Definite orthogonal modular forms

E. Assaf, D. Fretwell, C. Ingalls, A. Logan, S. Secord, J. Voight

HUJI-BGU Workshop in Arithmetic

June 2022

Motivation

Definition

Let
$$r_4(n) = \#\{\lambda \in \mathbb{Z}^4 : \sum_{i=1}^4 \lambda_i^2 = n\}.$$

Theorem (Jacobi's four-square theorem)

$$r_4(n)=8\sum_{4\nmid d\mid n}d.$$

Idea of Proof.

- Write $\theta(q) = \sum_{n=0}^{\infty} r_4(n)q^n$.
- Show that θ belongs to a finite dimensional vector space V.
- Find a basis for V.
- Represent θ in that basis and compare coefficients.

Modular curves

- The upper half plane is $\mathfrak{H} = \{z \in \mathbb{C} : \Im(z) > 0\}.$
- It admits an action of $GL_2^+(\mathbb{R})$ by Möbius transformations

$$\gamma = \left(\begin{array}{cc} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{array} \right) : \mathfrak{H} \to \mathfrak{H}, \quad \mathsf{z} \mapsto \gamma \mathsf{z} = \frac{\mathsf{a} \mathsf{z} + \mathsf{b}}{\mathsf{c} \mathsf{z} + \mathsf{d}}$$

- For a discrete $\Gamma \leq GL_2^+(\mathbb{R})$, can form $Y(\Gamma) = \Gamma \setminus \mathfrak{H}$.
- Specific groups Γ of interest

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N \right\}$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) : a, d \equiv 1 \mod N \right\}$$

- Note that $\gamma \mapsto d : \Gamma_0(N) \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ has kernel $\Gamma_1(N)$.
- Compactify using cusps

$$X(\Gamma) = Y(\Gamma) \cup (\Gamma ackslash \mathbb{P}^1(\mathbb{Q})), \quad X_0(N) = X(\Gamma_0(N))$$

• Fact: $X(\Gamma)$ is a compact Riemann surface.

Example

Local coordinate at ∞ for $X_0(N)$ is $q = e^{2\pi i z}$.

 For Γ torsion-free, let M₂(Γ) be differentials on X(Γ) holomorphic on Y(Γ) with at most simple poles at the cusps.

Theorem (Riemann-Roch)

$$\dim M_2(\Gamma) = g(X(\Gamma)) + \# cusps - 1$$

Let $\pi : \mathfrak{H} \to X(\Gamma)$. For $\omega \in M_2(\Gamma)$ can consider $\pi^*(\omega) = f(z)dz$.

Example

For $X_0(N)$, if near ∞ , $\omega = g(q) \ dq$, then $\pi^*(\omega) = 2\pi i \ q \ g(q) \ dz$

Modular forms, cusp forms and characters

Thus $\omega \mapsto f(z)$ identifies $M_2(\Gamma)$ with hol. functions $f : \mathfrak{H} \to \mathbb{C}$, s.t.

$$(cz+d)^{-2}f(\gamma z) dz = f(\gamma z) d(\gamma z) = f(z) dz \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

- M₂(Γ) is the space of modular forms of level Γ (of weight 2).
- Write $S_2(\Gamma) \subseteq M_2(\Gamma)$ for the holomorphic differentials.
- The map $\omega \mapsto f(z)$ identifies $S_2(\Gamma)$ with the functions in $M_2(\Gamma)$ that vanish at the cusps, called **cusp forms**.
- $(\mathbb{Z}/N\mathbb{Z})^{ imes} \simeq \Gamma_0(N)/\Gamma_1(N)$ acts on $M_2(\Gamma_1(N))$ via

$$f(z)d(z)\mapsto f(\gamma_0 z)d(\gamma_0 z)$$

• Write $M_2(N, \chi)$ (resp. $S_2(N, \chi)$) for the χ -isotypic component, so $f \in M_2(N, \chi)$ iff

