Definite orthogonal modular forms

E. Assaf, D. Fretwell, C. Ingalls, A. Logan, S. Secord, J. Voight

HUJI-BGU Workshop in Arithmetic
June 2022

Motivation

Definition

$$
\text { Let } r_{4}(n)=\#\left\{\lambda \in \mathbb{Z}^{4}: \sum_{i=1}^{4} \lambda_{i}^{2}=n\right\} .
$$

Theorem (Jacobi's four-square theorem)

$$
r_{4}(n)=8 \sum_{4 \nmid d \mid n} d .
$$

Idea of Proof.

- Write $\theta(q)=\sum_{n=0}^{\infty} r_{4}(n) q^{n}$.
- Show that θ belongs to a finite dimensional vector space V.
- Find a basis for V.
- Represent θ in that basis and compare coefficients.

Modular curves

- The upper half plane is $\mathfrak{H}=\{z \in \mathbb{C}: \Im(z)>0\}$.
- It admits an action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ by Möbius transformations

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \mathfrak{H} \rightarrow \mathfrak{H}, \quad z \mapsto \gamma z=\frac{a z+b}{c z+d}
$$

- For a discrete $\Gamma \leq \mathrm{GL}_{2}^{+}(\mathbb{R})$, can form $Y(\Gamma)=\Gamma \backslash \mathfrak{H}$.
- Specific groups Γ of interest

$$
\begin{gathered}
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} \\
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N): a, d \equiv 1 \bmod N\right\}
\end{gathered}
$$

- Note that $\gamma \mapsto d: \Gamma_{0}(N) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$has kernel $\Gamma_{1}(N)$.
- Compactify using cusps

$$
X(\Gamma)=Y(\Gamma) \cup\left(\Gamma \backslash \mathbb{P}^{1}(\mathbb{Q})\right), \quad X_{0}(N)=X\left(\Gamma_{0}(N)\right)
$$

Modular forms

- Fact: $X(\Gamma)$ is a compact Riemann surface.

Example

Local coordinate at ∞ for $X_{0}(N)$ is $q=e^{2 \pi i z}$.

- For Γ torsion-free, let $M_{2}(\Gamma)$ be differentials on $X(\Gamma)$ holomorphic on $Y(\Gamma)$ with at most simple poles at the cusps.

Theorem (Riemann-Roch)

$$
\operatorname{dim} M_{2}(\Gamma)=g(X(\Gamma))+\# \text { cusps }-1
$$

Let $\pi: \mathfrak{H} \rightarrow X(\Gamma)$. For $\omega \in M_{2}(\Gamma)$ can consider $\pi^{*}(\omega)=f(z) d z$.

Example

For $X_{0}(N)$, if near $\infty, \omega=g(q) d q$, then $\pi^{*}(\omega)=2 \pi i q g(q) d z$

Modular forms, cusp forms and characters

Thus $\omega \mapsto f(z)$ identifies $M_{2}(\Gamma)$ with hol. functions $f: \mathfrak{H} \rightarrow \mathbb{C}$, s.t.
$(c z+d)^{-2} f(\gamma z) d z=f(\gamma z) d(\gamma z)=f(z) d z \quad \forall \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$

- $M_{2}(\Gamma)$ is the space of modular forms of level Γ (of weight 2).
- Write $S_{2}(\Gamma) \subseteq M_{2}(\Gamma)$ for the holomorphic differentials.
- The map $\omega \mapsto f(z)$ identifies $S_{2}(\Gamma)$ with the functions in $M_{2}(\Gamma)$ that vanish at the cusps, called cusp forms.
- $(\mathbb{Z} / N \mathbb{Z})^{\times} \simeq \Gamma_{0}(N) / \Gamma_{1}(N)$ acts on $M_{2}\left(\Gamma_{1}(N)\right)$ via

$$
f(z) d(z) \mapsto f\left(\gamma_{0} z\right) d\left(\gamma_{0} z\right)
$$

- Write $M_{2}(N, \chi)$ (resp. $S_{2}(N, \chi)$) for the χ-isotypic component, so $f \in M_{2}(N, \chi)$ iff

$$
f(\gamma z)=\chi(d)(c z+d)^{2} f(z) \quad \forall \gamma \in \Gamma_{0}(N)
$$

$X_{0}(4)$

Example

One computes that

$$
\Gamma_{0}(4) \backslash \mathrm{SL}_{2}(\mathbb{Z})=\left\{1, \alpha, \alpha^{2}, \alpha^{-1}, \beta, s\right\}
$$

where

$$
\alpha=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \beta=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right), s=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

