Can divergence of Gibbs measures at temperature zero be observed on finite marginals?

Michael Hochman

August 11, 2009

Let $\varphi : \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ be a Hölder continuous function and \mathcal{M} the space of shift-invariant probability measures. For each β , let $\mu_{\beta} \in \mathcal{M}$ be the Gibbs measure associated to $\beta\varphi$, i.e. the unique measure $\nu \in \mathcal{M}$ maximizing the quantity

$$h(\nu) + \int \beta \varphi \; d\nu$$

Let \mathcal{G}_{φ} denote the set of accumulation points of μ_{β} as $\beta \to \infty$, and let \mathcal{M} denote the set of φ -maximizing measures, i.e.

$$\mathcal{M}_{\varphi} = \{ \nu \in \mathcal{M} : \forall \nu' \in \mathcal{M} \int \varphi d\nu' \leq \int \varphi d\nu \}$$

Note that \mathcal{M} is compact and convex in the weak-* topology.

It is known that $\mathcal{G}_{\varphi} \subseteq \mathcal{M}_{\varphi}$; in fact, if $\nu \in \mathcal{G}_{\varphi}$ then $h(\nu)$ maximizes $h(\cdot)$ on \mathcal{M}_{φ} . Thus if \mathcal{M}_{φ} is a singleton then μ_{β} converges as $\beta \to \infty$. However, \mathcal{M}_{φ} can contain multiple points maximizing the entropy, indicating that it may be possible for μ_{β} to diverge weak-*. Jean-René Chazottes and I recently showed that such divergence is possible.

One can try to observe divergence at the level of finite marginals. For $n\in\mathbb{N}$ let

$$\mathcal{M}_{arphi,n} = \{
u|_{\{0,1\}^n} \, : \,
u \in \mathcal{M}_{arphi}\}$$

denote the set of measures on $\{0.1\}^n$ obtained by restricting \mathcal{M}_{φ} to coordinates $1, 2, \ldots, n$. This is a closed convex set of probability measures on $\{0, 1\}^n$ and since the entropy function $H(\cdot)$ is strictly concave, there is a unique measure

 $\mu_n \in \mathcal{M}_{\varphi,n}$ maximizing it. It is clear that any "limit point" of μ_n in \mathcal{M}_{φ} is an entropy-maximizing measure in \mathcal{M}_{φ} . In my example with Chazottes, divergence of μ_{β} is shown by first showing that μ_n diverges, and that $\mu_{\beta} \sim \mu_n$ when β is related to n in a certain way. This raises the following

Problem: Does the set of accumulation points of μ_n , as $n \to \infty$, coincide with \mathcal{G}_{φ} ?