$$f(\gamma z) = \chi(d)(cz+d)^2 f(z) \quad \forall \gamma \in \Gamma_0(N)$$

Example

One computes that

$$\mathsf{F}_{0}(4) \backslash \operatorname{\mathsf{SL}}_{2}(\mathbb{Z}) = \left\{1, \alpha, \alpha^{2}, \alpha^{-1}, \beta, s\right\}$$

where

$$\alpha = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right), \beta = \left(\begin{array}{cc} 0 & 1 \\ -1 & 2 \end{array} \right), \mathbf{s} = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$$

$$X_0(4)$$

Example

We compute that

- $\Gamma_0(4) \setminus \mathbb{P}^1(\mathbb{Q}) = \{0, \frac{1}{2}, \infty\},\$
- $X_0(4) \simeq \mathbb{P}^1(\mathbb{C})$

so dim $M_2(\Gamma_0(4)) = 2$. The function $\theta(z) = \sum_{n=0}^{\infty} r_4(n)q^n$ is holomorphic, and

$$heta(z+1)= heta(z), \quad heta\left(rac{z}{4z+1}
ight)=(4z+1)^2 heta(z),$$

hence $\theta \in M_2(\Gamma_0(4))$. [Also invariant under $z \mapsto -\frac{1}{4z}$]

Representation Numbers

Proof of Jacobi's four-square theorem.

• Construct
$$E_2(z) = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma(n)q^n$$
.

•
$$v_1 = E_2(z) - 2E_2(2z), v_2 = E_2(2z) - 2E_2(4z) \in M_2(\Gamma_0(4)).$$

• From first two terms deduce $\theta(z) = 8v_1 + 16v_2$, so

$$\sum_{i=1}^{n} r_4(n)q^n = 8(E_2(z) - 4E_2(4z)) = 8\left(\sum_{i=1}^{n} \sigma(n)q^n - \sum_{i=1}^{n} \sigma(n)q^{4n}\right)$$

yields $r_4(n) = \sum_{4 \nmid d \mid n} d$.

More generally, if $Q(x) = \sum_{i \leq j} a_{ij} x_i x_j$ is a quadratic form with $a_{ij} \in \mathbb{Z}$, we may consider

$$r_Q(n) = \#\{\lambda \in \mathbb{Z}^4 : Q(\lambda) = n\}$$

and the function

$$\theta_Q(z) = \sum_{n=0}^{\infty} r_Q(n) q^n = \sum_{\lambda \in \mathbb{Z}^4} q^{Q(\lambda)}$$

is again a modular form.

Let $Q: V \to \mathbb{Q}$ be a positive definite quaternary (dim_Q V = 4) quadratic space with associated bilinear form

$$T(x,y) := Q(x+y) - Q(x) - Q(y).$$

Let $\Lambda \subseteq V$ be an **integral** lattice, so that $Q(\Lambda) \subseteq \mathbb{Z}$. Define $\Delta = \operatorname{disc}(\Lambda) = \det T \in \mathbb{Z}$.

Given a lattice, we may construct associated theta series

$$heta_{\Lambda}(z)= heta_{\Lambda,1}(z)=\sum_{\lambda\in\Lambda}q^{Q(\lambda)},\quad q=e^{2\pi i z}$$

The **level** of Λ is the smallest N such that $N\Lambda^{\sharp} \subseteq \Lambda$. Then $\theta_{\Lambda}(z) \in S_2(N, \chi_{\Delta})$, where $\chi_{\Delta}(a) = \left(\frac{\Delta}{a}\right)$. However, $\Lambda \mapsto \theta_{\Lambda}$ is not injective. We define the orthogonal group

$$O(V) = \{g \in GL(V) : Q(gv) = Q(v)\}$$
$$O(\Lambda) = \{g \in O(V) : g\Lambda = \Lambda\}$$

and write SO(V) and SO(Λ) for those with det(g) = 1. Lattices Λ, Π are **isometric**, written $\Pi \simeq \Lambda$, if there exists $g \in O(V)$ such that $g\Lambda = \Pi$. The **genus** of Λ is

$$gen(\Lambda) := \{\Pi \subseteq V : \Lambda_p \simeq \Pi_p \text{ for all } p\}.$$

The class set $cls(\Lambda) = gen(\Lambda)/\simeq$ is the set of (global) isometry classes in gen(Λ). It is finite, by geometry of numbers.