$X_{0}(4)$

Example

We compute that

- $\Gamma_{0}(4) \backslash \mathbb{P}^{1}(\mathbb{Q})=\left\{0, \frac{1}{2}, \infty\right\}$,
- $X_{0}(4) \simeq \mathbb{P}^{1}(\mathbb{C})$
so $\operatorname{dim} M_{2}\left(\Gamma_{0}(4)\right)=2$.
The function $\theta(z)=\sum_{n=0}^{\infty} r_{4}(n) q^{n}$ is holomorphic, and

$$
\theta(z+1)=\theta(z), \quad \theta\left(\frac{z}{4 z+1}\right)=(4 z+1)^{2} \theta(z)
$$

hence $\theta \in M_{2}\left(\Gamma_{0}(4)\right)$. [Also invariant under $z \mapsto-\frac{1}{4 z}$]

Representation Numbers

Proof of Jacobi's four-square theorem.

- Construct $E_{2}(z)=-\frac{1}{24}+\sum_{n=1}^{\infty} \sigma(n) q^{n}$.
- $v_{1}=E_{2}(z)-2 E_{2}(2 z), v_{2}=E_{2}(2 z)-2 E_{2}(4 z) \in M_{2}\left(\Gamma_{0}(4)\right)$.
- From first two terms deduce $\theta(z)=8 v_{1}+16 v_{2}$, so
$\sum r_{4}(n) q^{n}=8\left(E_{2}(z)-4 E_{2}(4 z)\right)=8\left(\sum \sigma(n) q^{n}-\sum \sigma(n) q^{4 n}\right)$
yields $r_{4}(n)=\sum_{4 \nmid d \mid n} d$.
More generally, if $Q(x)=\sum_{i \leq j} a_{i j} x_{i} x_{j}$ is a quadratic form with $a_{i j} \in \mathbb{Z}$, we may consider

$$
r_{Q}(n)=\#\left\{\lambda \in \mathbb{Z}^{4}: Q(\lambda)=n\right\}
$$

and the function

$$
\theta_{Q}(z)=\sum_{n=0}^{\infty} r_{Q}(n) q^{n}=\sum_{\lambda \in \mathbb{Z}^{4}} q^{Q(\lambda)}
$$

is again a modular form.

Quadratic forms and Lattices

Let $Q: V \rightarrow \mathbb{Q}$ be a positive definite quaternary $\left(\operatorname{dim}_{\mathbb{Q}} V=4\right)$ quadratic space with associated bilinear form

$$
T(x, y):=Q(x+y)-Q(x)-Q(y)
$$

Let $\Lambda \subseteq V$ be an integral lattice, so that $Q(\Lambda) \subseteq \mathbb{Z}$.
Define $\Delta=\operatorname{disc}(\Lambda)=\operatorname{det} T \in \mathbb{Z}$.
Given a lattice, we may construct associated theta series

$$
\theta_{\Lambda}(z)=\theta_{\Lambda, 1}(z)=\sum_{\lambda \in \Lambda} q^{Q(\lambda)}, \quad q=e^{2 \pi i z}
$$

The level of Λ is the smallest N such that $N \Lambda^{\sharp} \subseteq \Lambda$. Then $\theta_{\Lambda}(z) \in S_{2}\left(N, \chi_{\Delta}\right)$, where $\chi_{\Delta}(a)=\left(\frac{\Delta}{a}\right)$. However, $\Lambda \mapsto \theta_{\Lambda}$ is not injective.

