ′

X⊃O X

ψ

Fr F′

g

Thus, for all γ ∈ StΓ(r ) there exists γ ′ ∈ Γ such that for all s ∈B(r,ε) :

ψ(γ s) = γ ′ψ(s), that is γ ′ = ψ ◦ γ ◦ψ−1

A priori γ ′ depends on s and γ, but since it depends smoothly on s and since Γ is discrete,

it depends only on γ. Thus, h : γ 7→ γ ′ is an isomorphism from StΓ(r ) onto its image.
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On the other hand h(γ)(r ′) = ψ ◦ γ ◦ψ−1(r ′) = ψ ◦ γ(r ) = ψ(r ) = r ′. Therefore h is

an isomorphism from StΓ(r ) to StΓ(r
′).

Next, the derivative of the identity ψ(γ s) = h(γ)ψ(s) for s = r gives

h(γ) =MγM−1
with M= D(ψ)(r ).

Hence, we get, as claimed, that St′Γ(r
′) =M StΓ(r )M

−1

Conversely, assume that there is M ∈ GL(n,R) such that St′Γ(r
′) = M StΓ(r )M

−1
.

Define locally around r
ψ : s 7→ r ′+M(s − r ).

The mapψ is clearly a diffeomorphism. Let γ ∈ StΓ(r ), thenψ(γ s) = r ′+M(γ s− r ) =
r ′+Mγ(s−r ) sinceγ r = r . On the other hand, h(γ)ψ(s) =MγM−1[r ′+M(s−r )] =
r ′+Mγ(s − r ) since MγM−1 r ′ = r ′. Hence, ψ(γ s) = h(γ)ψ(s) the map ψ descends

to the quotient X into a local diffeomorphism. □

13.— Klein Strata Are Locally Closed Manifolds. Consider an orbifold X.

Let f : U → X be a chart of X and F = f ◦ classΓ , with F(r ) = x and r ∈ Ũ =
class−1

Γ (U) = dom(F). LetB(r,ε) be the domain of a local centered chart fr = f ◦ jr ,

as defined above. Let Fr = fr ◦ classΓr
with Γr = StΓ(r ).

Proposition. The projection Fr :B(r,ε)→X is open and closed, for the D-topology.
As a corollary, we get:

Theorem. Let X be an orbifold. The Klein strata Str(x), for all x ∈X, are locally closed
submanifolds of X. If X admits a locally finite atlas, then the Klein stratification of the
orbifold X satisfies the standard conditions, encoded by [B]-[LF]-[GK]-[M]-[T0].
We recall that the Klein strata, here orbits of local diffeomorphisms, are naturally equipped

with the subset diffeology.

Proof. In the following, open and closed refer to the D-topology. We recall that the

D-topology of a quotient is the quotient of the D-topology [PIZ13, §2.12].

Since fr is a local diffeomorphism it is sufficient to check these properties on classΓr
:

B(r,ε) → B(r,ε)/Γr . As we have said previously, since the subduction is a local

subduction, classΓr
is open [Ibid. §2.18 and Exercise 60] : images of open subsets are

open.

Now, let A⊂B(r,ε) be a closed subset. Its image classΓr
(A) is closed if its complement

∁classΓr
(A) is open. That is, if its pullback class−1

Γr

�

∁classΓr
(A)
�

is open. The pullback

of the complement of the image classΓr
(A) is equal to the ballB(r,ε)minus the orbit of

A, that is,B(r,ε)−∪γ∈Γr
γ(A). Since A is closed and #Γr <∞, ∪γ∈Γr

γ(A) is closed

andB(r,ε)−∪γ∈Γr
γ(A) is open. Hence, classΓr

(A) is closed. The projection classΓr
is then closed, and therefore, open and closed.

Now, X is locally equivalent to the quotientB(r,ε)/Γr . The structure of the strata

sharing conjugate stabilizers under a smooth action of a compact group has been clarified:
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[Bre72, Theorem 3.3] claims that the subset of points with conjugated stabilizers is a

topological manifold, locally closed. Since the action of Γr onB(r,ε) is smooth, these

manifods are smooth [Ibid. Proof].

That applies in particular to the strata

Str(r ) = {r ′ ∈B(r,ε) | StΓ(r
′) = StΓ(r )},

passing through r which projection on Str(x) by the chart fr . Since for all r ′ /∈ Str(r ),
StΓr
(r ′) ⊊ StΓ(r ), the projection classΓr

↾ Str(r ) is one-to-one. Then, since it is a

bijective subduction it is a diffeomorphism from Str(r ) to its image. Hence, since classΓr

is open and closed, fr (classΓr
Str(r )) is a locally closed submanifold. □

14.— Concluding Remarks. In this paper we have presented a program for the

theory of stratifications in diffeology. Noting first that in diffeology, this theory avoids by

default the hiatus between the topology of the ambient space and smooth structure of

the strata. That is because the ambient space has its own smooth structure described by

its diffeology, which perfectly integrates the singularities inherent to the space. This is for

one aspect of the theory. Another aspect is that any part of a diffeological space inherits

the subset diffeology and there is no reason to coerce the structure of the strata a priori.

Each partition is admissible as long as it satisfies the frontier condition. These two aspects

make diffeology an excellent formal framework for developing a theory of stratification.

We then proposed to categorize the different identified properties, satisfied by a stratifi-

cation, with a series of characteristic labels, which allows us to improve the concept of

stratified spaces by including many different cases separately, or refining some of them.

Starting with the label [B] for basic, which indicates that the frontier condition is ful-

filled. Then, we have discussed these various labels [LF] [G] [GK] [M] [T0] and gave

some examples. We have identified the code of the standard stratification: the minimum

conditions for which a stratified diffeological space corresponds to what one expects from

the usual theory of stratification: [B]-[LF]-[M]-[T0]. To enrich the theory, inclusion of

further labels, such as [C] for locally conical, into this scheme would be possible.

The very nature of diffeology, its capability to integrate the singularities inherent to its

smooth structure, is revealed by the very specific Klein stratification defined by the action

of diffeomorphisms, or local diffeomorphisms, on the space itself. Each diffeological space

has its own natural geometric stratification, embedded in its diffeology, which reveals in

particular its internal singularities.

As an application of this approach, we have treated in detail the case of orbifolds. The

Klein strata of an orbifold are grouped by conjugate isotropies and are locally closed

submanifolds. If in addition the orbifold admits a locally finite atlas, then the Klein

stratification is locally finite, which makes it the usual standard for geometric stratification.
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