Neighbors

Kneser's theory of *p*-neighbors gives an effective method to compute the class set; it also gives a Hecke action! Let $p \nmid \operatorname{disc}(\Lambda)$ be a prime; p = 2 is OK. We say that a lattice $\Pi \subseteq V$ is a *p*-neighbor of Λ , and write $\Pi \sim_p \Lambda$ if

$$[\Lambda:\Lambda\cap\Pi]=[\Pi:\Lambda\cap\Pi]=p.$$

If $\Lambda \sim_p \Pi$ then:

- $disc(\Lambda) = disc(\Pi)$,
- Π is integral, and
- $\Pi \in gen(\Lambda)$.

Moreover, there exists *S* such that every $[\Pi] \in cls(\Lambda)$ is an **iterated** *S*-neighbor of Λ .

$$\Lambda \sim_{p_1} \Lambda_1 \sim p_2 \cdots \sim_{p_r} \Lambda_r \simeq \Pi$$

with $p_i \in S$. Typically may take $S = \{p\}$.

Example - Computing the class set

Let $\Lambda = \mathbb{Z}^4$ with the quadratic form

$$Q(x_1, x_2, x_3, x_4) = x_1^2 + x_1x_2 + x_2^2 + x_3^2 + x_1x_4 + x_3x_4 + 3x_4^2$$

and bilinear form given by

$$[T_{\Lambda}] = \left(\begin{array}{rrrrr} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 6 \end{array}\right)$$

Thus disc(Λ) = 29.

$$\Lambda' = rac{1}{2}\mathbb{Z}(e_2+e_4)+2\mathbb{Z}e_3+\mathbb{Z}e_1+\mathbb{Z}e_4$$

with corresponding quadratic form

$$Q(x) = x_1^2 + x_1x_2 + 4x_2^2 + x_1x_3 + x_3^2 + 3x_1x_4 + 2x_2x_4 + x_3x_4 + 3x_4^2$$

The space of **orthogonal modular forms** of level Λ is

$$M(O(\Lambda)) := \{ f : \mathsf{cls}(\Lambda) \to \mathbb{C} \} \simeq \mathbb{C}^{h(\Lambda)}$$

For $p \nmid \operatorname{disc}(\Lambda)$ define the **Hecke operator**

$$T_p: M(\mathcal{O}(\Lambda)) o M(\mathcal{O}(\Lambda))$$
 $f \mapsto \left([\Lambda'] \mapsto \sum_{\Pi' \sim_p \Lambda'} f([\Pi']) \right)$

The Hecke operators commute and are self-adjoint, hence there is a basis of simultaneous eigenvectors - **eigenforms**. (Gross, 1999)

Example - square discriminant

Let Λ have the Gram matrix

$$[T_{\Lambda}] = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 6 & 0 \\ 1 & 0 & 0 & 6 \end{pmatrix}$$

so that disc(Λ) = det $T = 11^2$. Then $h(\Lambda) = 3$. Write cls(Λ) = {[Λ] = [Λ ₁], [Λ ₂], [Λ ₃]}. Then a basis of eigenforms is given by

$$\begin{split} f_1 &= [\Lambda_1] + [\Lambda_2] + [\Lambda_3], \qquad f_2 &= 4[\Lambda_1] - 6[\Lambda_2] + 9[\Lambda_3] \\ f_3 &= 4[\Lambda_1] + [\Lambda_2] - 6[\Lambda_3], \end{split}$$

and we have

$$\begin{aligned} \theta(f_1) &= \frac{5}{12} + q + 3q^2 + 4q^3 + 7q^4 + 6q^5 + 12q^6 + O(q^7) \in E_2(11) \\ \theta(f_2) &= q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^6 - 2q^7 + O(q^9) \in S_2(11) \\ \end{aligned}$$
where $T_p(f_2) &= a_p(f_2)$ with $a_2 = 4, a_3 = 1, a_5 = 1, a_7 = 4, \ldots$