Isometry and genus

We define the orthogonal group

$$
\begin{aligned}
& \mathrm{O}(V)=\{g \in \mathrm{GL}(V): Q(g v)=Q(v)\} \\
& \mathrm{O}(\Lambda)=\{g \in \mathrm{O}(V): g \Lambda=\Lambda\}
\end{aligned}
$$

and write $\mathrm{SO}(V)$ and $\mathrm{SO}(\Lambda)$ for those with $\operatorname{det}(g)=1$. Lattices Λ, Π are isometric, written $\Pi \simeq \Lambda$, if there exists $g \in O(V)$ such that $g \Lambda=\Pi$. The genus of Λ is

$$
\operatorname{gen}(\Lambda):=\left\{\Pi \subseteq V: \Lambda_{p} \simeq \Pi_{p} \text { for all } p\right\}
$$

The class set $\operatorname{cls}(\Lambda)=\operatorname{gen}(\Lambda) / \simeq$ is the set of (global) isometry classes in gen (Λ). It is finite, by geometry of numbers.

Neighbors

Kneser's theory of p-neighbors gives an effective method to compute the class set; it also gives a Hecke action!
Let $p \nmid \operatorname{disc}(\Lambda)$ be a prime; $p=2$ is OK.
We say that a lattice $\Pi \subseteq V$ is a p-neighbor of Λ, and write $\Pi \sim_{p} \wedge$ if

$$
[\Lambda: \wedge \cap \Pi]=[\Pi: \wedge \cap \Pi]=p
$$

If $\Lambda \sim_{p} \Pi$ then:

- $\operatorname{disc}(\Lambda)=\operatorname{disc}(\Pi)$,
- Π is integral, and
- $\Pi \in \operatorname{gen}(\Lambda)$.

Moreover, there exists S such that every $[\Pi] \in \operatorname{cls}(\Lambda)$ is an iterated S-neighbor of Λ.

$$
\Lambda \sim_{p_{1}} \Lambda_{1} \sim p_{2} \cdots \sim_{p_{r}} \Lambda_{r} \simeq \Pi
$$

with $p_{i} \in S$. Typically may take $S=\{p\}$.

Example - Computing the class set

Let $\Lambda=\mathbb{Z}^{4}$ with the quadratic form

$$
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{4}+x_{3} x_{4}+3 x_{4}^{2}
$$

and bilinear form given by

$$
\left[T_{\Lambda}\right]=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 \\
1 & 0 & 1 & 6
\end{array}\right)
$$

Thus $\operatorname{disc}(\Lambda)=29$.

$$
\Lambda^{\prime}=\frac{1}{2} \mathbb{Z}\left(e_{2}+e_{4}\right)+2 \mathbb{Z} e_{3}+\mathbb{Z} e_{1}+\mathbb{Z} e_{4}
$$

with corresponding quadratic form

$$
Q(x)=x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}+x_{1} x_{3}+x_{3}^{2}+3 x_{1} x_{4}+2 x_{2} x_{4}+x_{3} x_{4}+3 x_{4}^{2}
$$

Orthogonal modular forms

The space of orthogonal modular forms of level Λ is

$$
M(\mathrm{O}(\Lambda)):=\{f: \operatorname{cls}(\Lambda) \rightarrow \mathbb{C}\} \simeq \mathbb{C}^{h(\Lambda)}
$$

For $p \nmid \operatorname{disc}(\Lambda)$ define the Hecke operator

$$
\begin{aligned}
T_{p}: M(O(\Lambda)) & \rightarrow M(O(\Lambda)) \\
f & \mapsto\left(\left[\Lambda^{\prime}\right] \mapsto \sum_{\Pi^{\prime} \sim_{p} \Lambda^{\prime}} f\left(\left[\Pi^{\prime}\right]\right)\right)
\end{aligned}
$$

The Hecke operators commute and are self-adjoint, hence there is a basis of simultaneous eigenvectors - eigenforms. (Gross, 1999)

Example - square discriminant

Let Λ have the Gram matrix

$$
\left[T_{\Lambda}\right]=\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 1 & 6 & 0 \\
1 & 0 & 0 & 6
\end{array}\right)
$$

so that $\operatorname{disc}(\Lambda)=\operatorname{det} T=11^{2}$. Then $h(\Lambda)=3$.
Write $\operatorname{cls}(\Lambda)=\left\{[\Lambda]=\left[\Lambda_{1}\right],\left[\Lambda_{2}\right],\left[\Lambda_{3}\right]\right\}$. Then a basis of eigenforms is given by

$$
\begin{array}{ll}
f_{1}=\left[\Lambda_{1}\right]+\left[\Lambda_{2}\right]+\left[\Lambda_{3}\right], & f_{2}=4\left[\Lambda_{1}\right]-6\left[\Lambda_{2}\right]+9\left[\Lambda_{3}\right] \\
f_{3}=4\left[\Lambda_{1}\right]+\left[\Lambda_{2}\right]-6\left[\Lambda_{3}\right], &
\end{array}
$$

and we have

$$
\begin{aligned}
& \theta\left(f_{1}\right)=\frac{5}{12}+q+3 q^{2}+4 q^{3}+7 q^{4}+6 q^{5}+12 q^{6}+O\left(q^{7}\right) \in E_{2}(11) \\
& \theta\left(f_{2}\right)=q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}+O\left(q^{9}\right) \in S_{2}(11)
\end{aligned}
$$

$$
\text { where } T_{p}\left(f_{2}\right)=a_{p}\left(f_{2}\right) \text { with } a_{2}=4, a_{3}=1, a_{5}=1, a_{7}=4, \ldots
$$

Example - Hecke action

Let Λ be as before with discriminant 29. By checking isometry we compute w.r.t. basis [$\left.\Lambda^{\prime}\right]$, $[\Lambda]$

$$
\left[T_{2}\right]=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right),\left[T_{3}\right]=\left(\begin{array}{ll}
4 & 3 \\
6 & 7
\end{array}\right),\left[T_{5}\right]=\left(\begin{array}{cc}
18 & 9 \\
18 & 27
\end{array}\right), \ldots
$$

The constant function $e=[\Lambda]+\left[\Lambda^{\prime}\right]$ is an Eisenstein series with $T_{p}(e)=\left(p^{2}+\left(1+\chi_{29}(p)\right)+1\right) e$. Another eigenvector is $f=[\Lambda]-2\left[\Lambda^{\prime}\right]$, with $T_{p}(f)=a_{p}(f)$

$$
a_{2}=-1, a_{3}=1, a_{5}=9, a_{7}=4, a_{11}=17, \ldots
$$

We match them with the Hilbert modular form labeled 2.2.29.1-1.1-a in the LMFDB.

Hilbert modular forms

Let K be a real quadratic field.

- K has two real embeddings $v_{1}, v_{2}: K \rightarrow \mathbb{R}$.
- For $a \in K^{\times}$write $a_{i}=v_{i}(a)$.
- $a \in K^{\times}$is totally positive if $a_{1}>0$ and $a_{2}>0$.
- Write $K_{>0}^{\times}$for the group of totally positive elements.
- Denote $\mathrm{GL}_{2}^{+}(K)=\left\{\gamma \in \mathrm{GL}_{2}(K): \operatorname{det} \gamma \in K_{>0}^{\times}\right\}$
- $\mathrm{GL}_{2}^{+}(K)$ acts on $\mathfrak{H} \times \mathfrak{H}$ by

$$
z=\left(z_{1}, z_{2}\right) \mapsto \gamma z=\left(\gamma_{1} z_{1}, \gamma_{2} z_{2}\right)=\left(\frac{a_{1} z_{1}+b_{1}}{c_{1} z_{1}+d_{1}}, \frac{a_{2} z_{2}+b_{2}}{c_{2} z_{2}+d_{2}}\right)
$$