Let A be as before with discriminant 29. By checking isometry we compute w.r.t. basis $[\Lambda'], [\Lambda]$

$$[T_2] = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, [T_3] = \begin{pmatrix} 4 & 3 \\ 6 & 7 \end{pmatrix}, [T_5] = \begin{pmatrix} 18 & 9 \\ 18 & 27 \end{pmatrix}, \dots$$

The constant function $e = [\Lambda] + [\Lambda']$ is an **Eisenstein series** with $T_p(e) = (p^2 + (1 + \chi_{29}(p)) + 1)e$. Another eigenvector is $f = [\Lambda] - 2[\Lambda']$, with $T_p(f) = a_p(f)$

$$a_2 = -1, a_3 = 1, a_5 = 9, a_7 = 4, a_{11} = 17, \ldots$$

We match them with the **Hilbert modular form** labeled 2.2.29.1-1.1-a in the LMFDB.

Hilbert modular forms

Let K be a real quadratic field.

- K has two real embeddings $v_1, v_2 : K \to \mathbb{R}$.
- For $a \in K^{\times}$ write $a_i = v_i(a)$.
- $a \in K^{\times}$ is totally positive if $a_1 > 0$ and $a_2 > 0$.
- Write $K_{>0}^{\times}$ for the group of totally positive elements.
- Denote $\operatorname{GL}_2^+(K) = \{\gamma \in \operatorname{GL}_2(K) : \det \gamma \in K_{>0}^{\times}\}$
- $\mathsf{GL}_2^+(K)$ acts on $\mathfrak{H} imes \mathfrak{H}$ by

$$z = (z_1, z_2) \mapsto \gamma z = (\gamma_1 z_1, \gamma_2 z_2) = \left(\frac{a_1 z_1 + b_1}{c_1 z_1 + d_1}, \frac{a_2 z_2 + b_2}{c_2 z_2 + d_2}\right)$$

A Hilbert modular form of weight (k₁, k₂) and level
 Γ ⊆ GL₂⁺(K) is a holomorphic f : 𝔅 × 𝔅 → ℂ such that

$$f(\gamma z) = \frac{(c_1 z_1 + d_1)^{k_1}}{\det(\gamma_1)^{k_1/2}} \frac{(c_2 z_2 + d_2)^{k_2}}{\det(\gamma_2)^{k_2/2}} f(z) \quad \forall \gamma \in \Gamma$$

Towards a bijection?

Would like to have a bijection between orthogonal modular forms and Hilbert modular forms, but... Consider $Q(x) = x_1^2 + x_2^2 + x_3^2 + x_1x_4 + x_2x_4 + 3x_4^2$ with Gram matrix

$$[T_{\Lambda}] = \left(\begin{array}{rrrrr} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 6 \end{array}\right)$$

and disc(Λ) = 40.

- Then dim $S(O(\Lambda)) = 1 \neq 2 = \dim S_2(\mathbb{Z}[\sqrt{10}]).$
- This is because of the lattice Λ_2 with form $Q_2(x) = x_1^2 + x_2^2 + 2x^3 + x_2x_4 + 2x_3x_4 + 2x_4^2$.
- Although $\Lambda_2 \notin gen(\Lambda_1)$, it is everywhere locally similar to Λ_1 .

We define the general orthogonal group

$$\begin{aligned} \mathsf{GO}(V) &= \{ g \in \mathsf{GL}(V) : Q(gv) = \mu(g)Q(v), \quad \mu(g) \in \mathbb{Q}^{\times} \} \\ \mathsf{GO}(\Lambda) &= \{ g \in \mathsf{GO}(V) : g\Lambda = \Lambda \} \end{aligned}$$

and write GSO(V) and $GSO(\Lambda)$ for those with det(g) > 0. Lattices Λ, Π are similar, written $\Pi \sim \Lambda$, if there exists $g \in GO(V)$ such that $g\Lambda = \Pi$. The similitude genus of Λ is

$$\operatorname{sgen}(\Lambda) := \{\Pi \subseteq V : \Lambda_p \sim \Pi_p \text{ for all } p\}.$$

The similitude class set $scls(\Lambda) = sgen(\Lambda) / \sim$ is the set of (global) similitude classes in $sgen(\Lambda)$. It is finite, by geometry of numbers.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022)) Assume disc(Λ) = $D_0 N^2$, $K = \mathbb{Q}[\sqrt{D_0}]$. Then $S(GO(\Lambda)) \hookrightarrow G_K \setminus S_2(N\mathbb{Z}_K)$

with image the orbits in $S_2(N\mathbb{Z}_K; W = \epsilon)^{D\text{-new}}$

- G_K = Gal(K|ℚ) acts naturally on the space of Hilbert modular forms.
- *D* is the product of the anisotropic primes.
- For $p \mid N$, we set $\epsilon_p = -1$ if $p \mid D$, else $\epsilon_p = 1$.
- W_p is the Atkin-Lehner involution at $p\mathbb{Z}_K \mid N\mathbb{Z}_K$.

• The space of orthogonal modular forms of weight (k, j) is

$$M_{k,j}(\mathrm{GO}(\Lambda)) = \{f : \mathrm{scls}(\Lambda) \to W_{k,j} : f(gx) = \rho_{k,j}(g)f(x)\}.$$

• Twisting by the spinor norm, we obtain all the spaces

$$S_{k_1,k_2}(N\mathbb{Z}_K,W=\epsilon)^{D-\mathrm{new}}$$

- The space S(O(Λ)) is identified as the forms invariant under twists by Hecke characters.
- If $D_0 = 1$, $K = \mathbb{Q} \times \mathbb{Q}$, so $M_{k_1,k_2}(N\mathbb{Z}_K) = M_{k_1}(N) \otimes M_{k_2}(N)$, this case was proved by Böcherer and Schulze-Pillot (1991).

Theorem (Auel and Voight)

The even Clifford functor with descent data induces an equivalence

 $\left.\begin{array}{l} \text{lattices } \Lambda \subseteq V \\ \text{under oriented similarities}\end{array}\right\} \rightsquigarrow \left\{\begin{array}{l} \mathbb{Z}_{K}\text{-orders } O \subseteq C_{0}(V) \\ \text{under isomorphisms}^{*}\end{array}\right\}$

- It also induces an isomorphism $C_0 : \text{GSO}(V)/\mathbb{Q}^{\times} \xrightarrow{\simeq} B_K^{\times}/K^{\times}$.
- Compatible, hence $C_0^* : M(\mathsf{Typ}_s(\mathcal{O}), \rho) \to M(\mathsf{GSO}(\Lambda), \rho \circ C_0).$
- Description of $\text{Typ}_s(O)$ based on Ponomarev (1976).
- Sends *p*-neighbors to $p\mathbb{Z}_{K}$ -neighbors.
- Characterize M(Typ_s(O), ρ) as a subspace of M(O[×], ρ)) using AL, as in Hein (2016).

••
$$\cong$$

 [$A_1 \times A_1 = D_2$, equiv. $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2 \cong \mathfrak{so}_4$]

We obtain commutative diagrams of Hecke modules

The bottom line is:

- Yoshida lift when $K = \mathbb{Q} \times \mathbb{Q}$ and f, g are both cuspidal.
- Saito-Kurokawa lift when $K = \mathbb{Q} \times \mathbb{Q}$ otherwise.
- Asai lift when K is a quadratic field.

We can also do that for lattices of higher even rank. For example, this yields the following theorem

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022)) Let $\Lambda = A_6 \oplus A_2$, and let $f_1, f_2 \in S_4(\Gamma_0(21), \chi_{21})$ be representatives for the two Galois orbits of newforms. Write

$$\lambda_{p,1}^{(i)} = a_p(f_i)^2 - \chi_{21}(p)p^3 + p \cdot \frac{p^5 - 1}{p - 1}, \quad \lambda_{p,1}^{(3)} = \frac{p^7 - 1}{p - 1} + \chi_{21}(p)p^3$$