- A Hilbert modular form of weight $\left(k_{1}, k_{2}\right)$ and level $\Gamma \subseteq \mathrm{GL}_{2}^{+}(K)$ is a holomorphic $f: \mathfrak{H} \times \mathfrak{H} \rightarrow \mathbb{C}$ such that

$$
f(\gamma z)=\frac{\left(c_{1} z_{1}+d_{1}\right)^{k_{1}}}{\operatorname{det}\left(\gamma_{1}\right)^{k_{1} / 2}} \frac{\left(c_{2} z_{2}+d_{2}\right)^{k_{2}}}{\operatorname{det}\left(\gamma_{2}\right)^{k_{2} / 2}} f(z) \quad \forall \gamma \in \Gamma
$$

Towards a bijection?

Would like to have a bijection between orthogonal modular forms and Hilbert modular forms, but... Consider
$Q(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{4}+x_{2} x_{4}+3 x_{4}^{2}$ with Gram matrix

$$
\left[T_{\Lambda}\right]=\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 2 & 0 \\
1 & 1 & 0 & 6
\end{array}\right)
$$

and $\operatorname{disc}(\Lambda)=40$.

- Then $\operatorname{dim} S(O(\Lambda))=1 \neq 2=\operatorname{dim} S_{2}(\mathbb{Z}[\sqrt{10}])$.
- This is because of the lattice Λ_{2} with form

$$
Q_{2}(x)=x_{1}^{2}+x_{2}^{2}+2 x^{3}+x_{2} x_{4}+2 x_{3} x_{4}+2 x_{4}^{2} .
$$

- Although $\Lambda_{2} \notin \operatorname{gen}\left(\Lambda_{1}\right)$, it is everywhere locally similar to Λ_{1}.

Similitude classes

We define the general orthogonal group

$$
\begin{aligned}
\mathrm{GO}(V) & =\left\{g \in \mathrm{GL}(V): Q(g v)=\mu(g) Q(v), \quad \mu(g) \in \mathbb{Q}^{\times}\right\} \\
\mathrm{GO}(\Lambda) & =\{g \in \mathrm{GO}(V): g \Lambda=\Lambda\}
\end{aligned}
$$

and write $\mathrm{GSO}(V)$ and $\mathrm{GSO}(\Lambda)$ for those with $\operatorname{det}(g)>0$. Lattices Λ, Π are similar, written $\Pi \sim \Lambda$, if there exists $g \in \mathrm{GO}(V)$ such that $g \Lambda=\Pi$. The similitude genus of Λ is

$$
\operatorname{sgen}(\Lambda):=\left\{\Pi \subseteq V: \Lambda_{p} \sim \Pi_{p} \text { for all } p\right\}
$$

The similitude class set $\operatorname{scls}(\Lambda)=\operatorname{sgen}(\Lambda) / \sim$ is the set of (global) similitude classes in $\operatorname{sgen}(\Lambda)$. It is finite, by geometry of numbers.

Main Theorem

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022))
Assume $\operatorname{disc}(\Lambda)=D_{0} N^{2}, K=\mathbb{Q}\left[\sqrt{D_{0}}\right]$. Then

$$
S(G O(\Lambda)) \hookrightarrow G_{K} \backslash S_{2}\left(N \mathbb{Z}_{K}\right)
$$

with image the orbits in $S_{2}\left(N \mathbb{Z}_{K} ; W=\epsilon\right)^{D \text {-new }}$

- $G_{K}=\operatorname{Gal}(K \mid \mathbb{Q})$ acts naturally on the space of Hilbert modular forms.
- D is the product of the anisotropic primes.
- For $p \mid N$, we set $\epsilon_{p}=-1$ if $p \mid D$, else $\epsilon_{p}=1$.
- W_{p} is the Atkin-Lehner involution at $p \mathbb{Z}_{K} \mid N \mathbb{Z}_{K}$.

The other forms

- The space of orthogonal modular forms of weight (k, j) is

$$
M_{k, j}(\mathrm{GO}(\Lambda))=\left\{f: \operatorname{scls}(\Lambda) \rightarrow W_{k, j}: f(g x)=\rho_{k, j}(g) f(x)\right\}
$$

- Twisting by the spinor norm, we obtain all the spaces

$$
S_{k_{1}, k_{2}}\left(N \mathbb{Z}_{K}, W=\epsilon\right)^{D \text { new }}
$$

- The space $S(O(\Lambda))$ is identified as the forms invariant under twists by Hecke characters.
- If $D_{0}=1, K=\mathbb{Q} \times \mathbb{Q}$, so $M_{k_{1}, k_{2}}\left(N \mathbb{Z}_{K}\right)=M_{k_{1}}(N) \otimes M_{k_{2}}(N)$, this case was proved by Böcherer and Schulze-Pillot (1991).

Key Ideas

Theorem (Auel and Voight)

The even Clifford functor with descent data induces an equivalence
$\left\{\begin{array}{c}\text { lattices } \Lambda \subseteq V \\ \text { under oriented similarities }\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}\mathbb{Z}_{K} \text {-orders } O \subseteq C_{0}(V) \\ \text { under isomorphisms* }\end{array}\right\}$

- It also induces an isomorphism $C_{0}: \mathrm{GSO}(V) / \mathbb{Q}^{\times} \xrightarrow{\simeq} B_{K}^{\times} / K^{\times}$.
- Compatible, hence $C_{0}^{*}: M\left(\operatorname{Typ}_{s}(O), \rho\right) \rightarrow M\left(G S O(\Lambda), \rho \circ C_{0}\right)$.
- Description of $\operatorname{Typ}_{s}(O)$ based on Ponomarev (1976).
- Sends p-neighbors to $p \mathbb{Z}_{K}$-neighbors.
- Characterize $M\left(\operatorname{Typ}_{s}(O), \rho\right)$ as a subspace of $\left.M\left(O^{\times}, \rho\right)\right)$ using AL, as in Hein (2016).
- $\cong \bullet\left[A_{1} \times A_{1}=D_{2}\right.$, equiv. $\left.\mathfrak{s l}_{2} \oplus \mathfrak{H l}_{2} \cong \mathfrak{s o}_{4}\right]$

Applications

We obtain commutative diagrams of Hecke modules

$$
\begin{aligned}
& S\left(\operatorname{Typ}_{s}(O)\right)_{G_{K}} \leftarrow C_{0}^{*} \longrightarrow S(\mathrm{GO}(\Lambda))
\end{aligned}
$$

The bottom line is:

- Yoshida lift when $K=\mathbb{Q} \times \mathbb{Q}$ and f, g are both cuspidal.
- Saito-Kurokawa lift when $K=\mathbb{Q} \times \mathbb{Q}$ otherwise.
- Asai lift when K is a quadratic field.

Higher rank

We can also do that for lattices of higher even rank. For example, this yields the following theorem

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022)) Let $\Lambda=A_{6} \oplus A_{2}$, and let $f_{1}, f_{2} \in S_{4}\left(\Gamma_{0}(21), \chi_{21}\right)$ be representatives for the two Galois orbits of newforms. Write

$$
\lambda_{p, 1}^{(i)}=a_{p}\left(f_{i}\right)^{2}-\chi_{21}(p) p^{3}+p \cdot \frac{p^{5}-1}{p-1}, \quad \lambda_{p, 1}^{(3)}=\frac{p^{7}-1}{p-1}+\chi_{21}(p) p^{3}
$$

There are $A_{i} \in M_{3 \times 3}(\mathbb{Q})$ such that the p-neighbor adjacency matrix in $\operatorname{cls}(\Lambda)$ is

$$
A_{1} \lambda_{p, 1}^{(1)}+A_{2} \lambda_{p, 1}^{(2)}+A_{3} \lambda_{p, 1}^{(3)}
$$

Eisenstein congruences

This method allows us also to prove Eisenstein congruences.
Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022))
For all $p \neq 53$, we have

$$
a_{1, p^{2}}(F) \equiv a_{p}(f)^{2}-\left(1+\chi_{53}(p)\right) p^{3}+p^{5}+p \quad(\bmod \mathfrak{q})
$$

where $F \in S_{4}\left(\Gamma_{0}^{(2)}(53), \chi_{53}\right), \mathfrak{q} \mid 397$ in $K=\mathbb{Q}(F)$, and $f \in S_{4}\left(\Gamma_{0}(53), \chi\right)$.