There are $A_i \in M_{3 \times 3}(\mathbb{Q})$ such that the p-neighbor adjacency matrix in cls(Λ) is

$$A_1\lambda_{p,1}^{(1)} + A_2\lambda_{p,1}^{(2)} + A_3\lambda_{p,1}^{(3)}$$

Eisenstein congruences

This method allows us also to prove Eisenstein congruences.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022)) For all $p \neq 53$, we have

$$a_{1,p^2}(F) \equiv a_p(f)^2 - (1 + \chi_{53}(p))p^3 + p^5 + p \pmod{\mathfrak{q}}$$

where $F \in S_4(\Gamma_0^{(2)}(53), \chi_{53})$, $\mathfrak{q} \mid 397$ in $K = \mathbb{Q}(F)$, and $f \in S_4(\Gamma_0(53), \chi)$.

Why 397? The numerator of the norm of

 $\frac{L(\operatorname{Sym}^2(f),1)}{\pi^2 L(\operatorname{Sym}^2(f),3)}$

is divisible by 397, hence

 $\operatorname{ord}_{\mathfrak{q}}(L_{\operatorname{alg}}(\operatorname{Sym}^{2}(f), 6)) > 0.$

Conjecture (A. et al. (2022))

Let Λ be of rank 6 and discriminant p.

dim ker $\theta_2 = \# \operatorname{cls}^+(\Lambda) - \operatorname{cls}(\Lambda) = \dim M(O(\Lambda), \det)$

Conjecture (A. et al. (2022)) If $f \in S_{j+k}(\Gamma_0(N), \chi)$ is an eigenform with $\operatorname{ord}_{\mathfrak{q}}(L_{\operatorname{alg}}(\operatorname{Sym}^2(f), j+2k-2)) > 0$ and \mathfrak{q} lies above q > 2(j+k) - 1. Then there are $F \in S_{j,k}(\Gamma_0^{(2)}(N), \chi)$ and $\mathfrak{q}' \mid \mathfrak{q}$ such that $b_{1,p^2} \equiv a_p^2 - \chi(p)p^{j+k-1} - p^{j+2k-5} + p^{j+2k-3} + p^{j+1} \pmod{\mathfrak{q}'}$ Asai, Tetsuya. 1977. *On certain Dirichlet series associated with Hilbert modular forms and Rankin's method*, Math. Ann. **226**, no. 1, 81–94, DOI 10.1007/BF01391220. MR429751

Auel, Asher and John Voight. 2021. *Quaternary Quadratic Forms and Quaternion Ideals*. unpublished.

Böcherer, Siegfried and Rainer Schulze-Pillot. 1991. *Siegel modular forms and theta series attached to quaternion algebras*, Nagoya Math. J. **121**, 35–96, DOI 10.1017/S0027763000003391. MR1096467

A., Dan Fretwell, Colin Ingalls, Adam Logan, Spencer Secord, and John Voight. 2022. Orthogonal modular forms attached to quaternary lattices.

Gross, Benedict H. 1999. *Algebraic modular forms*, Israel J. Math. **113**, 61–93, DOI 10.1007/BF02780173. MR1729443

Hein, Jeffery. 2016. Orthogonal modular forms: An application to a conjecture of birch, algorithms and computations, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Dartmouth College. MR3553638

Ibukiyama, Tomoyoshi. 2012. *Saito-Kurokawa liftings of level N and practical construction of Jacobi forms*, Kyoto J. Math. **52**, no. 1, 141–178, DOI 10.1215/21562261-1503791. MR2892771

Kurokawa, Nobushige. 1978. *Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two*, Invent. Math. **49**, no. 2, 149–165, DOI 10.1007/BF01403084. MR511188

Ponomarev, Paul. 1976. Arithmetic of quaternary quadratic forms, Acta Arith. **29**, no. 1, 1–48, DOI 10.4064/aa-29-1-1-48. MR414517

Saito, Hiroshi. 1977. *On lifting of automorphic forms*, Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, pp. Exp. No. 13, 6. MR551339

Yoshida, Hiroyuki. 1980. *Siegel's modular forms and the arithmetic of quadratic forms*, Invent. Math. **60**, no. 3, 193–248, DOI 10.1007/BF01390016. MR586427