Why 397 ?
The numerator of the norm of

$$
\frac{L\left(\operatorname{Sym}^{2}(f), 1\right)}{\pi^{2} L\left(\operatorname{Sym}^{2}(f), 3\right)}
$$

is divisible by 397 , hence

$$
\operatorname{ord}_{\mathfrak{q}}\left(L_{\mathrm{alg}}\left(\operatorname{Sym}^{2}(f), 6\right)\right)>0
$$

Future research

Conjecture (A. et al. (2022))

Let \wedge be of rank 6 and discriminant p.

$$
\operatorname{dim} \operatorname{ker} \theta_{2}=\# \operatorname{cls}^{+}(\Lambda)-\operatorname{cls}(\Lambda)=\operatorname{dim} M(O(\Lambda), \operatorname{det})
$$

Conjecture (A. et al. (2022))
If $f \in S_{j+k}\left(\Gamma_{0}(N), \chi\right)$ is an eigenform with

$$
\operatorname{ord}_{\mathfrak{q}}\left(L_{\mathrm{alg}}\left(\operatorname{Sym}^{2}(f), j+2 k-2\right)\right)>0
$$

and \mathfrak{q} lies above $q>2(j+k)-1$. Then there are
$F \in S_{j, k}\left(\Gamma_{0}^{(2)}(N), \chi\right)$ and $\mathfrak{q}^{\prime} \mid \mathfrak{q}$ such that

$$
b_{1, p^{2}} \equiv a_{p}^{2}-\chi(p) p^{j+k-1}-p^{j+2 k-5}+p^{j+2 k-3}+p^{j+1} \quad\left(\bmod \mathfrak{q}^{\prime}\right)
$$

Asai, Tetsuya. 1977. On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann. 226, no. 1, 81-94, DOI 10.1007/BF01391220. MR429751

Auel, Asher and John Voight. 2021. Quaternary Quadratic Forms and Quaternion Ideals. unpublished.

Böcherer, Siegfried and Rainer Schulze-Pillot. 1991. Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J. 121, 35-96, DOI 10.1017/S0027763000003391. MR1096467
A., Dan Fretwell, Colin Ingalls, Adam Logan, Spencer Secord, and John Voight. 2022. Orthogonal modular forms attached to quaternary lattices.
Gross, Benedict H. 1999. Algebraic modular forms, Israel J. Math. 113, 61-93, DOI 10.1007/BF02780173. MR1729443

Hein, Jeffery. 2016. Orthogonal modular forms: An application to a conjecture of birch, algorithms and computations, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Dartmouth College. MR3553638

Ibukiyama, Tomoyoshi. 2012. Saito-Kurokawa liftings of level N and practical construction of Jacobi forms, Kyoto J. Math. 52, no. 1, 141-178, DOI 10.1215/21562261-1503791. MR2892771

Kurokawa, Nobushige. 1978. Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Invent. Math. 49, no. 2, 149-165, DOI 10.1007/BF01403084. MR511188

Ponomarev, Paul. 1976. Arithmetic of quaternary quadratic forms, Acta Arith. 29, no. 1, 1-48, DOI 10.4064/aa-29-1-1-48. MR414517

Saito, Hiroshi. 1977. On lifting of automorphic forms, Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, pp. Exp. No. 13, 6. MR551339
Yoshida, Hiroyuki. 1980. Siegel's modular forms and the arithmetic of quadratic forms, Invent. Math. 60, no. 3, 193-248, DOI 10.1007/BF01390016. MR586427

